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Abstract

The anomalous dimensions of light-ray operators of twist two are ob-
tained by analytical continuation of the anomalous dimensions of corre-
sponding local operators. I demonstrate that the asymptotics of these
anomalous dimensions at the “BFKL point” j → 1 can be obtained by
comparing the light-cone operator expansion with the high-energy expan-
sion in Wilson lines.

PACS number(s): 12.38.Bx, 12.38.Cy

1 Introduction

It is well known that the BFKL pomeron[1] gives the anomalous dimensions
of leading-twist gluon operators at all orders near the unphysical point with
number of covariant derivatives equal to minus one. The exact statement is that
the analytical continuation of anomalous dimension of twist-two gluon operator

OnF ≡ F aµ−∇
j−2
− Fµa− (1)

to the point j = 1 is determined by the BFKL equation. The anomalous di-
mensions are singular at that point and there is a new hierarchy of perturbation

theory γ(αs, n) ∼
∑
αms
(
αs
j−1
)n−m

. In the leading order ∼
(
αs
j−1

)n
the relation

to the BFKL pomeron was established long ago [2] and for the next-to-leading
order BFKL it was done in papers [3]. This constitutes a powerful check for
explicit calculations of higher-order anomalous dimensions both in QCD [4] and
N=4 SYM [5]. However, the explicit meaning of these “local operators at the
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unphysical point” was somewhat obscure. I argue that these operators should be
understood as gluon light-ray operators and BFKL equation gives the anoma-
lous dimensions of these light-ray operators at some specific point.

First, let me remind the standard argument about analytical continuation.
It is well known that the moments of structure functions are proportional to
matrix elements of twist-2 operators. The Q2 behavior of structure functions
are governed by anomalous dimensions of these operators

µ
d

dµ
F aµ−∇n−2− Fµa− = γ(αs, n)F aµ−∇n−2− Fµa− (2)

As I mentioned, the BFKL pomeron determines the asymptotics of these anoma-
lous dimension at the “non-physical” point n = 1. The standard argument goes
like that: in the framework of the BFKL approach the amplitude of, say, virtual
γ∗γ∗ scattering has the form

A(s) =

∫
dνF (ν)

( s

QP

)ℵ(ν)(Q2

P 2

)iν
where ℵ(ν) is the pomeron intercept (the explicit form is given by Eq. (41)
below) where Q2 = −q2 and p2 = −P 2 are virtualities of the two photons and
s = (p+ q)2. The case of DIS corresponds to Q2 � P 2 and the Regge limit of
small-x DIS to s� Q2

Rewriting this in terms of Bjorken xB = Q2/s one gets

A(s) =

∫
dνF (ν) x

−ℵ(ν)
B

(Q2

P 2

)iν+ 1
2ℵ(ν)

(3)

which turns to

A(xB , Q
2) =

s

QP

∫
dνF (ν) x

−ℵ̃(ν)
B

(Q2

P 2

)iν
(4)

after the shift

ν − i

2
ℵ(ν)→ ν (5)

The n-th moment of the structure function is given by

Mn =

∫ 1

0

dxB xnBA(xB , Q
2) =

∫ 1
2+i∞

1
2−i∞

dξ
F (ξ)

n− ℵ̃(ξ)

(Q2

P 2

)ξ
(6)

where ξ ≡ 1
2 + iν. Now let us consider the integral (6) at n = ω → 0. The

contour goes parallel to imaginary axis but we can close it on the poles of the
function 1

ω−ℵ̃(ξ) . The expansion of ℵ̃(ξ) at small ξ has the form

ℵ̃(ξ) =
αsNc
2πξ

+
α2
sN

2
c

8π2ξ
ζ(3) +O(α3

s)

2



so we get

Mω =

∫ 1

0

dxB xωBA(xB , Q
2) =

(Q2

P 2

)γ(ω)
(7)

where

γ(αs, ω) = − 2
αsNc
πω

+ [0 + ζ(3)ω]
(αsNc
πω

)
)3

+ ... (8)

Since

Mn =

∫ 1

0

dxB xnBA(xB , Q
2) =

(Q2

P 2

)γn
(9)

we see that the series (8) giver the analytical continuation of the anomalous
dimensions of twist-2 operators (1) at the point n → 1 which can be formally
denoted as F−i∇−1F i

− .
This method, however, does not tell us the explicit form of this operator

and in this paper I will demonstrate that F−i∇ω−1F i
− is actually a light-ray

operator (j ≡ ω + 1)

Fj(x⊥) (10)

=

∫ ∞
0

dL+ L1−j
+

∫
dx+ F a−i(L+ + x+ + x⊥)[L+ + x+, x+]abF bi− (x+ + x⊥)

and the anomalous dimension of this operator γ(j;αs) is an analytic continua-
tion of the anomalous dimension (2) of local operators.

For simplicity this will be done in N = 4 SYM where the conformal in-
variance simplifies many formulas for the correlation functions. The method
to get the anomalous dimensions of the light-ray operator (10) near j = 1 will
be to calculate a 4-point correlation function of certain operators in the dou-
ble “Regge+DIS” limit s � Q2 � P 2. We will compare two calculations of
this 4-point CF: with Regge limit first and DGLAP limit second, or vice versa,
and demonstrate that the intercept of the BFKL pomeron ℵ(ν) determines the
anomalous dimensions in this region. However, first we need to discuss some
properties of light-ray operators.

2 Light-ray operators

2.1 Light-ray operators in gluodynamics

For simplicity, let us at first look at gluodynamics. For our purposes it is
sufficient to consider “forward” light-ray operator

F (L+, x⊥) =

∫
dx+ F a−i(L+ + x+ + x⊥)[L+ + x+, x+]abF bi− (x+ + x⊥) (11)

Evolution equation for “forward” operators has the form (see e.g. Ref. [6])

µ
d

dµ
F (L+, x⊥) =

∫ 1

0

du Kgg(u, αs)F (uL+, x⊥) (12)
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Note that since the matrix element of the light-ray operator (11) defines gluon
parton density

zµzν〈p|F aµξ(z)[z, 0]abF bξν (0)|p〉µ z2=0
= 2(pz)2

∫ 1

0

dxB xBDg(xB , µ) cos(pz)xB

the kernel

u−1Kgg(u) =
2αsNc
π

(
ūu+

[ 1

ūu

]
+
− 2 +

11

12
δ(ū)

)
+ higher orders in αs (13)

is actually a DGLAP kernel (in gluodynamics).
The anomalous dimensions of local twist-2 operators (1) is determined by

the kernel (13)

γn(αs) = −
∫ 1

0

du un−2Kgg(u, αs) µ
d

dµ
Ogn = − γn(αs)Ogn (14)

Now consider the anomalous dimensions of LR operator (10). Cobining Eqs.
(10) and (12) one obtains

µ
d

dµ
Fj(z⊥) =

∫ 1

0

du Kgg(u, αs)u
j−2Fj(z⊥)

Thus, we see that the anomalous dimension of light-ray operators (11) is an an-
alytical continuation of anomalous dimensions of local operators to non-integer
j.

2.2 Singlet light-ray operators in N = 4 SYM

In N = 4 SYM, in addition to the gluon operators (1) there are twist-2 local
gluino and scalar operators (as usual, we consider only “forward” highest weight
local operators). Similarly to Eq. (11) we can define gluino and scalar light-ray
operators (of even parity)

Φ(x+, x⊥) =

∫
dx′+ φaI (x+ + x′+ + x⊥)[x+, x

′
+]ab∇2

−φ
b
I(x
′
+ + x⊥)

Λ(x+, x⊥) =
i

2

∫
dx′+

[
λ̄aA(x+ + x′+ + x⊥)[x+ + x′+, x

′
+]abσ−∇−λbA(x′+ + x⊥)

− λ̄aA(x′+ + x⊥)[x+ + x′+, x+]abσ−∇−λbA(x+ + x′+ + x⊥)
]

G(x+, x⊥) =

∫
dx′+F

a
−i(x+ + x′+ + x⊥)[x+ + x′+, x

′
+]abF bi− (x′+ + x⊥) (15)

The evolution equations have the form similar to (12)

µ
d

dµ
Φ(x+) =

∫ 1

0

du
[
KφφΦ(ux+) +KφλΛ(ux+) +KφgG(ux+)

]
µ
d

dµ
Λ(x+) =

∫ 1

0

du
[
KλφΦ(ux+) +KλλΛ(ux+) +KλgG(ux+)

]
µ
d

dµ
G(x+) =

∫ 1

0

du
[
KgφΦ(ux+) +KgλΛ(ux+) +KggG(ux+)

]
(16)
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where Kij = Kij(u, αs) is a function of u and αs. The expansion in powers of
x+ gives anomalous dimensions of local operators

Φ(x+, x⊥) =
∑ xn−2+

(n− 2)!
Onφ(x⊥), Λ(x+, x⊥) =

∑ xn−2+ (x⊥)

(n− 2)!
Onλ ,

G(x+, x⊥) =
∑ xn−2+

(n− 2)!
Ong (x⊥) (17)

where

Onφ(x⊥) =

∫
dx′+ φ̄aAB∇n−φABa(x′+ + x⊥),

Onλ(x⊥) =

∫
dx′+ iλ̄aA∇n−1− σ−λ

a
A(x′+ + x⊥)

Ong (x⊥) =

∫
dx′+ F a−i∇n−2− F ai− (x′+ + x⊥), (18)

Matrix of anomalous dimensions for these “forward” local operators has the
form

µ
d

dµ
Onφ =

∫ 1

0

du un−2
[
KφφOnφ +KφλOnλ +KφgOng

]
µ
d

dµ
Onλ =

∫ 1

0

du un−2
[
KλφOnφ +KλλOnλ +KλgOng

]
µ
d

dµ
Ong =

∫ 1

0

du un−2
[
KgφOnφ +KgλOnλ +KggOng

]
(19)

The renorm-invariant combinations were found in Ref. [7]:

Sn1 = Ong +
1

4?
Onλ −

1

2
Onφ

Sn2 = Ong −
1

4(n− 1)
Onλ +

(n+ 1)

6(n− 1)
Onφ

Sn3 = Ong −
n+ 2

2(n− 1)
Onλ −

(n+ 1)(n+ 2)

2n(n− 1)
(20)

The corresponding anomalous dimensions read

γS1
n (αs) = 4[ψ(n− 1) + γE ] +O(α2

s), γS2
n = γS1

n+1, γS3
n = γS1

n+2 (21)

Now we define

Φj(x⊥) =

∫ ∞
0

dx+ x−j+1
+ Φ(x+, x⊥), Λj(x⊥) =

∫ ∞
0

dx+ x−j+1
+ Λ(x+, x⊥)

Gj(x⊥) =

∫ ∞
0

dx+ x−j+1
+ G(x+, x⊥) (22)
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From Eq. (16) we get the martix of anomalous dimensions for these LR oper-
taors

µ
d

dµ
Φj =

∫ 1

0

du uj−2
[
Kφφ(u, αs)Φj +Kφλ(u, αs)Λj +Kφg(u, αs)Gj

]
µ
d

dµ
Λj =

∫ 1

0

du uj−2
[
Kλφ(u, αs)Φj +Kλλ(u, αs)Λj +Kλg(u, αs)Gj

]
µ
d

dµ
Gj =

∫ 1

0

du uj−2
[
Kgφ(u, αs)Φj +Kgλ(u, αs)Λj +Kgg(u, αs)Gj

]
(23)

Since the matrix (23) is an analytical continuation of the matrix (16) so are the
eigenvectors and eigenfunctions and therefore

Sj1 = Gj +
1

4
Λj −

1

2
Φj , Sj2 = Gj −

1

4(j − 1)
Λj +

j + 1

6(j − 1)
Φj

Sj3 = Gj −
j + 2

2(j − 1)
Λj −

(j + 1)(j + 2)

2j(j − 1)
Φj (24)

are the multiplicatively renormalized operators with anomalous dimensions

γS1
j (αs) = 4[ψ(j − 1) + γE ] +O(α2

s), γS2
j = γS1

j+1, γS3
j = γS1

j+2 (25)

Note that at high energy (≡ j → 1) only the contribution of S1 survives because
at small ω = j − 1 the anomalous dimension of S1 is negative while those of S2

and S3 are non-negative and hence we omit contributions of S2 and S3 operators
in what follows.

For future use we need also the operators with the light rays going along the
x− direction defined as

Φ̃j(x⊥) =

∫ ∞
0

dx− x
−j−1
− Φ(x−, x⊥) (26)

=

∫
dx−dx

′
−θ(x−) x−j−1− φ̄aAB(x− + x′− + x⊥)[x−, x

′
−]abφABb(x′− + x⊥)

and similarly for Λ̃j , G̃j and S̃j operators.

3 DGLAP representation of 4-point correlation
function

To get the anomalous dimensions of light-ray operators (24) near j = 1 we
consider the correlation function of four Konishi operators in the double BFKL
+ DGLAP limit. Define

A(x1, x2, x3, x4) = µ−4(µ4x212x
2
34)2+γk〈O(x1)O(x2)O(x3)O(x4)〉 (27)
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where O = φaIφ
a
I is the Konishi operator (γK - anomalous dimension). The

Regge limit is

x1+ → ρx1+, x2+ → ρx2+, x3− → ρ′x3−, x4− → ρ′x4− with ρρ′ →∞
(28)

and the DGLAP limit corresponds to x212 → 0. It is convenient to consider
“forward” correlation function

A(L+, L−;x1⊥ , x2⊥ , x3⊥ , x4⊥) = µ−4(µ4x212x
2
34)2+γk (29)

×
∫
dx2+dx3− 〈O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)O(L− + x4− , x3⊥)O(x4− , x4⊥)〉

in the double limit: Regge (L+L− →∞) plus DGLAP ( x212 → 0).
First we look at the CF (29) in the DGLAP limit. In this limit we need to

expand of the product two Konishi operators near the light cone with the leading
term being twist-two light-ray operators (24). To get the coefficient functions
in this expansion it is convenient to discuss first the three-point correlation
function of a LR operator with two local operators. The correlation function of
three local operators is fixed by conformal invariance. In our case it yields

〈S1n(z1)O(z2)O(z3)〉
(µ2z223)γK

=
cn[1 + (−1)n]

z212z
2
13z

2
23

(z12−
z212
−
z13−
z213

)n(µ−2z223
z212z

2
13

) 1
2γ(n,αs)

(30)
For the CF of “forward” operator (15) and two local operators we get

x223⊥(µ2x223⊥)γK
1

2πi

∫
dx1+〈S1n(x1+ , x1⊥)O(x2− , x2⊥)O(x3− , x3⊥)〉 (31)

= − cn[1 + (−1)n]

x423⊥

Γ(1 + 2n+ γn)

Γ2(1 + n+ 1
2γn)

( x223⊥
x2−x3−

)1+ γn
2

(x212⊥
x2−

+
x213⊥
x3−

)−1−n−γn
Since a light-ray operator S1j is an “analytical continuation” of a local operator
Sn1 to non-integer n the CF of light-ray operator and two local operators has
similar form

x223⊥(µ2x223⊥)γK 〈S1j(x1⊥)O(x2− , x2⊥)O(x3− , x3⊥)〉 (32)

= − 2πi
cj [1 + eiπj ]

x423⊥

Γ(1 + 2j + γj)

Γ2(1 + j + 1
2γj)

( x223⊥
x2−x3−

)1+ γj
2

(x212⊥
x2−

+
x213⊥
x3−

)−1−j−γj
Integrating this over the total translation in x− direction we get

x223⊥(µ2x223⊥)γK
∫
dx3−〈S1j(x1⊥)O(L− + x3− , x2⊥)O(x3− , x3⊥)〉

=

∫ 1

0

du
c(j, αs)[1 + eiπj ]Lj−(ūu)j[

x212⊥u+ x213⊥ ū]1+j

( ūuµ−2x223⊥
[x212⊥u+ x213⊥ ū]2

) 1
2γ(j,αs)

(33)

To get the expansion of
∫
dx3−O(L− + x3− , x2⊥)O(x3− , x3⊥) as x23⊥ → 0 one

compares Eq. (33) to the CF of two light-ray operators

〈Sj= 3
2+iν

(x1⊥)S̃j′= 3
2+iν

′(x3⊥)〉 =
δ(ν − ν′)a(j, αs)

(x213⊥)j+1(x213⊥µ
2)γ(j,αs)

(34)
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One obtains

x223⊥(µ2x223⊥)γK
∫
dx3− O(L− + x2− , x2⊥)O(x3− , x3⊥)

=

∫ 1
2+i∞

1
2−i∞

dj c(j, αs)[1 + eiπj ]Lj−(µ2x223⊥)γ(j,αs)S1j(x3⊥) (35)

It is easy to see that the substitution of Eq. (34) to the r.h.s. of this equation
reproduces the 3-point CF (33). Similar result with exchange of x− and x+
directions reads

x212⊥(µ2x212⊥)γK
∫
dx1+ O(L+ + x2+ , x1⊥)O(x2+ , x2⊥)

=

∫ 1
2+i∞

1
2−i∞

dj c(j, αs)[1 + eiπj ]Lj+(µ2x212⊥)γ(j,αs)S+
j (x1⊥) (36)

Finally, combining the light-cone expansion (36) with the three-point CF (33)
we get the “DGLAP representation” of the 4-point CF (29)

A(L+, L−;x1⊥ , x2⊥ , x3⊥ , x4⊥) =

∫ 1
2+i∞

1
2−i∞

dj

2πi
c2(j, αs)

×
∫ 1

0

dv
[1 + eiπj ](L+L−)j[
x212⊥v + x213⊥ v̄]1+j

( x212x
2
34

[x213⊥v + x214⊥ v̄]2

) 1
2γ(j,αs)

(v̄v)j+
1
2γ(j,αs)(37)

In next Section we compare this formula with the “BFKL” representation of
the same CF (29).

4 BFKL representation of 4-point correlation func-
tion

The 4-point CF (27) is a function of two conformal ratios. In the Regge limit
(28) it is convenient to choose them as

R =
x213x

2
324

x212x
2
34

→ ρ2ρ′2x1+x2+ + x3−x4−
x212⊥x

2
34⊥

, r = R
[
1− x214x

2
23

x213y
2
24

+
1

R

]2
→

[x224⊥x1+x3− + x2+y4−x
2
12⊥

+ x1+y4− − x223⊥ + x2+x3−x
2
14⊥

]2

x213⊥x
2
24⊥x1+x2+x3−x4−

(38)

It is easy to see that R increases with “energy” (∼
√
ρρ′) while r is energy-

independent.
It was demonstrated that a 4-point CF in N = 4 SYM in the Regge limit

and at large Nc can be parametrized as a contribution of a Regge pole with
J = ℵ(ν)

A(xi)
s∼ρρ′→∞

=
i

2

∫
dν f+(ℵ(λ, ν))F (λ, ν)Ω(r, ν)Rℵ(λ,ν)/2 (39)
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where f+(ω) = eiπω−1
sinπω is a signature factor and

Ω(r, ν) =
ν

2π2

sin 2νρ

sinh ρ
, cosh ρ =

√
r

2
(40)

is a solution of the Laplace equation in H3 hyperboloid (∂2H3
+ν2+1)Ω(r, ν) = 0.

The dynamics is described by the pomeron intercept ℵ(λ, ν) and the “pomeron
residue” F (λ, ν). This formula was proved in [8] (see also [9]) by considering
the leading Regge pole in a conformal theory. Also, it was demonstrated up to
the NLO level that the structure (39) is reproduced by the high-energy OPE in
Wilson lines [10, 11, 12, 13].

The pomeron intercept in N = 4 SYM is known in the leading order and in
the NLO [14]

ℵ(ν) =
αsNc

2π

[
χ(ν) +

αsNc
4π

δ(ν)
]

+ O(α3
s) (41)

We will not need the explicit form of the “pomeron residue” F (λ, ν) but it can
be easily restored from the NLO result for the CF of four protected operators
TrZ2 and TrZ̄2 calculated in Ref. [15].

Now let us take the DGLAP limit x212⊥ → 0 on the top of Regge limit (39).
In this limit

R =
x213x

2
24

x212x
2
34

→
x1+x2+x3−x4−
x212⊥x

2
34⊥

, r →
x212+(x3−x

2
14⊥
− x4−x213⊥)2

x1+x2+x3−x4−x
2
12⊥

x234⊥

and
Ω(r, ν) → ν

2π2i

(
r−

1
2+iν − r− 1

2−iν
)

(42)

so Eq. (39) reduces to

A(L+, L−;x1⊥ , x2⊥ , x3⊥ , x4⊥) =
iα2
s

8
π2L+L−

×
∫ 1

0

dudv

∫
dν

tanhπν

ν cosh2 πν

( x212⊥x234⊥ūuv̄v
[x213⊥v + x214v̄]2

) 1
2+iν

(L2
+L

2
−ūuv̄v

x212⊥x
2
34⊥

)ℵ(ν)/2
f+

Performing integral over u one obtaines the “BFKL” representation of the CF
(29) in the double (Regge plus x212⊥ → 0) limit:

A(L+, L−;x1⊥ , x2⊥ , x3⊥ , x4⊥) =
α2
s

8
π2

∫ 1
2+i∞

1
2−i∞

dξ

2πi
f
(
ℵ(ξ)

)
(L+L−)1+ℵ(ξ)

×
∫ 1

0

dv
(v̄v)1−ξ+

ℵ(ξ)
2 cosπξ

(ξ − 1
2 ) sin3 πξ

B
(
2− ξ + ℵ(ξ)

2

)
[x213⊥v + x214v̄]2+ℵ(ξ)

( x212⊥x
2
34⊥

[x213⊥v + x214v̄]2

)−ξ−ℵ(ξ)2

(43)

where ξ ≡ 1
2 + iν.
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5 Anomalous dimensions of light-ray operators

Let us compare integrals (37) and(43) for the correlation function (27). In both
cases, the integrals run parallel to the imaginary axis but the singularities of
the integrands lie on the negative real axis. We can close the integrals around
negative real axis and compare the integrands near j = 0 and ξ = 0. We see
that the integrands coincide if one makes an identification

1 + ℵ(ξ, αs) = j, γ(j, αs) = − 2ξ − ℵ(ξ) (44)

and

c2(j, αs) =
α2
s

8
π2 cosπξ

(ξ − 1
2 ) sin3 πξ

Γ2
(
2− ξ + ℵ(ξ)

2

)
Γ
(
4− 2ξ + ℵ(ξ)

) ∂j
∂ξ

(45)

If we write down the NLO pomeron intercept (41) as a Laurent series near ξ = 0

ℵ(ξ, αs) =
αsNc
πξ

+ ... (46)

we can invert equations (44) and get anomalous dimension near ω = j − 1→ 0
as a series in αs

ω

ℵ(ξ)− 2ℵ(ξ)ℵ′(ξ) ' αsNc
πξ

+
ζ(3)α2

s

ξ
+ ...

⇒ γj = −2
αsNc
πω

+ [0 + ζ(3)ω]
(αsNc
πω

)
)3

+ ... (47)

In principle, the inversion of Eqs. (44) gives all orders in
(
αsNc
πω )

)n
but in

practice one gets the first few terms since the analytical form of the inversion is
not known.

It is worth noting that the second of Eqs. (44) corresponds to the shift (5)

ξ → ξ +
1

2
ℵ(ξ) (48)

in the integral (43). In the momentum space this shift comes from the change
of the energy scale from the symmmetric QP to non-symmetric Q2 while in the
coordinate space it comes directly from the symmetric “energy scale” R , see
Eq. (38).
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