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BFKL forward amplitude
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Troubleswith the NL A correctionsto the Green’sfunction

o N

® BFKL equation:

(L — ) = wGu (@1, ) — /dQCT/C(Cﬁ,CD Guw(q,q2)

K(q1, q2) is known in the NLA

—1

/d2Q§KLLA(§1>§2) ((5’22)7 = dasx(7) (512)7_1 , Y= +1/2

/qu_é’CNLA((Tl’QE) (522)7_1 = (078(512)X(7) —|-a_82(q”12)x(1)(7)> (6»12)7—1

® NLA corrections to the Green'’s function turn out to be very large and negative

|

Expectation: NNLA corrections large and of the opposite sign

|

We try to infer the essential NNLA dynamics by the collinear approach
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Compatibility with DGLAP

o N

® Anenergy scale sp = g1¢g> is a natural choice in the typical BFKL kinematics

® We now focus on the kinematical region in which ¢35 < ¢2

This region is tipical of the collinear approach and correspondsto v =0

® Pole structure of the kernel around v = 0:

1 a b 1
x(7) S X (7) ST T s
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~ 12N. 36 N3 36 8N, 6N3 12

® In the collinear kinematics the natural choice for the energy scale should be s¢ = ¢%

—> | What's happen if we shift so = qiqg2 — s0=¢3?
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® Solving the BFKL equation at the leading order one obtains

G(q1,G2,5,50) =

G(Jl7 6727 S)

Compatibility with DGLAP
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RG-improvement of the BFKL kernel intheLLA

-,
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In collinear limit vy ~ 0 — w ~
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—> The second term cancels with the NLA cubic pole
—> The other subleading terms, numerically large, are not allowed by DGLAP

—
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Solution [G.P. Salam, M. Ciafalont, D.Col ferai]. redefine the original kernel
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RG-improvement of the BFKL kernel inthe NLA

o N

® -shift at the next-to-leading order [G.P. Salam, A. Sabio Veral

w w
w=as(1+ ad) (2001) - ¢ (v+ = —bag) = (1-v+ . + bais ) )
® The solution must match the NLA accuracy of the original BFKL calculation

® The esplicit solution of this equation gives these new terms
n+1
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® Xrc(v) isO(a7)
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Amplitude for the v*+* — V'V forward scattering
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Transver se momentum representation

We define the transverse momentum representation:

— | =

é"(j” = Qilql'> )
(@1l@2) =6 (@1 — @) , (A|B) = (Alk)(k|B) = /koA(/?)B(E)
The kernel operator K is

K(q2,q1) = (@|K|q1)

The equation for the Green'’s function reads

A A

— its solution being
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Application of the RG-improved kernel

A

K=asK°+a’K! + Kpg

—> | K includes the RG-generated terms, which are O(&3)

® The solution for the Gw with NLA accuracy is

. . . . . . A 2
Go = (W—as KO) 1 (w—as K0)~1 (a§K1 n KRG) (w—asKO"1+0 {(&?Kl) }
® Basis of eigenfunctions of the LLA kernel

ROv) = x(v)|v), (@) = —— (72)" 73
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Application of the RG-improved kernel

-

® The action of the modified BFKL kernel on these functions may be expressed as
follows:

A

Ry = as(ur)x)v) +a2(ur) (x<1><u>+

LX) i) )

b aur) o) (15D ) )+ a0

—> where we have taken into account the running of the coupling constant

XRra (V) is the solution of the w-shift equation
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| mpact factors

o N

® Expansion in o of the impact factors [D.Y u. Ivanov, M.I. Kotsky, A. Papal):
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" Exponentiated" representation of the amplitude

o N

® We convolute the improved Green’s function with the impact factors
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Seriesrepresentation of the amplitude

o N

® Another possible representation of the amplitude closer to the original idea of the
BFKL approach, is the “series" representation
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Seriesrepresentation of the amplitude

NLA coefficients

_|_
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Numerical study

-

We have studied the s-dependence of the Zms(A)Q1Q2/(s D1 D2) using the PMS
method

—> | minimal sensitivity to the change of ur and sg

In the previous determinations [D.Y u. Ivanov, A. Papa] the optimal choice for g
and sg turned out to be very far from the kinematical scales of the process!

— | Does the RG-improvement lead to more "natural” values for g and sg ?

If true, this would demonstrate that the RG-generated terms catch the essential
subleading dinamics

—> | the perturbative series of the amplitude should be more stable

|
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Numerical results: symmetric kinematics

We consider here Q% = Q32 = Q?=24GeV?, ny =5

We start with the “exponentiated” representation, putting

In <i> —Y-Y, Y=In(s/Q? Y, =In(s0/Q?)

S0

In practice, for each fixed value of Y we have determined the optimal choice of ;g and

Yy for which the amplitude is the least sensitive to their variation

— | typically Yo ~ 2 and ugr ~ 3Q

In the previous determinations Yy ~ 2 and up ~ 10Q)

We see that there is a remarkable move toward “naturalness” for u !
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Numerical results: symmetric kinematics

0.12
0.1 exp. - RG-inproved
0. 08
0. 06
0.04
0. 02 exp. - uni nproved
2 4 6 8 10 7

® Good agreement at the lower energies but not for large values of Y

9 O_éS(IUJR)YNl — Y ~6

around Y ~ 6 the discrepancy is not so pronounced
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Numerical results: symmetric kinematics

o N

® We consider the “series” representation always with Q?=24 GeV2, n; =5

PMS — |typically Yo ~ 3 and ugr ~ 3Q

bop = 17.0664 b1 = 34.5920 ba = 40.7609 b3 = 33.0618 bs = 20.7467
d1 = 0.674275 do = —1.73171 d3 = —7.46518 d4 = —15.927

a1 = 5.52728 as = 7.30295 a3 = 6.42149 aq = 4.24011

—> | an, coefficients cure the bad behavior of the BFKL series

® ., appear in the amplitude with two more powers of the energy logarithm!

— | their effect is not limited to low energies

o |
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Numerical results: symmetric kinematics

0.12

0.1 series - RG-inproved
0.08
0.06
0.04

0.02: . :
[ series - uninproved

Y

2 4 & 8 10

® The curves for “exponentiated” and the “series” representations with collinear
improvement fall almost on top of each other

® Without the collinear improvement there was an evident discrepancy

— | This indicate a better stability, induced by the collinear improvement
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Numerical results. asymmetric kinematics

When the virtualities of the photons are strongly ordered we enter the “DGLAP” regime

—> | collinear effects should come heavily into the game

® Previous attempts to numerically determine the amplitude using unimproved kernels
were unsuccessful due to severe instabilities

® We use the “exponentiated” representation, and we define

Y =In(s/Q1Q2) Yo =1In(s0/Q1Q2)
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Numerical results. asymmetric kinematics

We choose Q1=2 GeV, Q2=12 GeV — Q1Q2=24 GeV?

The amplitude is still quite stable under the variation of the energy parameters

PMS — |typically Yo ~2and pup ~ 4/Q1Q>

We choose Q1=0.5 GeV, Q2=48 GeV — Q1Q2=24 GeV?

The amplitude is still quite stable but the optimal values depend strongly on Y

PMS = |for Y =6 wefind Yy ~ 7 and ugr ~ 3/Q1Q>

If we ridefine Y] = In(so/Q3) = YJ ~2.5

|
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Numerical results. asymmetric kinematics

0.12;
0.1
0. 08}
0.06}
0. 04

0.02;

® The amplitude becomes smaller and smaller when Q2 /Q1 increases

— due to the presence of the factor cos(v log(Q35/Q%)) in the integration over v

o |
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Conclusions

-

We have applied a RG-improved kernel to determine the amplitude for the forward
transition v*~v* — V'V

We considered both equal and strongly ordered photons’ virtualities

The PMS method has led to results stable in the considered energy interval which
allow to predict the energy behavior of the forward amplitude

The optimal choice of sg and ur are much closer to the kinematical scales of the
problem than in previous determinations based on unimproved kernels

—> the extra-terms coming from collinear improvement, which are subleading to the
NLA, catch an important fraction of the NNLA order dynamics

— the use of the improved kernel has allowed to obtain the energy behavior of the
forward amplitude in the case of strongly ordered photons’ virtualities
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