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BFKL approach

In the BFKL approach scattering amplitudes AA′B′

AB are presented in the form :

ΦA′A ⊗ G ⊗ ΦB′B.

pA pA′

pB pB′

G

ΦB′B

ΦA′A

q1

q′

1

q2

q′

2

Impact factors ΦA′A and ΦB′B describe transitions
A→ A′ and B → B′ ,
G – Green’s function for two interacting
Reggeized gluons,

Ĝ = eY

�

K,

Y = ln(s/s0) , K̂ – BFKL kernel,

K̂ = Ω̂ + K̂r

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 3/30



BFKL approach

K̂ = Ω̂ + K̂r

Ω̂ = ω(~̂q1) + ω(~̂q2) — the “virtual” part, 〈~qi|ω̂i|~q
′

i 〉 = δ(~qi − ~q ′
i )ω(~qi) ,

ω(~q)– the gluon Regge trajectory;

In the leading order at D = 4 + 2ε:

ω(1)(~q) = −
g2NcΓ(1 − ε)

(4π)2+ε

2

ε
(~q)ε

In the next-to-leading order in the limit ε→ 0

ω(~q) = ω(1)(~q)

(
1 +

ω(1)(~q)

4

[11
3

+
(
2ζ(2) −

67

9

)
ε+

(404

27
− 2ζ(3)

)
ε2
])

V.S. F., R. Fiore and M.I. Kotsky, 1996;
J. Bluemlein, V. Ravindran, W.L. van Neerven, 1998;
V.Del Duca, E.W.N. Glover, 2001.
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BFKL approach

K̂ = Ω̂ + K̂r

K̂r — the “real” part,

〈~q1, ~q2|K̂r|~q
′

1 , ~q
′

2 〉 = δ(~q − ~q ′)
1

~q 2
1 ~q

2
2

Kr(~q1, ~q
′

1 ; ~q), ~q = ~q1 + ~q ′

1 = ~q2 + ~q ′

2 .

In the leading order

KB
r (~q1, ~q2; ~q) =

g2NccR
(2π)D−1

(
~q 2
1 ~q

′2
2 + ~q 2

2 ~q
′2
1

(~q1 − ~q
′

1 )2
− ~q 2

)

Only one structure with coefficients depending from t–channel colour states.
Possible representations of the colour group in the t–channel

1, 8a, 8s, 10, 10, 27.

c1 = 1 , c8a
= c8s

=
1

2
, c10 = c10 = 0 , c27 = −

1

4Nc
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BFKL approach

K̂ = Ω̂ + K̂r

In the next-to-leading order

K̂r = K̂G + K̂QQ + K̂GG

+ +

Each of the K̂QQ and K̂GG has two independent terms with different colour coefficients.
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BFKL approach

The colour group diagrams

1
1

For the colour singlet in the t-channel the colour coefficients

c1 =
1

Nc(N1
c − 1)

Tr (T aT a)

a1 =
1

N2
c (N1

c − 1)
Tr
(
T aT aT bT b

)
, b1 =

1

N2
c (N1

c − 1)
Tr
(
T aT bT aT b

)
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BFKL approach

The group generators
T a = ta for quarks,
T a

bc = −ifabc for gluons.
Instead of contributions with the colour coefficient a1 and b1 it is convenient to consider
the contributions with the coefficients a1 − b1 and b1. We call them "non-Abelian" and
"Abelian", or "symmetric", contributions. We have
a1 − b1 = 1

2 both for the fundamental and adjoint representation;
b1 = − 1

4N3
c

and b1 = 1
2 for the fundamental and adjoint representations.

K̂r is found in the NLO both for the forward scattering
V.S. F., L.N. Lipatov, 1998, M. Ciafaloni and G. Camici, 1998
i.e. for t = 0 and color singlet (Pomeron) in the t-channel, and for any fixed t and any
possible color state in the t-channel
V.S. F.,R. Fiore and A. Papa, 1999, V.S. F. and D.A. Gorbachev, 2000, V.S. F. and
R. Fiore, 2005.
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BFKL approach

The Pomeron channel is the most important for phenomenological applications,
although from the theoretical point of view the color octet case seems to be even more
important because of the gluon Reggeization.
In the Pomeron channel infrared divergencies of “virtual” and “real” parts cancel.
The remarkable property of the LO colour singlet kernel – invariance with respect to
the conformal transformations of coordinates in the transverse two-dimensional space
~r = (x, y)

z →
az + b

cz + d
,

where z = x+ iy, a, b, c, d are complex numbers
L.N. Lipatov, 1986.
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Colour dipole picture

In the color dipole approach
N.N. Nikolaev and B.G. Zakharov, 1994,
A. H. Mueller, 1994
γ∗ scattering is considered as γ∗ splitting into
a qq̄ colour dipole with subsequent qq̄ scat-
tering. The important point is conservation of
transverse coordinates of the dipole compo-
nents.

γ* γ*

p

z

1-z
r

p

 

σγ∗(x,Q2) =

∫
d2r

∫ 1

0

dz|Ψγ∗(r, z,Q2)|2σdp(r, x),

x = Q2/s, Ψγ∗(r, z,Q2) is the photon wave function, z is the longitudinal momentum
fraction carried by the quark, ~r = ~r1 − ~r2, ~r1 and ~r2 are the quark and antiquark
transverse coordinates, σdp(r, x) is the dipole cross section,
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Colour dipole picture

σdp(r, x) = 2

∫
d2b N (~r1, ~r2;Y ) ;

~b = (~r1 + ~r2)/2 is the impact parameter, Y = log(1/x), N (~r1, ~r2;Y ) is the the
imaginary part of the dipole scattering amplitude obeying the equation

∂N

∂Y
= K̂dipN ,

〈~r1~r2|K̂dip|~r
′

1~r
′

2 〉 =
αsNc

2π2

∫
d2ρ

~r 2
12

~r 2
1ρ~r

2
2ρ

(δ(~r11′)δ(~r2ρ) + δ(~r22′)δ(~r1ρ) − δ(~r11′)δ(~r22′)) ,

~rij = ~ri − ~rj , ~riρ = ~ri − ~ρ, ~rij′ = ~ri − ~r ′
j ,

with the non-linear extension (BK equation) for S = 1 −N :

∂S(~r1, ~r2;Y )

∂Y
=
αsNc

2π2

∫
d2~ρ

~r 2
12

~r 2
1ρ~r

2
2ρ

[S(~r1, ~ρ, Y )S(~ρ,~r2, Y ) − S(~r1, ~r2, Y )]

Ia. Balitsky, 1996, Yu. Kovchegov, 1999.
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Motivation

A clear understanding of the relation between the BFKL and colour dipole approaches
is very important. It could help in further development of the theoretical description of
small-x processes.
Since the colour dipole approach is developed in the coordinate representation, the
relation can be investigated by transformation of the BFKL approach in this
representation.
There are additional reasons for considering the BFKL kernel in the coordinate
representation in the transverse space:
It reveals conformal properties of the kernel.
Evidently, the conformal invariance is violated by renormalization. One may wonder,
however, whether the renormalization is the only source of the violation. If so, one can
expect the conformal invariance of the NLO BFKL kernel in supersymmetric extensions
of QCD.
The complexity of the NLO BFKL kernel in the momentum representation. The colour
singlet kernel for t 6= 0 is found in the NLO in the form of the intricate two-dimensional
integral. The hope was on its simplification.

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 10/30



Motivation

Relation between the BFKL and the color dipole approaches in the LO was discussed
many times.
With the advent of the color dipole approach it was affirmed that it is equivalent to the
BFKL.
Recently, the relation of the non-linear generalizations was analyzed
J. Bartels, L. N. Lipatov, G. P. Vacca, 2004,
J. Bartels, L. N. Lipatov, M. Salvadore, G. P. Vacca, 2005.
The extension of the analysis to the NLO was started in 2006 both from the dipole
Ya. Balitsky, 2006,
Yu. Kovchegov, 2006
and the BFKL
V.S. F, R. Fiore, A. Papa, 2006,
V.S. F, R. Fiore, A.V. Grabovsky, A. Papa, 2007
side.
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The dipole (Möbius) representation of the BFKL kernel in the LO

In the LO the comparison of two approaches can be performed absolutely rigorously, at
D = 4 + 2ε. Since the dipole kernel is determined by the probability of the soft gluon
emission by q̄q pair

2αsNc |

∫
dD−2k

(2π)D−2

~k

~k2
(ei~k~r1ρ − ei~k~r2ρ) | 2

=
αsNc

2π2

(
Γ(1 + ε)

πε

)2
(

~r1ρ

~r
2(1+ε)
1ρ

−
~r2ρ

~r
2(1+ε)
2ρ

)2

,

we have

〈~r1~r2|K̂dip|~r
′

1~r
′

2 〉 =
g2NcΓ

2(1 + ε)

8π3+2ε

∫
d2+2ερ

(
~r1ρ

~r
2(1+ε)
1ρ

−
~r2ρ

~r
2(1+ε)
2ρ

)2

(δ(~r11′)δ(~r2ρ) + δ(~r22′)δ(~r1ρ) − δ(~r11′)δ(~r22′)) .
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The dipole (Möbius) representation of the BFKL kernel in the LO

The direct Fourier transform of the BFKL kernel gives

〈~r1~r2|K̂|~r ′

1~r
′

2 〉 = 〈~r1~r2|K̂dip|~r
′

1~r
′

2 〉−
g2NcΓ

2(1 + ε)

8π3+2ε

[
δ(~r11′)

~r
2(1+2ε)
12′

+
δ(~r22′)

~r
2(1+2ε)
21′

− 2
δ(~r1′2′)~r11′~r22′

~r
2(1+ε)
11′ ~r

2(1+ε)
22′

]
.

The BFKL kernel is not equivalent to the dipole one. Actually the first one is more
general than the second. This is clear, because the BFKL kernel can be applied not
only in the case of scattering of colourless objects.

However, when applied to the latter case, we can use the “dipole” and “gauge
invariance” properties of targets and projectiles
L. N. Lipatov, 1989,
and omit the terms in the kernel proportional to δ(~r1′2′), as well as change the terms
independent either of ~r1 or of ~r2 in such a way that the resulting kernel becomes
conserving the “dipole” property, i.e. the property which provides the vanishing of
cross-sections for scattering of zero-size dipoles. The coordinate representation of the
kernel obtained in such a way is what we call the dipole form of the BFKL kernel.
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Uncertainty in the NLO BFKL kernel

For colourless objects the impact factors in the scattering amplitudes

δ(~qA − ~qB)AA′B′

AB =
i

8(2π)D−2
〈A′Ā|eY

�

K
1

~̂q 2
1 ~̂q

2
2

|B̄′B〉

are “gauge invariant”: 〈A′Ā|~q, 0〉 = 〈A′Ā|0, ~q〉 = 0 . Therefore 〈A′Ā|Ψ〉 = 0 if 〈~r1, ~r2|Ψ〉

does not depend either on ~r1 or on ~r2. 〈A′Ā|K̂ is “gauge invariant” as well, because
〈~q1, ~q2|K̂r|~q

′

1 , ~q
′

2〉 vanishes at ~q
′

1 = 0 or ~q
′

2 = 0. It means that we can change

|In〉 ≡
(
~̂q 2
1 ~̂q

2
2

)−1
|B̄′B〉 for |Ind〉, where |Ind〉 has the “dipole” property 〈~r, ~r|Ind〉 = 0.

After this one can omit the terms in the kernel proportional to δ(~r1′2′), as well as
change the terms independent either of ~r1 or of ~r2 in such a way that the resulting
kernel becomes conserving the “dipole” property.
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Uncertainty in the NLO BFKL kernel

The scattering amplitudes

δ(~qA − ~qB)AA′B′

AB =
i

8(2π)D−2
〈A′Ā|eY

�

K
1

~̂q 2
1 ~̂q

2
2

|B̄′B〉

are invariant under the transformation

K̂ → Ô−1K̂Ô, 〈A′Ā| → 〈A′Ā|Ô,
1

~̂q 2
1 ~̂q

2
2

|B̄′B〉 → Ô−1 1

~̂q 2
1 ~̂q

2
2

|B̄′B〉 .

After fixation of the LO kernel transformations with Ô = 1 − Ô, where Ô ∼ g2, are still
possible. At the NLO we get

K̂ → K̂ − [K̂(B), Ô] ,

where K̂(B) is the leading order kernel.
We will use

Ô = −
αs(µ)

8π
(
11

3
Nc −

2

3
nf ) ln

(
~̂q 2
1 ~̂q

2
2

)
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The form of the kernel in the dipole representation

In the NLO the dipole form can be written as

〈~r1~r2|K̂
NLO
d |~r ′

1~r
′

2 〉 =
α2

s(µ)N2
c

4π3

[
δ(~r11′)δ(~r22′)

∫
d~ρ g0(~r1, ~r2; ~ρ)

+δ(~r11′)g(~r1, ~r2;~r
′

2 ) + δ(~r22′)g(~r2, ~r1;~r
′

1 ) +
1

π
g(~r1, ~r2;~r

′

1 , ~r
′

2 )

]

with the functions g turning into zero when their first two arguments coincide.

The first three terms contain ultraviolet singularities which cancel in their sum, as well
as in the LO, with account of the “dipole” property of the “target” impact factors. The
coefficient of δ(~r11′)δ(~r22′) is written in the integral form in order to make the
cancellation evident.
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The “non-Abelian” part of the quark contribution

The “non-Abelian” (leading in Nc) part of the quark contribution is known at arbitrary D
(V.S. F., R. Fiore, A. Papa, 1999).
Its dipole form is found (V.S. F., R. Fiore, A. Papa, 2006) at arbitrary D as well.
However, the transformation is rather complicated. In the physical space-time
dimension D = 4 the dipole form can be obtained in a much easier way, starting from
the renormalized BFKL kernel at D = 4 in a specific form.

ωQ(~qi) =

∫
d2kFQ

ω (~k, ~qi) ,

FQ
ω (~k, ~qi) = −

α2
s(µ)

16π2

2Ncnf

3

~q 2
i

~k 2(~qi − ~k)2

(
ln
~k 2(~qi − ~k)2

µ2~q 2
i

−
5

3

)
,
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The “non-Abelian” part of the quark contribution

〈~q1~q2|K̂
Q
r |~q

′

1~q
′

2〉 = δ(~q − ~q
′

)FQ
r (~q1, ~q

′

1 ; ~q) ,

FQ
r (~q1, ~q

′

1 ; ~q) =
α2

s(µ)

16π2

4Ncnf

3

(
~q 2
2

~q 2
2
~k 2

[
~q

′2
2

~q 2
2
~k 2

(
ln
~k 2~q 2

2

µ2~q 2
2

−
5

3

)

+
~q

′2
1

~q 2
1
~k 2

(
ln
~k 2~q 2

1

µ2~q
′2
1

−
5

3

)
−

~q 2

~q 2
1 ~q

2
2

(
ln
~q 2
1 ~q

2
2

~q 2µ2
−

5

3

)])
.

The singularities must be regularized by limitations on integration regions ~k 2 ≥ λ2 and
(~qi − ~k)2 ≥ λ2 with λ tending to zero or in an equivalent way.
The contribution to the dipole form

gQ(~r1, ~r2; ~ρ) = −g0
Q(~r1, ~r2; ~ρ) =

nf

3Nc

(
~r212

~r21ρ~r
2
2ρ

ln
~r 2

µ

~r212
+
~r21ρ − ~r22ρ

~r21ρ~r
2
2ρ

ln
~r21ρ

~r22ρ

)
,

ln~r 2
µ = − 5

3 + 2ψ(1) − ln µ2

4 ; gQNA(~r1, ~r2;~r
′
1 , ~r

′
2 ) = 0.

The result agrees with J. Balitsky, 2006.
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The “Abelian” part of the quark contribution

In the momentum representation the “Abelian” contribution was calculated many years
ago in the framework of QED.
H. Cheng, T.T. Wu, Phys. Rev. D10 (1970) 2775
V.N. Gribov, L.N. Lipatov, G.V. Frolov, Yad. Fiz 12 (1970) 994
It is given by the “box” and “cross-box” diagrams and is suppressed by the factor 1/N 2

c .
It does not contain neither ultraviolet nor infrared divergencies, so that from the
beginning it can be taken at D = 4.
In the momentum representation this contribution is the most complicated one.
It this representation it is obtained only in the form of the two-dimensional integral over
Feynman parameters.
It is better to start with this contribution before integration over momenta of produced
quarks.
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The “Abelian” part of the quark contribution

〈~q1, ~q2|K̂
a|~q

′

1 , ~q
′

2〉 = δ(~q − ~q
′

)
α2

snf

(2π)2Nc

−2

~q 2
1 ~q

2
2

∫ 1

0

dx

∫
d2k1

(2π)2
F (~q1, ~q2;~k1, ~k2)

F (~q1, ~q2;~k1, ~k2) = x(1 − x)

(
2(~q1~k1) − ~q 2

1

σ11
+

2(~q1~k2) − ~q 2
1

σ21

)(
2(~q2~k1) + ~q 2

2

σ12
+

2(~q2~k2) + ~q 2
2

σ22

)
+

+
x~q 2

(
2(~q1~k1) − ~q 2

1

)

2σ11

( 1

σ22
−

1

σ12

)
+
x~q 2

(
2(~q2~k1) + ~q 2

2

)

2σ12

( 1

σ11
−

1

σ21

)
+

+
1

σ11σ12

(
−2(~q1~k1)(~q2~q

′

2) − 2(~q2~k1)(~q1~q
′

1) +
(
~q 2
2 − ~q 2

1

)
(~k1

~k) + ~q 2
1 ~q

′2
2 −

~k 2~q 2

2

)

where ~k1 + ~k2 = ~k = ~q1 − ~q
′

1 = ~q
′

2 − ~q2

σ11 =
(
~k1 − x~q1

)2
+ x(1 − x)~q 2

1 , σ21 =
(
~k2 − (1 − x)~q1

)2
+ x(1 − x)~q 2

1

σ12 =
(
~k1 + x~q2

)2
+ x(1 − x)~q 2

2 , σ22 =
(
~k2 + (1 − x)~q2

)2
+ x(1 − x)~q 2

2
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The “Abelian” part of the quark contribution

It contributes only to g(~r1, ~r2;~r ′
1 , ~r

′
2 ):

gQ(~r1, ~r2;~r
′

1 , ~r
′

2 ) =
nf

N3
c

1

~r 4
1′2′

[(
~r 2
12′~r 2

1′2 + ~r 2
11′~r 2

22′ − ~r 2
12~r

2
1′2′

2
(
~r 2
12′~r 2

1′2 − ~r 2
11′~r 2

22′

) ln
~r 2
12′~r 2

1′2

~r 2
11′~r 2

22′

− 1

)]
.

It coincides with the corresponding part of the quark contribution to the dipole kernel
I. Balitsky, 2006.
It turns out that the dipole form of the Abelian” part of the quark contribution is quite
simple as compared with the very complicated form in the momentum representation.
Moreover, it is conformal invariant.
It could be especially interesting for the QED Pomeron.
However, one has to remember that in QED the use of the dipole form is limited to
scattering of neutral objects, as well as that the conformal invariance is broken by
masses.
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The gluon contribution

Evidently the main and the most important part of the BFKL kernel is given by thegluon
contribution.
In the colour singlet channel it can written as

K̂ = K̂p + K̂s ,

where the “planar” part

K̂p = ω̂1 + ω̂2 + 2K̂(8)
r +

11αs(µ)Nc

24π

[
K̂(B), ln

(
~̂q 2
1 ~̂q

2
2

)]
,

K̂
(8)
r is the real part of the colour octet kernel;

the “symmetric” part 〈~q1, ~q2|K̂s|~q ′
1 , ~q

′
2 〉 is finite in the limit ε = 0. Moreover, it does not

give terms divergent in ε = 0 by action of the kernel, since it has no non-integrable
singularities in the limit ε = 0.
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The gluon contribution

Omitting terms with δ(~r1′2′), we reduce the NLO piece of the “planar” part to the form:

〈~q1, ~q2|K̂
NLO
p |~q ′

1 , ~q
′

2 〉 →
α2

s(µ)N2
c

4π3

[
−δ(~q11′)δ(~q22′)

(∫
d~k
(
V (~k) + V (~k,~k − ~q1)

)
−3πζ(3)

)

+δ(~q − ~q ′)

{
V (~k) + 2V (~k, ~q1) +

(~q1~q2)

4~q 2
1 ~q

2
2

[
ln

(
~q ′ 2
1

~q 2

)
ln

(
~q ′ 2
2

~q 2

)
+ ln2

(
~q 2
1

~q ′ 2
1

)]

−
1

2~k2
ln2

(
~q 2
1

~q ′ 2
1

)
+

[
(~q1~k)

2

~q 2
1
~k 2

− 1 −
(~q1 + ~k )~q2

~q 2
2

+

(
(~k~q2)

~k 2
+

(~q1~q2)

~q 2
1

)
(~q1~k)

~q 2
2

]
I(~q 2

1 , ~q
′ 2
1 , ~k 2)

+
(~k~q1)

2~k 2~q 2
1

[
ln2

(
~q 2
2

~q ′ 2
2

)
+

1

2
ln

(
~q 2
2

~q ′ 2
2

)
ln

(
~q 2
2 ~q

′ 2
2

~k 4

)
+ ln2

(
~q 2
1

~q ′ 2
1

)
−

1

2
ln

(
~q 2
1

~q ′ 2
1

)
ln

(
~q 2
1 ~q

′ 2
1

~k 4

)]

+
1

4~q 2
1

[
ln

(
~q ′ 2
1

~k 2

)
ln

(
~q 2
1 ~q

′ 2
2

~q 2
2 ~q

′ 2
1

)
+ ln

(
~q 2
2

~q 2

)
ln

(
~q ′ 2
1 ~q ′ 2

2

~q 4

)]}
+ (~q1 ↔ ~q2, ~q ′

1 ↔ ~q ′

2 )

]
,
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The gluon contribution

V (~k) =
1

2~k 2

(
67

9
− 2ζ(2) −

11

3
ln

(
~k 2

µ2

))
,

V (~k, ~q) =
~k~q

2~k 2~q 2

(
11

3
ln

(
~k 2~q 2

µ2(~k − ~q)2

)
−

67

9
+ 2ζ(2)

)
−

11

12~k 2
ln

(
~q 2

(~k − ~q)2

)

−
11

12~q 2
ln

(
~k 2

(~k − ~q)2

)
,

I(~q 2
1 , ~q

′ 2
1 , ~k 2) =

∫ 1

0

dx

~q 2
1 (1 − x) + ~q ′ 2

1 x− ~k 2x(1 − x)
ln

(
~q 2
1 (1 − x) + ~q ′ 2

1 x

~k 2x(1 − x)

)
.

The singularities must be regularized by limitations on integration regions ~k 2 ≥ λ2 and
(~qi − ~k)2 ≥ λ2 with λ tending to zero or in an equivalent way.
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The gluon contribution

The “symmetric ” part does not contain neither ultraviolet nor infrared divergencies, so
that from the beginning it can be taken at D = 4.
In the momentum representation this contribution is the most complicated one.
It this representation it is obtained only in the form of the two-dimensional integral over
Feynman parameters.
It is better to start with this contribution before integration over momenta of produced
quarks.

For the total gluon contributions we obtain

g0(~r1, ~r2; ρ) =
3

2

~r 2
12

~r 2
1ρ~r

2
2ρ

ln

(
~r 2
1ρ

~r 2
12

)
ln

(
~r 2
2ρ

~r 2
12

)
−

11

12

[
~r 2
12

~r 2
1ρ~r

2
2ρ

ln

(
~r 2
1ρ~r

2
2ρ

r4µ

)

+

(
1

~r 2
2ρ

−
1

~r 2
1ρ

)
ln

(
~r 2
2ρ

~r 2
1ρ

)]
,
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The gluon contribution

g(~r1, ~r2;~r
′

2 ) =
11

6

~r 2
12

~r 2
22′~r 2

12′

ln

(
~r 2
12

r2µ

)
+

11

6

(
1

~r 2
22′

−
1

~r 2
12′

)
ln

(
~r 2
22′

~r 2
12′

)

+
1

2~r 2
22′

ln

(
~r 2
12′

~r 2
22′

)
ln

(
~r 2
12

~r 2
12′

)
−

~r 2
12

2~r 2
22′~r 2

12′

ln

(
~r 2
12

~r 2
22′

)
ln

(
~r 2
12

~r 2
12′

)
,

ln r2µ = 2ψ(1) − ln
µ2

4
−

3

11

(
67

9
− 2ζ(2)

)
.

Both g0(~r1, ~r2; ~ρ) and g(~r1, ~r2; ~ρ) vanish at ~r1 = ~r2. Then, these functions turn into zero
for ~ρ 2 → ∞ faster than (~ρ 2)−1 to provide the infrared safety. The ultraviolet
singularities of these functions at ~ρ = ~r2 and ~ρ = ~r1 cancel on account of the “dipole”
property of the “target” impact factors.

The last term is the most complicated one:
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The gluon contribution

g(~r1, ~r2;~r
′

1 , ~r
′

2 ) =

�

(~r22′ ~r12)

~r 2

11′
~r 2

22′
~r 2

1′2′

−

2 (~r22′ ~r11′)

~r 2

11′
~r 2

22′
~r 2

1′2′

+
2 (~r22′ ~r12′) (~r11′ ~r12′)

~r 2

11′
~r 2

22′
~r 2

1′2′
~r 2

12′

�

ln
�

~r 2

12′

~r 2

1′2′

�

+
1

2~r 2

1′2′

�

(~r11′ ~r22′)

~r 2

11′
~r 2

22′

+
(~r21′ ~r12′)

~r 2

21′
~r 2

12′

−

2(~r22′ ~r21′)

~r 2

22′
~r 2

21′

�

ln

�

~r 2

11′
~r 2

22′

~r 2

1′2′
~r 2

12

�

+
(~r11′ ~r22′)

2~r 2

11′
~r 2

22′
~r 2

1′2′

ln

�

~r 2

21′
~r 2

12′

~r 2

11′
~r 2

22′

�

+
1

d~r 2

1′2′

�

(~r1′2′ ~r12′)~r
2

12

~r 2

11′

+
2(~r22′ ~r21′)(~r12 ~r21′)

~r 2

21′

+
(~r22′ ~r12′)(~r11′ ~r21′)

~r 2

11′
~r 2

22′

~r
2

1′2′ − ~r
2

1′2′

�

ln

�

~r 2

12′
~r 2

21′

~r 2

11′
~r 2

22′

�

+
1

2~r 4

1′2′

�

~r 2

11′
~r 2

22′

d
ln

�

~r 2

12′
~r 2

21′

~r 2

11′
~r 2

22′

�

− 1

�

+
1

~r 2

11′

�

(~r12 ~r21′)

~r 2

1′2′
~r 2

21′

−

(~r11′ ~r12)

~r 2

1′2′
~r 2

22′

−

(~r11′ ~r21′)

~r 2

22′
~r 2

21′

�

ln

�

~r 2

12′

~r 2

11′

�

−

(~r12 ~r22′)

~r 2

1′2′
~r 2

22′
~r 2

12′

ln

�

~r 2

11′

~r 2

1′2′

�
+ (1 ↔ 2),

d = ~r 2

12′
~r 2

21′
− ~r 2

11′
~r 2

22′
.

This term also vanishes at ~r1 = ~r2, so that it possesses the “dipole” property. It has ultraviolet

singularity only at ~r1′2′ = 0 and tends to zero at large ~r ′ 2

1 and ~r ′ 2

2 sufficiently quickly in order to
provide the infrared safety.
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BFKL in SUSY

SUSY extensions of QCD contain gluons and Maiorana fermions in the adjoint
representation of the colour group. The gluon contribution does not change. The
fermion one can be obtained by change of the group coefficients:

nf → nMNc

for the "non-Abelian" part, and

nf → −nMN3
c

for the "Abelian" part; nM is the number of flavours of Maiorana quarks. For
N–extended SUSY nM = N .

At N > 1 besides quarks there are ns scalar particles; ns = 2 at N = 2 and ns = 6 at
N = 4.

The contribution of the scalar particles to the BFKL kernel can be easily calculated.

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 27/30



BFKL in SUSY

Analogously to the quark case it is convenient to divide it into two parts, with the same
colour group coefficients. As well as in the quark case, after the transformation

K̂ → K̂ − [K̂(B), Ô] ,

Ô = −
αs(µ)Nc

8π
(
11

3
−

2

3
nM −

1

6
nM ) ln

(
~̂q 2
1 ~̂q

2
2

)

The "non-Abelian" part contributes only to gQ(~r1, ~r2; ~ρ) and g0
Q(~r1, ~r2; ~ρ). At that

gQ(~r1, ~r2; ~ρ) = −g0
Q(~r1, ~r2; ~ρ) =

ns

12

(
~r212

~r21ρ~r
2
2ρ

ln
~r 2

µ

~r212
+
~r21ρ − ~r22ρ

~r21ρ~r
2
2ρ

ln
~r21ρ

~r22ρ

)
,

where ln r 2
µ = − 8

3 + 2ψ(1) − ln µ2

4 .
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BFKL in SUSY

The "Abelian" part contributes only to g(~r1, ~r2;~r ′
1 , ~r

′
2 ):

gQ(~r1, ~r2;~r
′

1 , ~r
′

2 ) =
ns

2

1

~r 4
1′2′

[(
~r 2
12′~r 2

1′2(
~r 2
12′~r 2

1′2 − ~r 2
11′~r 2

22′

) ln
~r 2
12′~r 2

1′2

~r 2
11′~r 2

22′

− 1

)]

It is evidently conformal invariant.
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Summary

The coordinate representation of the colour singlet BFKL kernel permits to
understand relation between the BFKL and the colour dipole approaches and
conformal properties of the BFKL kernel.

The colour singlet BFKL kernel is more general than the dipole one.

In the case of scattering of colourless objects the BFKL kernel can be written in the
dipole form (Möbius representation).

The dipole form is greatly simplified in comparison with the BFKL kernel in the
momentum representation.

The quark contribution to the dipole form agrees with corresponding contribution to
the BK kernel.

The “Abelian” part of the quark contribution is conformal invariant. The same is the
scalar particle contribution in the SUSY QCD extensions.

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION; Copanello (Calabria, Italy), July 1 - 14 2007 – p. 30/30


	ptsize {10}Green {Contents}
	ptsize {10} Green {BFKL approach}
	ptsize {10}Green {BFKL approach}
	ptsize {10}Green {BFKL approach}
	ptsize {10}Green {BFKL approach}

	ptsize {10}Green {BFKL approach}
	ptsize {10}Green {BFKL approach}
	ptsize {10}Green {BFKL approach}
	ptsize {10}Green {Colour dipole picture}
	ptsize {10} Green {Colour dipole picture}
	ptsize {10}Green {Motivation}
	ptsize {10} Green {Motivation}
	ptsize {10} Green {The dipole (M"{o}bius)
representation of the BFKL kernel in the LO}
	ptsize {10} Green {The dipole (M"{o}bius)
representation of the BFKL kernel in the LO}
	ptsize {10} Green {Uncertainty in the NLO BFKL kernel}
	ptsize {10} Green {Uncertainty in the NLO BFKL kernel}
	ptsize {10} Green {The form of the kernel in the dipole representation}
	ptsize {10} Green {The 	extquotedblleft non-Abelian	extquotedblright part of the quark contribution}
	ptsize {10} Green {The 	extquotedblleft non-Abelian	extquotedblright part of the quark contribution}
	ptsize {10} Green {The 	extquotedblleft Abelian	extquotedblright  part of the quark contribution}
	ptsize {10} Green {The 	extquotedblleft Abelian	extquotedblright  part of the quark contribution}

	ptsize {10} Green {The 	extquotedblleft Abelian	extquotedblright  part of the quark contribution}
	ptsize {10} Green {The gluon contribution}
	ptsize {10} Green {The gluon contribution}
	ptsize {10} Green {The gluon contribution}
	ptsize {10} Green {The gluon contribution}
	ptsize {10} Green {The gluon contribution}
	ptsize {10} Green {The gluon contribution}
	ptsize {10} Green {BFKL in SUSY}
	ptsize {10} Green {BFKL in SUSY}
	ptsize {10} Green {BFKL in SUSY}
	ptsize {10}Green {Summary}

