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¢ Resummation: Organization of soft and collinear
radiation to all orders in PT

e Why resum?

— Tests of perturbative stability for inclusive cross sections.

— The only way to calculate certain critical distributions for
W, Z transverse momentum & jet event shapes.

— As such, tests of QCD to all orders: LO, NLO . ..

— A window to the perturbative/nonperturbative transition.

— An analytic complement to, stimulus for & test of
parton shower techniques and tools.

— Nice formulas (a matter of taste).

e Depends on very some general concepts too.



IHIA. Reprise: how we get away with perturbative QCD

The sorrows of QCD perturbation theory:

1. Confinement

/ e (0| T[a(z) ... |0)

has no ¢ = m? pole for any field (particle) ¢, that
transforms nontrivially under color (confinement)
2. The pole at p? = m?

T

/ &9 (0] Tl (x) ... ]]0)

is not accessible to perturbation theory ((SB etc., etc.)



e And yet we use infrared safety & asymptotic freedom:

Q% osp(Q% 1%, as(n)) = ) calQ?/1%) o) + O (1/Q7)

n

3 en(1) Q) + O (1/Q7)

n

e What are we really calculating? PT for color singlet operators

— [e'¢*(0| T[J(x)J(0)...]|0) for color singlet currents

eTe~ total, sum rules etc. “no scale”



— Another class of color singlet matrix elements:

i [ drg / dii F(7)) e~V (0] J(0)T 71100 (0, B).T ()] |0)
With ©,; the energy momentum tensor
— These are what we really calculate: jet cross sections, etc.

If the “weight” f(n) introduces no new dimensional scale,

and all d*f/dn” bounded, then

individual final states have IR divergences, but these cancel
in sum over collinear splitting/merging & soft parton
emission because they respect energy flow.



We regularize these divergences dimensionally (typically)
and “pretend”’ to calculate the long-distance enhancements
only to cancel them in infrared safe quantities

It is this intermediate step that makes the calcualtions
tough, and is part [not all] of why higher-order calculations
are hard!

The goals of experiment are remarkably similar — to control
late stage interactions in calorimeters.

Resummation organizes large, or potentially large, terms
from high orders in o, at the short-distance scale.



e Onward to factorization

Q 0phys(Q,m) = wsp(Q/p, as(p)) ® fLp(p,m) + O (1/Q")

— p = factorization scale; m= IR scale (m may be perturbative)
— New physics in wsp; fi,p “universal”

— ep DIS inclusive, pp — jets, QQ, 7(pr) . . .

— Exclusive decays: B — 7

— Exclusive limits: ete™ — JJas m; — 0



e Whenever there is factorization, there is evolution

d
0= ,u@ In opnys(Q,m)

dln f dlnw
p— —P 3 = —
m (as(p)) = —p m

L4
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e Wherever there is evolution there is resummation

Q /
I e (Q, m) = exp { / ‘%P <as<u'>>}



¢ Infrared safety & factorization proofs:
— (1) wgp incoherent with long-distance dynamics

— (2) Mutual incoherence when v, = c:
Jet-jet factorization Ward identities.

— (3) Wide-angle soft radiation sees only total color flow:
jet-soft factorization Ward identities.

— (4) Dimensionless coupling and renormalizability
< no worse that logarithmic divergence in the IR:
fractional power suppression = finiteness



I1IB. Vector bosons: (), its factorization

Every final state from a hard scattering carries the imprint
of QCD dynamics from all distance scales.

— Look at transverse momentum distribution at order o..
q(p1) + q(p2) — 7" (Q) + g(k)

— Treat this 2 — 2 process at lowest order (a;) “LO”
in factorized cross section, so that k = — Q7.



— Factorized cross section at fixed Q:

dUNN—wm +X (@, p1,p2) / aa—>,u+,u (Q)+X(Q ts §1P1, §2p2, Q)
dQ2d2Q .6 o dQ?*d?Qr

X fa/n(&1, 1) fayn (€2, 1)

— Recall: 1 is the factorization scale that separates
IR (f) from UV (d&) in quantum corrections.

— 1 appears in ¢ through o,(p) and In(u/Q),
so choosing i1 ~ () can improve perturbative predictions.

— Evolution: pdf (z, 1) /dp = [, P(x/€) £(¢, 1)
makes energy extrapolations possible.



— The diagrams at order o;.
Gluon emission contributes at () # 0.

Virtual corrections contribute only at ()7 =0

Pl e

— The result is finite for Q #0 . ..




~ (1) —1/2
dgqci—w*g ~_aCp (1 B 4Q% /
(

dQ22Q, U x2 1 — 2)26,655

1 14+ 22 2z
8 [Q%l—z _(1—Z)Q2]

as long as Q1 # 0, 2 = Q?/£,65 # 1.

In(1—=2),

integral — integral — 291
Qr integral — ——; 2 integral —

Q7 °

Both singularities cancel in the inclusive cross section.
Both inspire resummation of higher order corrections.



The leading singularity in Q7
— As we’ll see later: 1 — 2z ~ 2ky/Q > 2|k7|/Q

— z integral: If Q?/S not too big, PDFs nearly constant:

IR VIC P [ Q2 ]
. — _ In|=>_
chr /1622/5 1 —2 QT Q

= Prediction for ()7 dependence:

dO-NN—>,u+,u_—|—X(Q7 QT) a,Cr 1 In [ Q2 ]

1022 Qy T QL@

a—utu— (Qa:u)
X azq:q/@ & udg?x fayn (&1, 1) fayn (&2, 1)




— Compare to: Z pr from Run |

ol 1 do/day (pb/Gev) T oor |

N 66 < Q< 116 GV

Resum |

\ It Exclusive Limit

(from Kulesza, G.S., Vogelsang (2002))

— In Q7 /Qr works pretty well for large Q1

— At smaller () reach a maximum, then a decrease
near “exclusive” limit (parton model kinematics)

— Most events are at “low” Qr < QQ = my.



Getting to Q1 < Q: Transverse momentum resummation
(Logs of Q7)/Qr to all orders
How? Variant factorization and separation of variables

g and ¢ “arrive” at point of annihilation with transverse
momentum of radiated gluons in initial state.

q and ¢ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section

dO-NN—>,u‘|‘,u_—|—X(Q7 QT)

dQ?*d*Qr




Summarized by: ()p-factorization:

dO'NN—>QX / 2 2 2
= [ d&1d&s dkipd“kord kg 0 — ki — kor — kg
J0E0 §1d8o d°kirdkord ket 0 (Q7 — kir — kar T)

X H(flpla £2p27 Qan)a&HQ—I—X
XPan(&1,p1 -1y k1) Payn (&2, 02 - 1y kor) Uga(ksT,n)

The P’s: new Transverse momentum-dependent PDFs

Also need U: “soft function” for wide-angle radiation.
— Caution: Extensions to less inclusive cross sections are
highly nontrivial. (viz: Collins and Qiu (2007))



Symbolically:

AdONN—QX

dQd*Qr

H X Py/n(&1,01 - 0, kir) Payn (&2, 02 -, ko)
®£z’7kiT Uaa(kSTa n)

We will solve for the k1 dependence of the P’s.

New factorization variables: n" apportions gluons k:

pi-k<n-k = k €P;
pa'k;pa'k > n-k = keU

Convolution in k; s = Fourier ¢/97"



The factorized cross section in “impact parameter space”:

doyn—gx(@Q,b)
e [ deade:

X H(glpla 52]?27 Qan)ad%Q—kX
XPa/n(&1, P11, 0) Payn(§2, 02 - 1, 0) Uga(b, n)

Now we can resum by separating variables!

the LHS independent of ;i..,, n = two equations

do do
ren 5, 0 Y = 0
8 dfiren " dne



Method of Collins and Soper, and Sen (1981)

Change in P must cancel change in (UV) H and (IR) U:

."’L a
op-n

G matches H, K matches U. Renormalization indep. of n*:

p In P(p-n/p,bp) = G(p-n/p) + K(bp)

M%[G(V’n/ﬂ) £ K(bp)] =0

M%G(P'n/ﬂ) — Alas(p) = - u%

Solve this one first.

K (bu)



G(p-n/p) + K(bp) =Gp-n/p) + K(u/p-n)

Notice the scale in the coupling is now a variable.

The consistency equation for the jet becomes

0
op-n

In P(p-n/p,bp) =G(p-n/p) + K(u/p-n)

p-ndlu/
- / U As ()
1/b M

p-n

nln®""1(Q/Qr)

Integrate p - n and get double logs in b — & o



Transformed solution back to ()7: all the (Logs of Q1)/Qr:

— —

dO'NNres L B 2 d2b iGp-b N PT
G i~ o Hua(ea(@)) [ e [£1100.0.00

A0 gg— - y
<> /E . “dé;“X(Q ) o €11 /1) fae (€210

a=qq 1‘52

“Sudakov” exponent suppresses large b < small Q):

Q% ;1.2 2
Br = [ 2 [2Aq<cvs<kT>> In (%) +2Bq<as<kT>>]
1/b2 kT kT

With B = 2(K + G),,—p.n, and lower limit: 1/b (NLL)



+ Leading log: fixed o,(Q), A = (a,/m) x AW only

—

do N Nres . B 2 d?b iQr-b < A . n2
dQ? d>Qr _%:Haa(%(Q >)/(27r)26 : p{ A (as(@)/m) In”(bQ)

da—a&—> tu— y
) /€ . “dg?”(@ ) o€ /1) fay (€ 1D

a=qq 152

x If ignore evolution of the f’s, get an overall factor

AoNN—ptp-+x(QT) 0 —[aW(au@)/m) m*(Q%/a})]
dQ?d>Qr 0Q7

a-ad—> + = (Qa:u)
Y Z /g T L) fag (€ )




+ Comments:

The functions A;(a;) and B;(as) are anomalous
dimensions.

They can be calculated by comparison to low orders.

In particular, A;(ay) is the numerator of
the 1/(1 — z) term in splitting function P;;(x)

because it’s the infrared divergent (r — 1) coefficient of
the collinear (b — oo) singularity.

 Ag(e) =20, (1 + %K+...),K:(JA(§_; _ %2)_5%1?



« Logs from LO, NLO in A, = AY(a,/7)+..., LO in B
S Cey in
q

Ew=-2 [ Z‘iﬁ Aantir)) 1 (%) + Blau(br))

o /1Q2 L [ {as(kcp) o g 0slkr) } . (Q_> | 50s(kn)

/b2 E T T k% T
~ 20, %@) Al ;
- /1/b2 2 {1 + (& ff”) (K — 60)}111 (g)
i T
10 (@)
-




x The pattern:

et 78] 1 (49) (- )
5 as(Q)__

-
~ 1n2(bQ)( + a, In(bQ) +...)
+as In(bQ)(1 + as In(bQ) + ...)
+ ...
+ These are LL(A(")), NLL (B, A(?), and so on

+* NLL is good so long as a,(Q)InbQ < 1.



Evaluating a resummed cross sections: re-enter NPQCD.
We start with:

PPT _ /1Q2 dkz leq(as(kT)) In (%j) + Bq(%(kT))]

/b2 k%

With running coupling:




*x Problem: how to do the inverse transform with the
running coupling when k'™ ~ 1/b gets small?

x At least four approaches:
1) Work in QQp-space directly to some approximation
(The originals: Dokshitzer, Diakanov & Troyan (~ 1979).
Revived by Ellis & Veseli Kulesza & Stirling

who re-derived this from b-space. (~ 2000))

2) Insert a “soft landing” on the k; integral by replacing

1/b— \/1/b2 4 1/b2

for some fixed b.. (Collins, Soper “b,” prescription (1982), ResBos)



3) Extrapolation of E''!1 into NP region (Qiu, Zhang (2002)).

4) Minimal: avoid the singularity at 1/b = Aqcp
by monkeying with the b-space contour integral.
(This technique introduced in threshold resummation;

then adapted by Laenen, GS and Vogelsang,
and Bozzi, Catani, de Florian and Grazzini. (2000-2003))

Any of these “define” PT. All will fit the data
qualitatively, and with a little work quantitatively.

But all require new parameters for quantitative fit.
This is not all bad . . . let’s see why.



A bit more consideration generalizes (for the A-term)
for small £ to some upper limit u;:

1 (M 2l 2

3 | Gz Aalesten) In (f) (e —1)
[ st (2)

R / dk2 Ag(as(kr)) In (f—T)

Esoft _

0(kr — 1/b) = (e®%r —1); in fact, correct to all orders,

Note the expansion is for b “ small enough” only.



. 2
What is  — b2 [dk2 A (a,(kr)) In (g—%) ?

Don’t really know, but it suggests
a nonperturbative correction of the form
(exhibiting the y; is unconventional)

ENY = — b’ug (91 In (Q) + g2>
K1

Since this is an exponent, whatever the definition

of the pertrubative resummed cross section, it is
smeared with a Gaussian whose width in b (k1) space
decreases (increases) with In Q).



In summary

do(Qr) ZH o Q2))/ d?b Q70 yEqs (0,Q.1) — b’ (91 ln(Q)+gz)
dQ2d*Qr 4 (27)*

da—ac‘t—> + (Qa:u)
‘& [ TR €18 a1/

o / oy e~k /AluG (92 0(Q/kT)+92)] Gy (Qp — k)
pr— T =
p7(92In(Q/kr) + g2) dQ? d2Qr



Which gives curves like the one we saw before.

10 [

do/dQr (pb/GeV)

66 < Q < 116 GeV

Exclusive Limit

ECDF




Successful phenomenology for W and Z.
In principle, can also fit to fixed-target Drell-Yan with
the same set of NP parameters.

Qiu and Zhang show that NP corrections are
dominant for fixed-target Q.

What about those 1/(1 — z) (soft gluon energy)
singularities?

x T his is threshold resummation . ..



I1IC. Threshold Resummation

Integrate over Q: the NLO total DY cross section
2
Integrate over Q at fixed z = gfgﬁ QT — 0 is singular.

Add diagrams with virtual gluons: their kp integrals
are singular.

Factorize low k7 = — Q7 < i gluons just as in DIS.

The remainder is now finite at fixed QQ, z # 1.



The left-over NLO & is not a normal function of 2!

Because do/dQ* begins at o', this is next-to-leading
order (NLO) here.



0gq for Drell-Yan at NLO

6 g g2 Q% 117)

dQ)?

T

+ 00(@) Cp [1 HQ] " (Q_22>
+

e Plus distributions: “generalized functions”
(c.f. delta function). p-dependence: evolution.



e What they are, how they work

/01 6 1D / 10 =10

1—a)

! In(1 — x) e In(1 — x)
[ r(*=7) = [ e -
and so on . . . where f(x) will be parton distributions

e f(z) term: real gluon, with momentum fraction 1 — z



e f(1) term: virtual, with elastic kinematics

o If f(x) is changing rapidly, find a large correction.



o A Special Distribution

o DGLAP “evolution kernel” = “splitting function”

as [1+ 2
P —
wq(x) = CF [1—x]+

¢ Nonsinglet, leading order



e A neat bit of soft-gluon kinematics: p, + p; = ¢+ k ==

L Q’ _ (Pq +pg —k)°
1625 (Pq + Pg)?
2Q - k
~ 11— o
And in the § =0 (c.m.) frame,
2k
l —2=—
Q

So one singularity is from k; = 0, one from ky = 0, for
any number of soft partons in the final state.

2z — 1 is called “partonic threshold”.



e Back to the one-loop DY hard-scattering

~ (1) —1/2
A0 4g—y7g _ OOO‘SCF 1 _ 41Q7
dQ2 dQQT T2 (1 — 2)251525
y 1 1+ 22 B 2z
Q7 1-2z (1-2)Q

e Factorized cross section at fixed Q:

dUNN—wM +X (@, p1,p2) / ag—putp— (Q)+X(Q 1, §101, Eap2, Q)
dQ2d2Qr ¢ dQ*d?*Qr

X fa/N(gla /) fa/N(an /)

1,2 g— qq



Integrate over Q: the NLO total DY cross section
2
Integrate over Q at fixed z = gfgﬁ QT — 0 is singular.

Add diagrams with virtual gluons: their k1 integrals
are singular.

Factorize low k7 = — Q7 < i gluons as in DIS.

The remainder is now finite at fixed )1, z # 1.



e The ()r-integrated NLO partonic cross section

26t . (2,Q2 1?)

qq—>’7 g

dQ)?

e ()

+ 00(@?) Cp [1 +Z2] " (Q2>
T |[l—2z], (2

e Plus distributions: “generalized functions” (c.f. delta function).



e What they are, how they work

/01 6w 1D / g 10 =10

=), =
[ wro(f=) = [ - T
and so on . . . where f(x) will be parton distributions

o f(z) term: real gluon, with momentum fraction 1 — z.
e f(1) term: virtual, with elastic kinematics.

o If f(x) is changing rapidly, find a large correction.



e A Special Distribution is the

e DGLAP “evolution kernel’ = “splitting function”:

s |1 : Ao
o) [ +z] > (oz)+.”
_|_

P = —
a(2) OFT(' 1 -2z 1—2z

¢ Nonsinglet, leading order



e A neat bit of soft-gluon kinematics: p, +ps=q+k =
Q’ (Pg +pg — k)’

o §1§25 (pq + pg)?

z ~1—

02
And in the § =0 (c.m.) frame,

2ky
@

So one singularity in 6! is from k; = 0, one from ky = 0,
for any number of soft partons in the final state.

l —2z=

2z — 1 is called “partonic threshold”.



e T hreshold resummation is resummation
for the plus distributions.

e Same method as for Q7, but now fix kgp ~ 2(1 — 2)Q.

Laplace or Mellin transform e~ V2%0/@ ~ 2N and MS
collinear subtraction gives (here NLL accuracy shown)

exp[ B3 (N, Q) :

Q’ du? Nu
EM (N Q) = / —— 24, (o In —
MNQ) = [ 2alan(w) In



Threshold: small 1 — z ~ 2ky/Q, large N: enhancement:

(@) [ dk3 0s(Q) 8o Q2
o2 [ e () (- 2) e ()

as(Q)

T

+2

~ o In*(N)(1+ oy In(N) +...)
+as;In(N)(1+as In(N)+...)
+ ...

e As for Q7, these are LL(A)), NLL (B, A(®), and so on.



e And again, NLL is good so long as a,(Q)In N < 1.

In this case, the enhancement is entirely due to the
subtraction of collinear singularities.

The MS distributions decrease faster in N
than the partonic cross section.



e Inverse transform to the cross section:

dores A AN (Q*\ " thr
C(Z)-gé\] — ; O-C(LO)(Q7ILL) /CN 2_7'('2 (F) eXp [Eah (Nvau)}

Xfa/N(Nmu) fc_L/N(Nmu)

Formalism is similar for W, Z, H. “Electroweak annihilation”

Typical collider result . ..



e Logs: threshold resummation vs. fixed order for H at LHC

60 m

LHC MRSTZ2002 |

a(pb)

100 150 200 250 300

(from Catani, de Florian, Grazzini, Nason (2003))

e Modest change & decrease in u-dependence
— increased confidence. But see Sec. VII.)



IVA. Jet shapes and 1/() corrections

e Angularity event shapes

(C.F. Berger, Kucs, GS (2003), Berger, Magnea (2004))
1 _
Ta=—= Y Ej(sin6;)" (1—|cost) *
@ iin N
e 0; angle to thrust (a = 0) axis (7 that gives 7"™).

e Jet “broadening”: a = 1; total cross section: a — — .



e Cross section is a convolution in contributions of each jet and
a soft radiation function

0 (T, Q,a) = HIJ/dt H /dt Sir(ts HJ ti, D7)

jets 1

X6 ti+ts — 7o)

e Thus, general resummed cross section can be
written as an inverse transform

0 (Ta, Q,a) = /dVeV " HrySyr(v HJ v, DJi)
C

in terms of f(v) = [ dte " f(t).



e NLL resummed cross section is from an inverse transform:

U(Ta7Q7a) —  Otot /dVe’/Ta [‘]i(y’p‘]i)]Q

C

e At NLL can define S.; = 1: indepenent jet “shower”

evolution. (Catani, Turnock, Trentadue, Webber (1990-92))



So we need the resummed jet function in transform space

Jiv,pyi) = /dTa ™V Ji(T i, pys) = 2P
0

where the same reasoning as above gives:

1 - uQ2
du d 2 l—a a
E(v,Q,a) = 2 / — / %A(Ozs(pﬂ) (o7 /@ 1)
0 - u2Q2 T

Again, nonperturbative scales are implied by
resummmed PT. But now, an expansion in powers of 1/Q) . ..



Shape function approach for ete™ jets

® D > K, PT

e pr < K, expand exponentials: isolate “shape function”.

e Low pr (< k < uy) replaced by fyp

E(v,Q,a) = Ept(v,Q, K, a)

2
E: LT n A (e,

+ ...
= EPT(Va Q7 K, CL) + In fa,NP (%7 /{)

1 _ (pT

Q

>n(1a)




Shape function properties

e fnp factorizes under moments — convolution

vV

0(74,Q) = zim /Cdea,Np <§> oer(V,Q, a)

= /dffa,NP(f) o(1a — &, Q)

e fnp function of v/Qonly

e Linear in v/Q: shift in PT distribution

(Korchemsky & GS (1995), Dokshitzer & Webber (1997))

o (1) =)




e Shape function phenomenology for thrust

(Korchemsky,GS, Belitsky; Gardi Rathsman,Magnea (1998 . . .))

Decay gcheme (udscb). ay & SF fixed

189 deVv
183 GeV
172 deV

161 CeV
133 dev
1 91 Gev
44 Gev
35 GeV
22 GeV

14 dev

Strategy: fnp(e) at Z pole; predict other () (viz. PDFs)



e Scaling property for 7, event shapes

e (Approximate rapidity-independence of NP dynamics)

e All a-dependence is in the exponent.



e What PYTHIA gives

e Intriguing, but untested as yet.

(L3 data have been analyzed, with encouraging preliminary results.)



IVB. Evolution with Color Exchange
e What distinguishes hadron colliders.

e Multiloop scattering amplitudes in dimensional regularization

(Catani (1998) Tejeda-Yeomans & GS (2002) Kosower (2003)) Aybat, Dixon & GS (2006)

— Amplitude for partonic process
f: fA(pA,TA)+fB(pBarB) _>f1(p177“1)_|_f2(p277“2)
f Q2 f Q2
MF{AZ} (pj,ﬁ,ozs(f),e) = M[L] (pjaﬁaaS(M2)7€> (CL){ri}

e Need to control poles in ¢ for factorized calculations at
fixed order and for resummation. Evol. for “soft” functions S; ;.



e Example: ¢g tensors (CL){m}:

1 3 1
2 1 2

— Jet/soft factorization at amplitude level. (Sen (1983)):

4



— Soft function labelled by color exchange
(singlet, octet . . . )

— Factors require dimensional regularization

— Same factorization — resummation

— Poles at 2- and higher loops . . .

— Relation to supersymmetric Yang-Mills theories

(Bern, Czakon, Dixon, Kosower & Smirnov (2006) verified

structure to 4 loops.)



— Dimensionally-regularized jets

(Magnea & GS (1990))

2 1 —Q?
H(Zoi) ool 1

d¢>
&

2
+Gli (—1,048 (2;,045(”2),6,) e)

2
L [* dp? [z‘]( (ALQ 2 ))
—|__/ ~—/y O?S ~_7043 ,LL ,6
9 e2 Iu2 K Iug ( )

(o) e | 2

— vk, K related to A above




— Dimensionally-regularized S

INGE

2
1 79 dp?
0

anomalous dimension; color mixing




e New result for all massless 2 — n processes
(Aybat, Dixon, GS (2006))

Po== (1+2K) TG + -
70 70

I'® = (K/2)I'Y) with same K as in the DGLAP splitting.

Related to the “CMW?” or MC/bremsstrahlung scheme.
(Catani, Marchesini & Webber (1990))



1 3
2 4
(a) (b) (c)

(d) (e) (f)

9) (h) (i)

The diagrams with 3g vertices vanish!

To NNLO, “single-web” exchange generalizes single gluon.
(C.F. Berger, 2002)



e The full two-loop single-pole terms x LO are simply

pll@ '
=i E- N B Ko

: g 4e
1ef

o E{i] ) s 2 loop single pole in Sudakov form factor
(Ravindran, Smith, van Neerven (2005))

Agrees with Jantzen, Kuhn, Penin, Smirnov (2005, 2006) in EW logs.

e Hints of unexpected simplicity for IR gluons.

¢ Increasing insight into the structure of final states.



IVC. Generalizations and limitations
1) Factorization with no hard scattering: BFKL

(Sen (1980) Balitsky (1996) Kucs (2003))

e Regge limit in PT for elastic scattering: ps + pp — Py + Py

—(py —pg)? —t < s=(Ps+pp)°

e Elastic amplitude: M (t,s).

e Special case: A — v*(q), large S = (¢ + pg)?, fixed Q% = —¢°.
This corresponds to = = Q°/(2pr - q) ~ Q*/S — 0,

which is the small-x limit of DIS by the optical theorem:

tot elastic
Oyx(q)+p X Im M’V*(Q)‘Fp



m—1 £—1
M(t,s) = Z/ <H dDQku) H d”?p;1

m, L i=1 j=1
KT et am iy om ki, k)
XS;ETQH, by... bell(Q7 n;kit, o kniipid, - Pmd)
<5 P (g, g pi L, - pes)

e Factorization at fixed rapidity separation:

Jets, I'4 p & soft, S; no H. Introduce vector n* as above.



e Evolution equations (in Ins ~ rapidity ~ In(1/x)) give

e generically m convolutions at N LL

J aj...a
(pAnapAn_1> F%) 1 E(pqu;n; k‘lJ_,...,k‘eJ_) —

Z/ H dD_QljJ— ICEL?.T.Y.LL”; by... bm(liJ llJ—v - g, n)
m 71=1

X an) b1 bm(pA, qgni;liy...)

e Can project onto different color exchange:
octet, m = 0 LL reggeized gluon
singlet, m = 1, BFKL LL pomeron ordered in rapidity, not k1 ...



2) Non-global logs: color and energy flow

(Dasgupta & Salam (2001) .. .)

Jet 1

Jet 2

e Simplest cases: 2 jets. Measure distribution Y (F)

e Very interesting case: energy flow between jets
in WW fusion to H.



e Choices for Cross Section:

e a) Inclusive in Q) — Number of jets not fixed!

e b) Correlation with event shape 7, . . . :
fixes number of jets — factorization

(Berger, Kiics, GS (2003), Dokshitzer, Marchesini (2003), Banfi, Salam, Zanderighi (2004,5))



e Contrast: for number of jets not fixed: nonlinear
evolution! The approximate evolution equation for X :
(Banfi, Marchesini, Smye (2002)) LL in E/Q, large-N_) Define: aA = F (3/3E)

OAYap(E) = —0aRp Xap(E) + / ANgp—1 (Bar2kb — 2ab)

k not in 2

ds a0 .
AN b1 = i Ba - D (“dipolesource”)

A Br - B Bk - Ba
Q
RabE/
E

dE’ .
/ dNap—r, (suppression due to
£ Jq

uncancelled virtual gluons)



¢ Origin of the nonlinearity

— Og can come from unobserved “hard” gluon G (k).

— New hard gluon G(k) acts as new, recoil-less source.

— Large- N, limit: G(a)G(k)q(b) sources — G(a)q(k) ® q(k)q(a).

— “Global” event shapes don’t allow an extra hard gluon.
(observed everywhere), but fixing an event shape

may limit the number of events.

— We are far from a full understanding.



3) Large threshold effects in observed hadrons

e Pions at fixed target and RHIC (Vogelsang and de Florian, 2004)

d
prdo(zr) Z/ dzy fom, (71, up)/ dz fosm, (02, 1)

a,b,c

1
></ dzz2Dh/C (z,u%)
0

1 M+ o4 & 15 <2
< / d:eTa(:eT— o ) / d 718 B0ab—ex (07 1)
0 z\/T1T2 ) Jj_ 2 dzz.dn

7: pseudorapidity at parton level



e Averages for distribution x and fragmentation z’s

o717 1 T

<z>

04 .

02 <x>-m . —
L <x>-j et |

0.0 I . . . . | . . . . | . . . . | . . . .
0 5 10 15 20

pr / GeV

RHIC 200 GeV midrapidity average z for pions, and average x for pions,
photons, jets at (NLO). Thanks to Werner Vogelsang.

e Large 2z enhances threshold singularities.



e Singularities at one loop:

. (1 ~ ,2(0
S dO-C(Lb)—>CX(,U7 w) S dOC(Lb)—>cd(U)

dv dw ~ dv

(i),

e For resummation, take 72" moments — factorization:

1 —w

- (B0

U (N} = Cupea A% AY A TS

ab—cd

int)ab—cd| +(Born
MR P
1

e A typical NLL resummed factor:

1 _N-—1 (1—-2)2Q?% ; 2
2z —1 dq 5
v = Aa S
N — €Xp [/0 1_ > L2 e (@(Q))]

FI

A=Cplas/m)(1+ K(as/7)) + ...




e Invert the moments: resolve a long-standing fixed-target
vs. collider puzzle.

1035 T T T T T T T E E T T T T T T T
- ppo X EfPoldp® (n/Gev?d) § - pp - +X  ECo/dp® (mb/Gev?)
10%8 4 3
B ra
1f — (=1
o0\ < Vew 0000 e (=2
4 10 L
10 'k ] g
o 3
10 ? = _5:
F 10 3
107 . ]
4 g
10 ¢ E 107
o "RHIC Vs=200 GeV |n|<0.35
10 FE706 Vs=31.5GeV | n | < 0.75 N\ "\ “MRST2002 KKP
of MRST2002 KKP | RN o
10 3 4 5 6 7 8 9 10 11 10 1 2 3 4 5 6 7 8 9 10

p(GeV) p(GeV)



6 T T T T T T T 109

[ ] [ ‘ ‘ 3 ‘ "N
I Vs=315GeV Resummed : 108 PP — T[0+X pT[do-/de (nbl¥5ev*) |
5 [ _’6/‘1. B — —
% 5 109 =i _RHICVs=200GeV
4 - A
I - - //4’. s
---------- e 10 4;‘\ B
3r T ' s ] — NLO |
-------------------------------- Expansion
B 107 -
................................................................................................................... 2 -
1 : ! E706 Vs=31.5 GeV ]
, , L, MRST2002 KKP al|n]|
Oy 3 4 s e 7 8 9w W4 5 & 7 8 ¢ 10 1
Pr pr(GeV)

o Left: expansion of resummed cross section to fixed orders.
e Right: exact NLO vs. NLO expansion.

e Shows in 7¥ 1PI cross sections threshold resummation is
more accurate and more important in fixed target range.



Conclusions/Summary

e Time’s up for a sample of a large subject.

e Resummation is absolutely necessary for many distributions
(Qr, event shape) just one step away from inclusive cross
sections, because most events are found in regions with
ordered scales (Qr < Q, Mjet K Ejet).

e It is a useful tool to approach precision in

certain collider cross sections (DY, o;2").

e It can serve to suggest the form of NP effects.



Resummations can be derived from factorizations.

Many puzzles remain, esp. connected to energy flow
for non-global cross sections.

Among the many topics not covered:

— Other approaches to resummation, based on parton
showers effective theories . . . [generally similar results]

— Threshold resummation for QCD hard scattering

— Joint resummation of ()7 and threshold effects

— Resummation for electroweak scattering

— Resummation of heavy-quark logarithms

— Much more on small-z resummations, high density QCD
(HERA, RHIC).



¢ Resummation just scratches the surface of QCD.
But it makes a mark.



