Search for Single Top Quark Production in the Electron Channel at DØ in Run II

Reinhard Schwienhorst on behalf of the DØ collaboration

Pheno 2004, April 26-28 2004
Outline

• Introduction
 – Tevatron $p\bar{p}$ Collider
 – Single Top Quark Production

• Experimental Setup
 – DØ Detector
 – Final State Reconstruction

• Single Top Analysis
 – Preselection
 • Event Yield Estimates
 – Final Selection Cuts

• Result

• Outlook
Introduction

- Tevatron is the highest-energy accelerator in the world
 - Test predictions of the Standard Model in detail
 - Search for new interactions not predicted by the Standard Model
 - Only place in the world to observe top quarks
 - Observation of top quark through pair production
 - Measurement of top quark mass
- Search for interactions predicted by the Standard Model but not yet observed → Single Top Production
Single Top Quark Production

• Electroweak production of top

 \[s\text{-channel} \]

 \[
 q \rightarrow W^{-} \rightarrow q' + V_{tb} + b^{-} \]

 \[
 \bar{q}' \rightarrow W^{+} \rightarrow \bar{q} + b \]

 \[t\text{-channel} \]

 \[
 g \rightarrow W^{-} \rightarrow t + V_{tb} + b^{-} \]

 \[
 b \rightarrow W^{+} \rightarrow g + t' \]

 \[NLO \text{ cross-sections:} \]

 \[
 s\text{-channel:} \quad 0.88 \text{pb} \pm 8\% \\
 t\text{-channel:} \quad 1.98 \text{pb} \pm 11\%
 \]

 \[Run \text{ I:} \]

 \[
 DØ: 95\% \text{ CL:} \quad <17 \text{pb} \]

 \[
 CDF: 95\% \text{ CL:} \quad <18 \text{pb}
 \]

 \[
 DØ: 95\% \text{ CL:} \quad <22 \text{pb} \]

 \[
 CDF: 95\% \text{ CL:} \quad <13 \text{pb}
 \]

• Test predictions of the Standard Model

 \[\text{Measure CKM matrix element } V_{tb} \text{ (test CKM unitarity)} \]

 \[\text{Observe top polarization} \]
Single Top Event Signature

s-channel production top decay W decay
q W t b
q' electron neutrino

Final State
b-quark jet electron missing E_T

Final State Objects

jet electron

Proton beam Anti-proton beam

Reinhard Schwienhorst, MSU
Experimental Setup: DØ Run II Detector
Final State Reconstruction

- **Electron**
 - Clustering in the calorimeter
 - Matched to central track
 - Likelihood estimator to distinguish from jets

- **Neutrino (MET)**
 - Indirectly through energy imbalance in transverse plane

- **Jets**
 - Clustering calorimeter energy
 - Corrected to get particle p_T (Jet Energy Scale)

- **b-quark identification**
 - Muon-in-jet from b-meson decay
 - Soft-muon tag
 - Tracking-based lifetime tagging

Secondary Vertex Reconstruction (SVT)

Impact Parameter Tag (JLIP)

Probability for each track in the jet to originate from the primary vertex
Backgrounds

- W+jet production
 - Wjj, Wcc, Wbb, ...
 - Estimated from data
 - Normalized untagged W+jets sample by probability to tag a jet in the data (inclusive)
 - Probability is derived from a multi-jet sample
 - Same jet flavor composition as W+jets (within 20% uncertainty)

- Mis-reconstructed multi-jet events
 - Jet mis-identified as electron
 - Estimated from data

- Top-pair production
 - Lepton+jets and di-lepton
 - Estimated from MC

- Other (WZ, WW, cosmic rays)
 - Negligible, not yet included
Analysis Outline

1) Split Analysis into orthogonal channels
 - electron channel
 - soft-muon tag
 - SLV, lifetime tag
 - muon channel
 - soft-muon tag
 - SLV, lifetime tag

2) Preselection based on Single Top Event Signature
 - Select events containing W and jets with at least one b-tag
 - Loose requirements to retain high signal acceptance
 - Study background estimation in detail
 - Prove that background model reproduces data
 - Reject regions of phase space that are not well modeled

3) Final Event Selection
 - Separate single top from backgrounds

4) Combine orthogonal channels for highest sensitivity
Preselection Cuts

- **Lepton**: 1 electron, $p_T > 15\text{GeV}$
- **Neutrino**: missing $E_T > 15\text{GeV}$
- **Jets**: $2 \leq n \leq 4$
 - $p_T > 15\text{GeV}$, leading jet $p_T > 25\text{GeV}$
 - ≥ 1 b-tag
- **Trigger Requirement**: ≥ 1 EM object, ≥ 1 jet
- **Reject mis-reconstructed events**
 - Cosmic ray muons
 - Mis-identified jets
 - Triangle cuts
Event Yields: Number of Jets

DØ Run II preliminary

SVT

- Data (tagged)
- ST s-channel
- ST t-channel
- tt -> l+jets
- tt -> dilepton
- Wjets TRF+MM
- QCD TRF+MM

JLIP

DØ Run II preliminary

soft-muon tag

of jets

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0 10 20 30 40 50 60

DØ Run II preliminary

of jets

0 1 2 3 4 5 6
Event Yields: Event Energy HT

$$HT = E_T^{\text{lepton}} + \text{MET} + E_T^{\text{jet1}} + E_T^{\text{jet2}}$$

Graphics:
- **SVT**
 - Histogram showing distribution of HT (GeV) with various contributions and data points.
- **JLIP**
 - Histogram showing distribution of HT (GeV) with various contributions and data points.

Legend:
- Data (tagged)
- ST s-channel
- ST t-channel
- $tt \rightarrow l+jets$
- $tt \rightarrow \text{dilepton}$
- Wjets TRF+MM
- QCD TRF+MM

Soft-muon tag

Note:
- The plots are labeled as DØ Run II preliminary.
Final Event Selection

• Dominant background is from W+jets
 ¬ Cut on HT>150GeV
 – HT = $E_T^{\text{lepton}} + \text{MET} + E_T^{\text{jet1}} + E_T^{\text{jet2}}$
 – Reduces W+jets background by about 50%
 – Reduces Single Top signal by about 5%

• Systematic Uncertainties
 – Data: largest contribution from determination of tagging probability: ~20%
 – MC: large contributions from
 • Jet-Energy-Scale,
 • Trigger modeling
 • MC flavor-dependent b-tag modeling
 • Combined: ~20%
Signal Acceptance

DØ Run II preliminary

- SVT
- soft-muon-tag
- JLIP

Categories:
- e(CC) SVT combined
- e(CC) SVT t-channel
- e(CC) SVT s-channel
- e(CC) SLT combined
- e(CC) SLT t-channel
- e(CC) SLT s-channel
- e(CC) JLIP combined
- e(CC) JLIP t-channel
- e(CC) JLIP s-channel

Values:
0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60%
Result

• Final Event Yield
 – based on ~160pb of DØ Run II data
 – Soft-muon and secondary vertex tagger combined:
 Sum of backgrounds: 103 ± 15 events
 Observed: 117 events
 Expected from Single Top: 6.2 ± 1.8 events

• Observation consistent with Background expectation

• Estimate sensitivity: expected cross section limits
 – Modified frequentist approach (CLs method)
 – Include all systematic uncertainties and correlations
 – Set limit separately for s-channel, t-channel, s+t combined
 – Combine tagging methods and electron and muon channels
DØ Run II Single Top Search Program is on its way

Sensitivity from Run I already exceeded
 – Increased Data Sample
 – DØ detector is performing and understood well

DØ is working towards observation of single top production
 – Collecting more data
 – Improve detector understanding
 – Improve analysis

Expected 95% Cross-Section Limit

\[
\begin{align*}
\text{s-channel: } & <14\text{pb} & \text{s+t-channel: } & <16\text{pb} & \text{t-channel: } & <18\text{pb}
\end{align*}
\]
Supporting Slides
MC Modeling

- Single Top modeling: CompHep
 - gives NLO-corrected distributions, not just LO diagrams
 - including full spin correlations
- t-channel problem:
 - how to match 2 to 2 with W-gluon fusion

2 to 2 \[\rightarrow \] W-gluon fusion

solution: phase-space matching
 - b from Pythia for soft region
 - ME generator for hard region
Background Estimation

Preselected Sample

Tagged Sample
require at least one tag

Untagged Sample
=0 tags

scale to pre-tagged W+jets yield

apply Inclusive TRF

Final Data Sample
W+jets yield

multi-jet Sample
preselection cuts
reverse electron likelihood cut

scale to pre-tagged mis-ID lepton yield

apply tagger

mis-ID lepton yield

MC Samples
preselection cuts

apply data/MC scale factors, trigger weight

scale to XS*lumi

apply tagger or flavor-dependent TRFs

MC yields
Background Estimate: pre-tagging

- Preselected, Pretagged sample contains two components:
 - Events with *real* isolated lepton
 - Events with *fake* isolated lepton
 - Jet faking an electron
 - Muon in jet faking isolated muon

- Matrix Method to estimate relative contribution
 - Count events before/after a cut that separates the two (loose/tight)
 - Electron channel: electron likelihood cut (combination of cal/tracking)
 - Background efficiency e_{QCD} determined in multi-jet QCD sample (low MET)
 - Signal efficiency e_{sig} determined in Zee sample
 - Muon channel: muon isolation from jet
 - Background efficiency e_{QCD} determined in QCD sample (low MET)
 - Signal efficiency e_{sig} determined in $Z\mu\mu$ sample
Pre-tagged Background Yield: W+jets and QCD

\[N_L = \tilde{N}_{\text{sig}} + \tilde{N}_{\text{QCD}} \]
\[N_T = \varepsilon_{\text{sig}} \tilde{N}_{\text{sig}} + \varepsilon_{\text{QCD}} \tilde{N}_{\text{QCD}} \]

\[\tilde{N}_{\text{sig}} = \frac{N_T - \varepsilon_{\text{QCD}} N_L}{\varepsilon_{\text{sig}} - \varepsilon_{\text{QCD}}} \]
\[\tilde{N}_{\text{QCD}} = \frac{\varepsilon_{\text{sig}} N_L - N_T}{\varepsilon_{\text{sig}} - \varepsilon_{\text{QCD}}} \]
Background Estimate: tagged

- Data backgrounds: divide preselected sample into orthogonal sets
 - Tagged signal data
 - Require at least one jet to be tagged
 - Un-tagged sample for W+jets background
 - Require that none of the jets be tagged
 - Multi-jet sample with fake isolated leptons for QCD
 - Lepton fails tight cut

- MC for signal and top pair production background

- Check prediction in W, QCD-dominated sample
 - Suppress ttbar, single top:
 - $n_{jets} = 2$
 - total energy in the event $HT < 200\text{GeV}$
Tag-Rate-Functions

- Flavor-dependent TRF (for b-jets, c-jets, other jets)
 - determined from data with scale factors from MC
 - used to determine tagging-probability in MC events

- Inclusive TRF
 - Used to estimate tagged W+jets background from data
 - Average probability to tag a jet in an inclusive W+jets sample
 - Approximately same as in multi-jet sample
 - Within uncertainty
 - Determine per-jet probability in multi-jet sample (=1-3%)
 - Then apply as weight to each jet in untagged W+jets sample
 - Flavor composition assumption tested in cross-check samples
 - Z+≥2 jets sample
 - In W+jets cross-check sample (n_{jets} =2, HT<200GeV)
 - Find good agreement in all samples (uncertainty ~20%)
Inclusive TRF cross-checks

- Z$^+32$jet sample:
 - SVT: TRF prediction: 15.7 events, tags found: 17
 - JLIP: TRF prediction: 14.9 events, tags found: 20

- W cross-check sample
 - muon channel SVT: prediction: 31.6, tags found: 27
inclusive TRF cross-checks

alljet sample tagger direct scaled TRF unscaled TRF

JLIP
W+jets sample

SVT
CC 2jet crosscheck
<table>
<thead>
<tr>
<th></th>
<th>SLT</th>
<th>SVT</th>
<th>JLIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC s-channel</td>
<td>0.6 ± 0.2</td>
<td>1.8 ± 0.4</td>
<td>1.8 ± 0.5</td>
</tr>
<tr>
<td>MC t-channel</td>
<td>0.9 ± 0.3</td>
<td>2.9 ± 1.0</td>
<td>3.0 ± 1.1</td>
</tr>
<tr>
<td>MC $s+t$ combined</td>
<td>1.6 ± 0.4</td>
<td>4.7 ± 1.4</td>
<td>4.7 ± 1.5</td>
</tr>
<tr>
<td>Backgrounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC $t\bar{t} \to \ell + \text{jets}$</td>
<td>7.0 ± 1.6</td>
<td>18.3 ± 4.4</td>
<td>19.2 ± 5.2</td>
</tr>
<tr>
<td>MC $t\bar{t} \to \ell\ell$</td>
<td>2.7 ± 0.3</td>
<td>5.0 ± 0.8</td>
<td>5.2 ± 1.0</td>
</tr>
<tr>
<td>$W+\text{jets} + \text{fake-}\ell$ data</td>
<td>24.7 ± 4.1</td>
<td>45.8 ± 8.9</td>
<td>49.7 ± 9.9</td>
</tr>
<tr>
<td>Sum of backgrounds</td>
<td>34 ± 5</td>
<td>69 ± 10</td>
<td>74 ± 12</td>
</tr>
<tr>
<td>Observed data</td>
<td>54 ± 7</td>
<td>63 ± 8</td>
<td>65 ± 8</td>
</tr>
<tr>
<td>Acceptance</td>
<td>$0.35%$</td>
<td>$0.97%$</td>
<td>$0.98%$</td>
</tr>
</tbody>
</table>