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The Top Quark

-~

= Spin %2 fermion, charge +%

= \WWeak-isospin partner of the bottom quark
= Heaviest known fundamental particle

o MtOIO =171.4 £ 2.1 GeV

Quarks

N
~ ™
= Discovered in 1995 by CDF/DQ

= Produced in tt pairs at the Tevatron e q‘ ; t

» Cross-section = 6.8 + 0.6 pb (NNLO) <

= Measurements consistent with this X7 lt
value antiproton S




Single Top Quark Production
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s-channel: “tb” t-channel: “tgb” “tW production”
0, = 0.88+0.11 pb 0,,= 1.98+0.25pb 0, =021 pb
\ J
~

Experimental Results (95% C.L.):

D@ (370 pb™): 0, <5.0 pb
CDF (700 pb™): o, <3.2pb

DJ (370 pb™): Oy < 4.4 pb
CDF (700 pb™): Oy < 3.1 pb




Motivation

= Direct test of Standard Model

q’ q
= Study Wtb coupling

= Measure |V, | directly

= Test unitarity of CKM matrix |
= Anomalous Wtb couplings g b

= Search for new physics

= s/t-channel have different sensitivity to new physics q t

= s-channel: Heavy resonances W'H
(W', H", KK state, technipion, etc.)

= t-channel: FCNC (z-Z/y/g-c/u couplings) 5

= Top polarization measurement 9 q

= Top quark partial decay width and lifetime g
measurement

= Analysis techniques development
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The Tevatron at Fermilab
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The DO Detector
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Dataset
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Event Selection

= One isolated electron or muon -

= Electron p_> 15 GeV, |n| < 1.1
= Muonp_> 18 GeV, |n[ < 2.0

proton

= Missing transverse energy
« E_>15GeV

antiproton

= At least two jets and one b-tagged jet
= 2-4 jets with p_> 15 GeV, |n| < 3.4
= Leading jet p_> 25 GeV, |n| < 2.5

= Second Leading jet p_> 20 GeV
\ y

antiproton




Signal and Background

= W/Z+jets production (“real lepton”)

= \WH+jets background modeled using
ALPGEN+PYTHIA (hadronization)

= \W+jets normalized to data

= Wbb and Wcc fractions from data to take into
account higher order effects

s /+jets and di-boson background very small and
included in W+jets normalization

[~y |

= Multi-jet events (“fake lepton”) q ‘e”

= Jet mis-identified as isolated electron/muon -

= Background modeled using data with J
non-isolated lepton and jets

= Background normalized to data

L

jet

= Top pair production b

= ttbackground modeled using .
ALPGEN+PYTHIA (hadronization)
= Background normalized to NNLO cross-section 9 b




Event Yields in 0.9 fb-' Data

Electron+muon, 1tag+2tags combined

Source 2 jets 3 jets 4 jets
tb 16+ 3 8+2 2+1
tqb 20+ 4 12+3 4+ 1
tt— Il 39+ 9 32+7 1143
tt — [+jets 20+ 5 103 + 25 143 + 33
W+bb 261 + 55 120 + 24 35+7
W+ce 151 £ 31 L 2o +5
W jj 119 + 25 43+9 12 42
Multijets 95+ 19 77+15 296
Total background 686 + 41 460 £ 39 253 + 38
Data 697 455 246

B. Vachon. McGill Universit
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= Signal acceptances: tb = (3.2 £ 0.4)%, tgb = (2.1 £ 0.3)%
= Signal : background ratios: tb+tgb combined are 1:10 to 1:50

Event Yields




Search Strategy

= Expected single top signal is smaller than total background uncertainties

= Simple event counting method is not sensitive enough to presence of signal
= Need to use multivariate discriminant:

= Boosted decision trees
= Matrix elements
= Bayesian neural networks

= Divide analysis in 12 independent samples: (e,u) x (2,3,4 jets) x (1,2 b-tags)
= Optimize discriminant for each independent search channel

12 samples -~ » DT — » Likeli_hood | Cross-section
fit measurement

» ME  » Likeli_hood | Cross-section

fit measurement

Likelihood Cross-section

- = BNN fit "' measurement




tt
W + jets
Multijets

12 Analysis Channels

W transverse mass 21 mosdalnt
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Systematic Uncertainties

= Uncertainties assigned for each signal and background component in each
analysis channels

= Correlations between channels and sources of systematics are taken into

account.

= Two different types of uncertainties:
= Normalization uncertainties

= Uncertainties affecting shape of distributions (Jet energy scale, tag-rate

function for b-tagging Monte Carlo events)

Source of Uncertainty

Top pairs normalization

W+jets & multijets normalization
Integrated luminosity

Trigger modeling

Lepton ID corrections

Jet modeling

Other small components

Jet energy scale

Tag rate functions

Size
18% - N
18—28% Single top cross-section
6% measurement uncertainties
3-6% dominated by statistical
2-7% uncertainties.
2-7% ~ <
Few %
1-20%
2-16%




1 - Decision Trees

= Machine-learning technique widely used in social science

= [dea: use information from events that fail criteria in a simple cut-based
analysis

= A decision tree consists in a chain of selection criteria that defines
unique samples of events that are either background-like or signal-like

-
= For each “node” . , pick the variable and cut value that

provide the best separation between signal and
background.

= Split the events based on whether they pass (P) or
fail (F) the cut.

= Repeat recursively

= Terminate when improvement in signal to background
separation stops or when too few events are left.

= For each terminal node (“leaf” ) calculate
purity = Nsigna/ (Nsignal+kag)

= Decision Tree output for each event = leaf purity

N




1 - Boosted Decision Trees

= “Boosting”: Technique used to improve the performance of a weak classifier

= Construct a weighted average of the results of many trees

= |mproves performance
= Dilutes the piecewise nature of decision trees

= |n this analysis:

= Trained 36 sets of decision trees: (tb+tgb, tb, tgb) x (e,u) x (2,3,4 jets) x (1,2 b-tags)
= Use 49 input variables

D@ Run Il preliminary DG Run Il preliminary

& ” o :
= 300 % 0.9fb™" -« o 10° 0.9fb" »
> s tb+tgb [ > tb+tqb I
E : ttl | tt
> 200 Wijets [ > 10 Wijets i
Multijets ™ Multijets 2
L +1o uncertainty - +10 uncertainty .-

on backgroun on backgroun

100 1
0 I | 10'1 L4 v 3
0 0.2 0.4 0.6 0.8 1 0.6 0.7 0.8 0.9 1

tb+tqb Decision Tree Output tb+tqb Decision Tree Output




2 - Matrix Elements

= Method pioneered by D@ for top quark mass measurement

= Use 4-vectors of all reconstructed objects in an event

= Use matrix elements of main signal and background Feynman
diagrams to compute an event probability density for signal and
background hypothesis:

- 1 - D@ Run Il preliminary
P (%)= — do(X) 40F o

(28 ! ib+tgh
39 | i ==

30
25
= Construct a discriminant: 20

Event Yield

Dy(X)=P(S]3)=

5
%8 o085 09 o0o9s 1
tb+tgb ME Discriminant




3 - Bayesian Neural Network

Hidden

= Neural network is a non-linear statistical Input
technique to data classification

= Bayesian neural networks consists in a QAO

weighted average of many networks, given Q/
a training sample
= | ess prone to over-training due to averaging

= Network structure is less important, just use a large network
= Computationally intensive

Network Output @ Data Network Output @ Data
12001 = Wb 200£° = Wbb
- DO Run Il Priliminary 910 pb™” = Wee 180F- DO Run II Priliminary 910 pb™” = Wee
1000}~ KS=1.00 —- B, ;‘“’g"’"I
5 - -Egl?gi!apton 160 - :Egl?g'i!apton
B 140
800 -
: 120F
600 100

400

200F

% 01 02 03 04 05 06 07 08 00 i 0
BNN_output 0.7 0.75 0.8

0.85 0.9 0.95 1
BNN_output




Cross-section measurement

= Compute Bayesian posterior probability density

Posterior Probability Density (o |data)oc
f f Prob(data|o, a, b)Prior (o) Prior(a, b)dadb

= Use shape of output discriminants (DT, ME, BNN)
= Combined all individual search channels

Nbins
Prob(datalo, a, 17)22‘1,:l Prob(data o, a;, b,)

= Flat prior in signal cross-section (o > 0)

h(rpeak

= Shape and normalization systematics P 0355
treated as nuisance parameters g 03E /
= Bin-by-bin correlations between [ S W
uncertainties and search channels o 02
taken into account < 0;5;_
= Cross-section measurement obtained S —
from peak position and uncertainty £ g e
4

obtained from width single top cross section




Probability Density [pb™']

Posterior

Decision Trees Matrix Elements Bayesian Neural
Networks

D@ Run Il preliminary D@ Run Il preliminary

=
w

Decision - C i | - - Bayesian
: T 025 Mat . Y
025 Trees 2 025; Elemgnrtns( l-g 0.2 3 Neural
u_z?. Measureﬁ 2 0'2i Measured 2 018 Networks
: resu @ - result D Measured
0.15:- 3 0.15 3 0.12 result
0.1 . %‘ 0.1 < _%‘ 0.08
0.05 'gﬁoos Egﬁ“
® - g5 ) g8 "+
0~ S R ca P g i P N P L, ca (] 2 P S IR S
0 B nol g 0 2 4 6 8 10 0 2 4 6 8 10 12 14
tb+tqb Cross Section [pb] tb+tgb Cross Section [pb] tb+tqb Cross Section [pb]
= tb+tgb) =4.6 1€ pb
o(tb+tqgb) =49+ 14 pb o qb) -15 P o(tb+tgb) =5.0 £ 1.9 pb
Measured p-value = 0.035 % Measured p-value = 0.21 % Measured p-value = 0.89 %
Measured significance = 3.4 o Measured significance =2.9 o Measured significance = 2.4 o
Compatibility with SM = 11% Compatibility with SM = 21% Compatibility with SM = 18%

p-value: probability to measure a cross-section value at least as large as
the one observed assuming background-only hypothesis.
significance: p-value expressed in terms of number of sigma
compatibility with SM: probability to measure a cross-section value at least as
large as the one observed assuming SM cross-section




Results from three different B »
methods are consistent with SeiTiee ¥ 4 B
eaCh Other Matrix elements : 4.6 +:g pb
Bayesian NNs 5.0 +1g pb
Bl N K.dorilakis. PRD 78, 114012 (2006), m, = 175 GeV
Z; Sulliv:an PRD 70, 814012 (2004), m, = 175 GeV
0 5 10 15
6 (pp — th+X, tgb+X) [pb]
Currently working on combination Correlation between
of the three measurements measured cross sections
DT ME BNN
DT 39% 57 %
ME 29 %
BNN




Measuring |V |

In the SM: Physics beyond the SM:
= VI AVI+V =1 n VI AVIAVE < 1
= Constraints on V,, and V', = No constraints on V,
give 7, =0.999100" e

= Use the measurement on the single top cross-section to obtain
first direct measurement of |V |

= General form of Witb vertex

q ¢ [ oL . rRp it [fLp, 4 fRP,]
F'LI : = = _. 0 A.r P A= — ‘] _:_ -} F
Wt v’i’. { v [fi Pr+ fi*Pr| Mo (ot — oo}, |f2 PL+ f3 u_}

= No need to assume only three quark families or CKM unitarity

= Assume
SMtop quark decay: |y P+|v |© < |V, [ b
Pure V-A coupling: 1=
CP conservation: f,=f7=0 d 1




|V _| measurement

Calculate a posterior probability density for |V_|

Posterior Probability Density

4 o o o O
i B O Bm

02

0.1

D& Run Il prefiminary

0.9 fb!

| Viwf |2

d +0.6
& 1'?-:15

20 35 40

[Vinfi 2

D@ Run Il prefiminary 0.9 fb~"
£ 45 ;
&
Bo r=10%

ki B L
= ot o

=
=

Posterior Probability
B




= First Evidence for single top quark production at DJ

=49+1.4pb (3.4 o significance)

0]
tb+tgb

= Direct measurement of CKM matrix element |V |

0.68 <|V | <1.0at95% CL (f'=1)

= Challenging measurement — extracting a small signal from a
large complex background

= Use three innovative event classification techniques:
= Boosted decision trees
= Matrix elements
= Bayesian neural networks

= Results submitted to Physical Review Letters

= Open the door for studies of Wtb coupling and searches for
new physics




Decision Tree - Boosting

e Technique to improve performance of a weak classifier
e Construct a linear combination of many filter functions

e Usually improves performance

e Averaging dilutes the piecewise nature of decision trees

- N
Basic principle:

- Traina tree T
- Create a new tree: 7, = modify(7 )

- Boosted result of event i: T(z‘)szj o, T, (i)
N /

Adaptive boosting:

- Check which events are misclassified by T

- Increase weight of misclassified events
- Use modified training sample to build 7,




Decision Trees in single top analysis

* Train 36 separate trees: (s,t,s+t) x (e,y) x (2,3,4 jets) x (1,2 btags)
e For each signal train trees against sum of backgrounds (t t, W+jets)
e Use 1/3 of MC for training, other 2/3 to calculate leaf purities

DT parameters used:

* Node splitting criterion: “Gini” factor (using “entropy” doesn't lead to better
sensitivity)

e Minimum leaf size: 100 events (smaller value doesn't lead to statistically
significant purity calculations, larger value
degrades performance)

e | eaf class assignment: signal leaf if purity > 0.5

e Normalization: sum of signal and background event weights are each

normalized to 1 (varying ratio of signal and background
weights had little effect in sensitivity except in extreme cases
where discrimination goes down)

e Using adaptive boosting “Adaboost”. 3 = 0.2 (proportional to individual
trees weight)

e Boosting cycle: 20 (i.e. Averaging 20 decision trees)




Matrix Element Method In single top

e Only use events with exactly 2 or 3 jets

* Use 4-momentum of all reconstructed objects: x=(p,,p;.p;)

e Take into account b-tagging information

e Matrix elements calculated using Madgraph leading-order matrix element
generator

e Calculate discriminant for W+jets background only

e Use 2-D discriminant:

2D Discriminant for Data 2D Discriminant for Data
e EHMH —

e e
— : . i -
i _.\""\-\._ P — . \_\_H\

o 2jets M of > 3jets | .
! H"‘m., B T “H‘ - e

S




DT: Choosing input variables

Object Kinematics

e Detailed studies of pr(iet)
Feynman diagrams for pr{jet2)
: prjet3)
single top and background sttt
pr{bestl)
e 49 discriminating variables pr(notbestl)
pri{notbest2)

were identified sk
- Individual object kinematics  pr(untagi)
- Angular correlation variables =~ priwtas?)

- Global event kinematics T hmm——
AR(jet], jet2)
e Addlng Varlab|eS does not r.'u.*-:[:IM"HI.l.l{?p!ulljlwhu.lup
cos(bestl.notbest L uestiop
degrade performance cos(tagl.alljets)anjers

cos(tagl.lepton)prageediop
cos{jetl alljets ) ijore

e Reducing list of variables B et
result in loss of sensitivity 6862, AlLJEE8) sifene

cos(jet2 lepton ) yagediap

cos(lepton. Q(lepton) X 2 ) bestap

e Same variables used for all

cos(lepton, besttopframe) p e topoyirame

Sea rCh Cha n nels cos(lepton, btaggedtopframe )y g cedropCairame

cos(nothest alljets e
cos{nothest lepton)pestrap

cos(untagl . alljets)aijers

cos(untagl lepton ) piageediop

Event Kinematics
Aplanarity(alljets, W)
MW bestl) (“best” top mass)

MW . tagl) (“b-tagged” top mass)

Hr(alljets)
Hr(alljets—best1)
Hr(alljets—tagl)
Hr{alljets, W)
Hr(jet1.jet2)
Hr(jetl, jet2, W)
M {alljets)

M alljets—bhest1)
M {alljets—tagl)
M(jet1 jet2)
M(jet1 jet2.W)
Mr(jetl. jet2)

Mr (W)

Missing ET
pri{alljeta—bestl)
pri{alljets—tagl)
prijetl. jet2)
Qilepton )= n{untagl )
e

Sphericity(alljets, W)




Matrix Element

Define discriminant:

PS(}) P(X):Signal probability density function
P (X)+P,(x) P ,(X):Bkg probability density function

Dg(%)

[
~

el

=
|

Probability density functions are calculated numerically as the normalized
differential cross-section for each processes:
P(%)= 1 90 \where

o ax

o)=Y, [ d¥|fi(q,0")xf (g, 07)x XW (3, 5)X0,on(T)

A, R g

parton PDF hard scatter transfer  parton-level
~| M function  cuts
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SEVCHERRL

Treat the training of a neural network as a problem of inference and solve
using Bayes' theorem.

Interpret output of ONE neural network as a probability that the target r =1.
y(x,w)Zp(t=1|x,w) x : vector of input variables

w :vector of parameter values that define a neural network

Define posterior probability density over all possible weight sets (i.e. over all possible
neural networks) as:

[x,w w p(t|lx,w): likelihood
p(W t)x):p( | )p( ) p(w): prior density
P <t|x> p(t|lx): probability of set of targets ¢ given data x

Estimate of the probability that an event in data x' belongs to signal class # =1:

t,x)dw ( weighted average of alll
’ possible neural networks)

t,x)=[ y(x',w)p(w

y(x'

In practice, use Monte Carlo Markov chain as an approximation:

N
[, x)m— ) x',w.
)~ 2 v wy) )

y(x'




Bayesian Neural Network

-

-
Advantages:

e [n principle, provides best estimate of p(/|x)
e Less prone to over-training due to averaging
e Network structure less important, just use a large network

Disadvantages:

e Computationally intensive

Example of use in the search for single top:

e 24 input variables (currently limited by software package used)

e Networks with 40 hidden nodes

e Run 800 iterations of training. Each iteration consists in the
average of the outputs of 20 training epochs.

e Final network is taken as the average of the last 100 iterations




