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The Top Quark
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Spin ½ fermion, charge +⅔
Weak-isospin partner of the bottom quark
Heaviest known fundamental particle
M
top
= 171.4 ± 2.1 GeV

Discovered in 1995 by CDF/DØ
Produced in tt pairs at the Tevatron
Cross-section = 6.8 ± 0.6 pb (NNLO)
Measurements consistent with this
value



3B. Vachon, McGill University WNPPC, 16 Feb 2007

Single Top Quark Production

σ
NLO
= 0.88 ± 0.11 pb σ

NLO
= 1.98 ± 0.25 pb σ

NLO
= 0.21 pb

s-channel: “tb” t-channel: “tqb” “tW production”

DØ (370 pb-1): σtb < 5.0 pb
CDF (700 pb-1): σtb < 3.2 pb

DØ (370 pb-1): σtqb < 4.4 pb
CDF (700 pb-1): σtqb < 3.1 pb

Experimental Results (95% C.L.):
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Motivation
Direct test of Standard Model

Study Wtb coupling
Measure |V

tb
| directly

Test unitarity of CKM matrix
Anomalous Wtb couplings

Search for new physics
s/t-channel have different sensitivity to new physics
s-channel: Heavy resonances
(W', H+, KK state, technipion, etc.)
t-channel: FCNC (t-Z/γ/g-c/u couplings)

Top polarization measurement

Top quark partial decay width and lifetime
measurement

Analysis techniques development
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The Tevatron at Fermilab

Main Injector

Tevatron

Run I: 1992-1996
√s = 1.8 TeV
0.1 fb-1
> 200 published

papers
Run II: Since March 2001

√s = 1.96 TeV
(~ 2 fb-1 so far)

protonanti-proton

DØ Experiment
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The DØ Detector
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Dataset

910 pb-1 of data collected from
2002 to 2005
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Event Selection
One isolated electron or muon

Electron p
T
> 15 GeV, |η| < 1.1

Muon p
T
> 18 GeV, |η| < 2.0

Missing transverse energy
E
T
> 15 GeV

At least two jets and one b-tagged jet
2-4 jets with p

T
> 15 GeV, |η| < 3.4

Leading jet p
T
> 25 GeV, |η| < 2.5

Second Leading jet p
T
> 20 GeV
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Signal and Background
Model■ W/Z+jets production (“real lepton”)

■ W+jets background modeled using
ALPGEN+PYTHIA (hadronization)

■ W+jets normalized to data
■ Wbb and Wcc fractions from data to take into
account higher order effects

■ Z+jets and di-boson background very small and
included in W+jets normalization

■ Multi-jet events (“fake lepton”)
■ Jet mis-identified as isolated electron/muon
■ Background modeled using data with
non-isolated lepton and jets

■ Background normalized to data

■ Top pair production
■ t t background modeled using
ALPGEN+PYTHIA (hadronization)

■ Background normalized to NNLO cross-section
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Event Yields

Signal acceptances: tb = (3.2 ± 0.4)%, tqb = (2.1 ± 0.3)%
Signal : background ratios: tb+tqb combined are 1:10 to 1:50
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Search Strategy

Divide analysis in 12 independent samples: (e,µ) x (2,3,4 jets) x (1,2 b-tags)
Optimize discriminant for each independent search channel

Expected single top signal is smaller than total background uncertainties
Simple event counting method is not sensitive enough to presence of signal
Need to use multivariate discriminant:

Boosted decision trees
Matrix elements
Bayesian neural networks

DT

ME

BNN

Likelihood
fit

Likelihood
fit

Likelihood
fit

Cross-section
measurement

Cross-section
measurement

Cross-section
measurement

12 samples
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2 jets

2 b-tags 1 b-tag 2 b-tags

3 jets

4 jets

1 b-tag

12 Analysis Channels
W transverse mass

electrons muons
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Systematic Uncertainties
Uncertainties assigned for each signal and background component in each
analysis channels
Correlations between channels and sources of systematics are taken into
account.
Two different types of uncertainties:

Normalization uncertainties
Uncertainties affecting shape of distributions (Jet energy scale, tag-rate
function for b-tagging Monte Carlo events)

Single top cross-section
measurement uncertainties
dominated by statistical
uncertainties.
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1 - Decision Trees
Machine-learning technique widely used in social science
Idea: use information from events that fail criteria in a simple cut-based

analysis
A decision tree consists in a chain of selection criteria that defines
unique samples of events that are either background-like or signal-like

For each “node” , pick the variable and cut value that
provide the best separation between signal and
background.

Split the events based on whether they pass (P) or
fail (F) the cut.
Repeat recursively

Terminate when improvement in signal to background
separation stops or when too few events are left.

For each terminal node (“leaf” ) calculate
purity = N

signal
/(N

signal
+N

bkg
)

Decision Tree output for each event = leaf purity
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1 - Boosted Decision Trees
“Boosting”: Technique used to improve the performance of a weak classifier
Construct a weighted average of the results of many trees

Improves performance
Dilutes the piecewise nature of decision trees

In this analysis:
Trained 36 sets of decision trees: (tb+tqb, tb, tqb) x (e, ) x (2,3,4 jets) x (μ 1,2 b-tags)

Use 49 input variables
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2 - Matrix Elements
Method pioneered by DØ for top quark mass measurement
Use 4-vectors of all reconstructed objects in an event
Use matrix elements of main signal and background Feynman
diagrams to compute an event probability density for signal and
background hypothesis:

Construct a discriminant:

Psx=
1
s

dsx 

DS x ≡P S∣x =
PS x 

PS xPB x
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3 - Bayesian Neural Network
Neural network is a non-linear statistical
technique to data classification
Bayesian neural networks consists in a
weighted average of many networks, given
a training sample

Less prone to over-training due to averaging
Network structure is less important, just use a large network
Computationally intensive
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Cross-section measurement
Compute Bayesian posterior probability density

Use shape of output discriminants (DT, ME, BNN)
Combined all individual search channels

Flat prior in signal cross-section (σ > 0)
Shape and normalization systematics
treated as nuisance parameters
Bin-by-bin correlations between
uncertainties and search channels
taken into account
Cross-section measurement obtained
from peak position and uncertainty
obtained from width

Posterior Probability Density∣data ∝
∫∫Probdata∣ , a , bPrior Prior a ,bdadb

Probdata∣ , a ,b=∑i=1

Nbins
Prob data i∣ i , ai , bi
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Results

p-value: probability to measure a cross-section value at least as large as
the one observed assuming background-only hypothesis.

significance: p-value expressed in terms of number of sigma
compatibility with SM: probability to measure a cross-section value at least as

large as the one observed assuming SM cross-section

Decision Trees Matrix Elements Bayesian Neural
Networks
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Results

Results from three different
methods are consistent with
each other

Currently working on combination
of the three measurements
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Measuring |V
tb
|

In the SM:

Constraints on and
give

Physics beyond the SM:

No constraints on
V td
2V ts

2V tb
2 = 1 V td

2V ts
2V tb

2  1
V td V ts

V tb=0.999100-0.000004
+0.000034

V tb

Use the measurement on the single top cross-section to obtain
first direct measurement of |V

tb
|

General form of Wtb vertex

No need to assume only three quark families or CKM unitarity
Assume

SM top quark decay:
Pure V-A coupling:
CP conservation:

∣V td∣
2∣V ts∣

2 ≪ ∣V tb∣
2

f 1
R=0

f 2
L= f 2

R=0
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|V
tb
|measurement

Calculate a posterior probability density for |V
tb
|
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Summary
First Evidence for single top quark production at DØ

σ
tb+tqb

= 4.9 ± 1.4 pb (3.4 σ significance)

Direct measurement of CKM matrix element |V
tb
|

0.68 < |V
tb
| < 1.0 at 95% CL ( f

1
L = 1)

Challenging measurement – extracting a small signal from a
large complex background
Use three innovative event classification techniques:

Boosted decision trees
Matrix elements
Bayesian neural networks

Results submitted to Physical Review Letters

Open the door for studies of Wtb coupling and searches for
new physics
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Decision Tree - Boosting
Technique to improve performance of a weak classifier
Construct a linear combination of many filter functions
Usually improves performance
Averaging dilutes the piecewise nature of decision trees

Basic principle:
- Train a tree T

k

- Create a new tree: T
k+1
= modify(T

k
)

- Boosted result of event i: T i =∑n=1

N tree

kT k i

Adaptive boosting:
- Check which events are misclassified by T

k

- Increase weight of misclassified events
- Use modified training sample to build T

k+1
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Decision Trees in single top analysis
Train 36 separate trees: (s,t,s+t) x (e,µ) x (2,3,4 jets) x (1,2 btags)
For each signal train trees against sum of backgrounds (t t, W+jets)
Use 1/3 of MC for training, other 2/3 to calculate leaf purities

DT parameters used:
Node splitting criterion: “Gini” factor (using “entropy” doesn't lead to better

sensitivity)
Minimum leaf size: 100 events (smaller value doesn't lead to statistically

significant purity calculations, larger value
degrades performance)

Leaf class assignment: signal leaf if purity > 0.5
Normalization: sum of signal and background event weights are each

normalized to 1 (varying ratio of signal and background
weights had little effect in sensitivity except in extreme cases
where discrimination goes down)

Using adaptive boosting “Adaboost”: β = 0.2 (proportional to individual
trees weight)

Boosting cycle: 20 (i.e. Averaging 20 decision trees)
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Matrix Element Method in single top
Only use events with exactly 2 or 3 jets
Use 4-momentum of all reconstructed objects:
Take into account b-tagging information
Matrix elements calculated usingMadgraph leading-order matrix element
generator
Calculate discriminant for W+jets background only
Use 2-D discriminant:

x= pl , p j1 , p j2

2 jets 3 jets



28B. Vachon, McGill University WNPPC, 16 Feb 2007

DT: Choosing input variables
Detailed studies of
Feynman diagrams for
single top and background

49 discriminating variables
were identified
- Individual object kinematics
- Angular correlation variables
- Global event kinematics

Adding variables does not
degrade performance

Reducing list of variables
result in loss of sensitivity

Same variables used for all
search channels
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Matrix Element
Define discriminant:

DS x≡P S∣x=
PS x

PS xPB x
PS x :Signal probability density function
PB x :Bkg probability density function

Probability density functions are calculated numerically as the normalized
differential cross-section for each processes:

P x= 1

×∂
∂x

where

dx =∑i , j∫d y [ f i q1,Q2× f j q2,Q
2×

∂ i , j y 
∂ y

×W x ,y×parton y ]
parton PDF hard scatter transfer

function
parton-level
cuts~∣M∣2
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Bayesian NN

Interpret output of ONE neural network as a probability that the target t =1.
y  x ,w= p t=1∣x ,w  x :vector of input variables

w:vector of parameter values that define a neural network

Treat the training of a neural network as a problem of inference and solve
using Bayes' theorem.

Define posterior probability density over all possible weight sets (i.e. over all possible
neural networks) as:

p w∣t , x = p t∣x ,w  p w 
p t∣x 

p t∣x ,w: likelihood
p w: prior density
p t∣x: probability of set of targets t given data x

Estimate of the probability that an event in data x' belongs to signal class t =1:

y x '∣t , x=∫ y  x ' ,w  p w∣t , x dw

In practice, use Monte Carlo Markov chain as an approximation:

y  x '∣t , x⋲
1
N∑i=1

N
y  x ' ,wi

( weighted average of all
possible neural networks)
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Bayesian Neural Network
Advantages:
In principle, provides best estimate of p(1|x)
Less prone to over-training due to averaging
Network structure less important, just use a large network

Disadvantages:
Computationally intensive

Example of use in the search for single top:
24 input variables (currently limited by software package used)
Networks with 40 hidden nodes
Run 800 iterations of training. Each iteration consists in the
average of the outputs of 20 training epochs.
Final network is taken as the average of the last 100 iterations


