Evidence for single top at DØ

- Electroweak production of top quarks
- Event selection and background estimation
- Multivariate methods
 - Decision Trees, Matrix Elements, Bayesian NN
- Cross checks. Expected sensitivity
- Cross sections and significance
- First direct measurement of $|V_{tb}|$
- Combination
- Summary

Arán García-Bellido
for the DØ collaboration
Signal selection

- **t-channel**
 - 1.98±0.25 pb

- **s-channel**
 - 0.88±0.11 pb

Event selection designed to be as loose as possible:

- Only one tight (no loose) lepton:
 - e: $p_T > 15$ GeV and $|\eta^{\text{det}}| < 1.1$
 - μ: $p_T > 18$ GeV and $|\eta^{\text{det}}| < 2.0$
- MET > 15 GeV
- 2-4 jets: $p_T > 15$ GeV and $|\eta^{\text{det}}| < 3.4$
- Leading jet: $p_T > 25$ GeV; $|\eta^{\text{det}}| < 2.5$
- Second leading jet: $p_T > 20$ GeV
- One or two b-tagged jets

Acceptance: $tb = (3.2 \pm 0.4)\%$

$tqb = (2.1 \pm 0.3)\%$

Arán García-Bellido

Evidence for single top at DØ
Signal and Background modeling

- Signal is modeled with CompHEP (effective NLO) + Pythia
- W+jets and \(\text{ttbar} \) shapes from Alpgen with MLM matching + Pythia
 - Jet-parton matching avoids double counting \(\rightarrow \) better model
- \(\text{ttbar} \) normalized to NNLO \(\sigma = 6.8\pm1.2 \text{ pb} \) (Kidonakis, PRD 68, 114014)
- QCD from our selected data with non-isolated lepton
- Normalize W+jets and QCD to data before tagging
- Determine Wbb and Wcc factor in W+jets from zero-tagged data
 - Constant factor describes heavy flavor kinematics well
 - Largest single uncertainty: 30% relative error on Wbb+Wcc composition

![Graphs showing mu 1tag 2jets and mu 1tag 2jets distributions](image)
Yields and systematic uncertainties

- Expect some 62 signal and 1400 background events
- Uncertainties are assigned per background, jet multiplicity, lepton channel, and number of tags
- Jet energy scale and b-tag eff. affect the shapes of distributions
- Statistics dominated analysis: systematics contribution to the uncertainty is small

Event Yields in 0.9 fb⁻¹ Data

<table>
<thead>
<tr>
<th>Source</th>
<th>2 jets</th>
<th>3 jets</th>
<th>4 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tb)</td>
<td>16 ± 3</td>
<td>8 ± 2</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>(tqb)</td>
<td>20 ± 4</td>
<td>12 ± 3</td>
<td>4 ± 1</td>
</tr>
<tr>
<td>(\bar{t}\bar{t} \rightarrow ll)</td>
<td>39 ± 9</td>
<td>32 ± 7</td>
<td>11 ± 3</td>
</tr>
<tr>
<td>(\bar{t}\bar{t} \rightarrow l+\text{jets})</td>
<td>20 ± 5</td>
<td>103 ± 25</td>
<td>143 ± 33</td>
</tr>
<tr>
<td>(W+b\bar{b})</td>
<td>261 ± 55</td>
<td>120 ± 24</td>
<td>35 ± 7</td>
</tr>
<tr>
<td>(W+c\bar{c})</td>
<td>151 ± 31</td>
<td>85 ± 17</td>
<td>23 ± 5</td>
</tr>
<tr>
<td>(W+jj)</td>
<td>119 ± 25</td>
<td>43 ± 9</td>
<td>12 ± 2</td>
</tr>
<tr>
<td>Multijets</td>
<td>95 ± 19</td>
<td>77 ± 15</td>
<td>29 ± 6</td>
</tr>
</tbody>
</table>

Relative systematic uncertainties

<table>
<thead>
<tr>
<th>Component</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W+\text{jets}&\text{QCD normalization})</td>
<td>18 – 28%</td>
</tr>
<tr>
<td>Top pair normalization</td>
<td>18%</td>
</tr>
<tr>
<td>Tag rate functions (shape)</td>
<td>2 – 16%</td>
</tr>
<tr>
<td>Jet energy scale (shape)</td>
<td>1 – 20%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>6%</td>
</tr>
<tr>
<td>Trigger modeling</td>
<td>3 – 6%</td>
</tr>
<tr>
<td>Lepton ID</td>
<td>2 – 7%</td>
</tr>
<tr>
<td>Jet modeling</td>
<td>2 – 7%</td>
</tr>
<tr>
<td>Other small components</td>
<td>few%</td>
</tr>
</tbody>
</table>
Check distributions

Key for Plots
- Data
- tb
- tqb
- $t\bar{t}$
- $W + \text{jets}$
- Multijets
- $\pm 1\sigma$ uncertainty on background

Arán García-Bellido

Evidence for single top at DØ
Boosted Decision Trees

Idea: recover events that fail criteria in cut-based analysis

- Find best simple cut in each node looking at 49 physics motivated variables
- Output: purity $N_s/(N_s+N_B)$ for each event. Signal is $t\bar{b}+tq\bar{b}$.
- Boosting: retrain 20 times to learn from misclassified events
- Most discriminant: $M(\text{all jets})$, $M(W,b_1)$, $\cos(b,\ell)_\text{top}$, $Q(\ell)\eta(\text{light-jet})$

Background fraction vs. efficiency

Find best simple cut in each node looking at 49 physics motivated variables

Output: purity $N_s/(N_s+N_B)$ for each event. Signal is $t\bar{b}+tq\bar{b}$.

Boosting: retrain 20 times to learn from misclassified events

Most discriminant: $M(\text{all jets})$, $M(W,b_1)$, $\cos(b,\ell)_\text{top}$, $Q(\ell)\eta(\text{light-jet})$

Arán García-Bellido Evidence for single top at DØ
Matrix Elements method

- Use all available kinematic information from a **fully differential cross-section calculation** ➔ See T. Gadfort talk in YSF session

- Calculate an event probability for signal and background hypothesis

\[P(\vec{x}) = \frac{1}{\sigma} \int f(q_1; Q) dq_1 f(q_2; Q) dq_2 \times |M(\vec{y})|^2 \phi(\vec{y}) dy \times W(\vec{x}, \vec{y}) \]

- Integrate over 4 independent variables: assume angles well measured, known masses, momentum and energy conservation

\[D_s(\vec{x}) = P(S|\vec{x}) = \frac{P_{\text{Signal}}(\vec{x})}{P_{\text{Signal}}(\vec{x}) + P_{\text{Background}}(\vec{x})} \]

- Analysis only uses 2&3 jet bins
- Wbg, Wcg, Wgg and Wbbg in P

Parton distribution functions CTEQ6

Differential cross section (LO ME from Madgraph)

Transfer Function: maps parton level (y) to reconstructed variables (x)

Arán Garcia-Bellido

Evidence for single top at DØ
Bayesian Neural Networks

A different sort of NN (http://www.cs.toronto.edu/radford/fbm.software.html):

- Instead of choosing one set of weights, find posterior probability density over all possible weights
- Averages over many networks weighted by the probability of each network given the training data
- Use 24 variables (subset of the DT variables) and train against sum of backgrounds

Advantages:
- Less prone to overfitting, because of Bayesian averaging
- Network structure less important: can use large networks!
- Optimized performance

Disadvantages:
- Computationally demanding!
Use ensemble testing to show analysis calibration

Use pool of MC events to draw events with bkgd. yields fluctuated according to uncertainties, reproducing the correlations between components introduced in the normalization to data

Randomly sample a Poisson distribution to simulate statistical fluctuations

Linear response, negligible bias

\[
\chi^2/\text{ndof} = 4.89/4
\]
\[
\text{Slope} = 1.07 \pm 0.03
\]
\[
\text{Intercept} = -0.12 \pm 0.10
\]

\[
\chi^2/\text{ndof} = 10.15/4
\]
\[
\text{Slope} = 1.04 \pm 0.02
\]
\[
\text{Intercept} = 0.27 \pm 0.10
\]

\[
\chi^2/\text{ndof} = 3.60/2
\]
\[
\text{Slope} = 0.99 \pm 0.05
\]
\[
\text{Intercept} = 0.31 \pm 0.15
\]
Cross check samples

Check description of the two main backgrounds

- “Soft” $W+$jets: 2 jets and H_T(lepton,MET,alljets) < 175 GeV
- “Hard” $W+$jets: 3,4 jets and H_T(lepton,MET,alljets) > 300 GeV
(summed) Discriminants output

Arán García-Bellido

Evidence for single top at DØ
Expected and observed results

<table>
<thead>
<tr>
<th>Method</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Trees</td>
<td>2.7$^{+1.6}_{-1.4}$</td>
<td>4.9\pm1.4</td>
</tr>
<tr>
<td>Matrix Elements</td>
<td>3.0$^{+1.8}_{-1.5}$</td>
<td>4.6$^{+1.8}_{-1.5}$</td>
</tr>
<tr>
<td>Bayesian NN</td>
<td>3.2$^{+2.0}_{-1.8}$</td>
<td>5.0\pm1.9</td>
</tr>
</tbody>
</table>

DT measures 3.4σ excess! Evidence for single top production!

Results are compatible with the SM at \sim1 std. dev.

![Graphs showing posterior probability density and pseudo-datasets](image)

Arán García-Bellido
First direct measurement of $|V_{tb}|$

- Once we have a cross section measurement, we can make the first direct measurement of $|V_{tb}|$
- Calculate posterior in $|V_{tb}|^2$: $\sigma \propto |V_{tb}|^2$
- Assume:
 - **SM top decay**: $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$
 - Pure V-A and CP conserving interaction

Additional theoretical errors are needed

top mass	13%	8.5%
scale	5.4%	4.0%
PDF	4.3%	10.0%
α_s	1.4%	0.01%

This measurement does not assume 3 generations or unitarity

Arán García-Bellido Evidence for single top at DØ
Combination of analyses

- Combine the three measurements with BLUE method
- Method requires to measure the correlations
- Used SM pseudo-datasets with systematics

\[
\rho = \begin{pmatrix}
1 & 0.57 & 0.51 & DT \\
0.57 & 1 & 0.45 & ME \\
0.51 & 0.45 & 1 & BNN \\
\end{pmatrix}
\]

Combined result: \(4.8 \pm 1.3\) pb ➔ Significance of 3.5 std. dev.
Conclusions

First evidence for single top quark production and direct measurement of $|V_{tb}|$

(hep-ex/0612052 submitted to PRL)

$$\sigma(s+t) = 4.8 \pm 1.3 \text{ pb}$$

$$3.5\sigma$$ significance!

$$|V_{tb}| > 0.68 @ 95\%\text{C.L.}$$

- Challenging analysis: small signal hidden in huge complex background
- Expand to searches of new phenomena
- We now have double the data to analyze!
Extra Slides

More information:

http://www-d0.fnal.gov/Run2Physics/top/public/fall06/singletop/
Signal and Background modeling

- Signal is modeled with CompHEP (effective NLO) + Pythia
- $W+\text{jets}$ and $tt\bar{b}$ shapes from Alpgen with MLM matching + Pythia
- $tt\bar{b}$ normalized to NNLO $\sigma = 6.8\pm1.2$ pb
- QCD from our selected data with non-isolated lepton
- Normalize $W+\text{jets}$ and QCD to data before tagging (SF ~ 1.4)
- Determine W_{bb} and W_{cc} fractions in $W+\text{jets}$ from zero-tagged data
- $W_{bb}+W_{cc}$ factor 1.50 ± 0.45 makes all distributions match data

Arán García-Bellido

Evidence for single top at DØ
Measuring the cross section

- We form a binned likelihood from the discriminant outputs.

- Probability to observe data distribution D, expecting y:

$$y = \alpha \mathcal{D} \sigma + \sum_{s=1}^{N} b_s = a \sigma + \sum_{s=1}^{N} b_s$$

signal \hspace{1cm} bkgd.

$$P(D|y) \equiv P(D|\sigma, a, b) = \prod_{i=1}^{\text{nbins}} P(D_i|y_i)$$

- And obtain a Bayesian posterior probability density as a function of the cross section:

$$Post(\sigma|D) \equiv P(\sigma|D) \propto \int_{a}^{b} \int_{b} P(D|\sigma, a, b) \text{Prior}(\sigma) \text{Prior}(a, b)$$

- Shape and normalization systematics treated as nuisance parameters.
- Correlations between uncertainties properly accounted for.
- Flat prior in signal cross section.

Arán García-Bellido
NN b-jet tagger

- NN trained on 7 input variables from SVT, JLIP and CSIP taggers
- Much improved performance!
 - Fake rate reduced by 1/3 for same b-efficiency relative to previous tagger
 - Smaller systematic uncertainty
- Tag Rate Functions (TRFs) in η, p_T and z-PV derived in data are applied to MC
- Our operating point:
 - b-jet efficiency: $\sim50%$
 - c-jet efficiency: $\sim10%$
 - Light-jet efficiency: $\sim0.5%$
Decision Trees: 49 variables

Object Kinematics
- $p_T(jet1)$
- $p_T(jet2)$
- $p_T(jet3)$
- $p_T(jet4)$
- $p_T(best1)$
- $p_T(notbest1)$
- $p_T(notbest2)$
- $p_T(tag1)$
- $p_T(untag1)$
- $p_T(untag2)$

Angular Correlations
- $\Delta R(jet1,jet2)$
- $\cos(best1, lepton)_{besttop}$
- $\cos(best1, notbest1)_{besttop}$
- $\cos(tag1, alljets)_{alljets}$
- $\cos(tag1, lepton)_{btaggedtop}$
- $\cos(jet1, alljets)_{alljets}$
- $\cos(jet1, lepton)_{btaggedtop}$
- $\cos(jet2, alljets)_{alljets}$
- $\cos(jet2, lepton)_{btaggedtop}$
- $\cos(lepton, Q(lepton) \times z)_{besttop}$
- $\cos(lepton, btaggedtop, btaggedtop_{CMframe})_{CMframe}$
- $\cos(notbest, alljets)_{alljets}$
- $\cos(notbest, lepton)_{besttop}$
- $\cos(untag1, alljets)_{alljets}$
- $\cos(untag1, lepton)_{btaggedtop}$

Event Kinematics
- Aplanarity(alljets, W)
- $M(W,best1)$ (“best” top mass)
- $M(W,tag1)$ (“b-tagged” top mass)
- $H_T(alljets)$
- $H_T(alljets-best1)$
- $H_T(alljets-tag1)$
- $H_T(alljets,W)$
- $H_T(jet1,jet2)$
- $H_T(jet1,jet2,W)$
- $M(alljets)$
- $M(alljets-best1)$
- $M(alljets-tag1)$
- $M(jet1,jet2)$
- $M(jet1,jet2,W)$
- $M_T(jet1,jet2)$
- $M_T(W)$
- Missing E_T
- $p_T(alljets-best1)$
- $p_T(alljets-tag1)$
- $p_T(jet1,jet2)$
- $Q(lepton) \times \eta(untag1)$
- \sqrt{s}
- Sphericity(alljets,W)

Most discrimination:
- $M(alljets)$
- $M(W,tag1)$
- $\cos(tag1,lepton)_{btaggedtop}$
- $Q(lepton) \times \eta(untag1)$

- Adding variables does not degrade performance
- Tested shorter lists, lose some sensitivity
- Same list used for all channels
\[\left(\begin{array}{c} d' \\ s' \\ b' \end{array} \right) = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right) \left(\begin{array}{c} d \\ s \\ b \end{array} \right) \]

Most general Wtb vertex:

\[
\Gamma_{t\bar{b}W}^\mu = -\frac{g}{\sqrt{2}} V_{tb} \left\{ \gamma^\mu \left[f_1^L P_L + f_1^R P_R \right] - i \frac{\sigma^{\mu\nu}}{M_W} (p_t - p_b)_\nu \left[f_2^L P_L + f_2^R P_R \right] \right\}
\]

Assume:

- **SM top decay:** \(V_{td}^2 + V_{ts}^2 \ll V_{tb}^2 \)
- Pure V-A interaction: \(f_1^R = 0 \)
- CP conservation: \(f_2^L = f_2^R = 0 \)

We are effectively measuring the **strength of the V-A coupling:** \(|V_{tb} f_1^L| \), which can be >1