Measurement of the $t\bar{t}$ Production Cross Section and Spin Correlation in the Dileptonic Decay Channel

Jens Konrath for the DØ Collaboration

Outline

- Top production & decay
- Event selection
- Instrumental & SM Backgrounds
- Cross section measurements
- Kinematic reconstruction of dilepton events
- Spin correlation
At the Tevatron, top quarks are produced mainly in pairs via the strong interaction: 85% $q\bar{q}$, 15% gg at LO and $\sqrt{s} = 1.96$ TeV.

- Decay channels defined by W decays
- Branching ratios (τ only included as $\tau \rightarrow e, \mu$)
 - All-hadronic: 44%
 - Lepton+Jets: 34%
 - Dilepton: 1% ee and $\mu\mu$, 2% $e\mu$

- Dilepton final state: 2 leptons, 2 jets and E_T
- Small BR, but small standard model backgrounds

Top Pair Decay Channels
Top Production Cross-section

- Important test of QCD at high p_T
 - Test QCD NLO prediction
 - Higher x-section if resonant top production or non-SM production
- Measurements of different decay channels
 - Exotic top decays modify contributions to different channels
- Measurements with different methods
 - Kinematic analyses vs. B-tagging analyses show discrepancies if $t\rightarrow Wb$ is different from SM
- Sample verification for properties measurements
Event Selection

\[\geq 2 \text{ jets, } p_T > 20 \text{ GeV} \]
\[E_T > 35 \text{ GeV} \]
\[\geq 2 \text{ jets, } p_T > 20 \text{ GeV} \]

isolated leptons passing quality cuts, \(p_T > 15 \text{ GeV} \)

isolated lepton passing quality cuts, \(p_T > 15 \text{ GeV} \)
Background Processes

- **ee channel:**
 - $Z \rightarrow ee + \geq 2$jets + \mathbb{E}_T, (WW, WZ, ZZ)\rightarrowee + ≥ 2jets + \mathbb{E}_T
 - Veto events with $M_{ee} \leq 15$ GeV and 80 GeV < M_{ee} < 100 GeV
 - Cut on \mathbb{E}_T depending on M_{ee}

- **eμ channel:**
 - $Z \rightarrow \tau\tau + \geq 2$jets \rightarroweμ + ≥ 2jets + \mathbb{E}_T, (WW,WZ)\rightarroweμ + ≥ 2jets + \mathbb{E}_T
 - Cut on $H_T = p_T$(leading lepton) + p_T(2 leading jets)

- **μ\μ channel:**
 - $Z \rightarrow \mu\mu + \geq 2$jets + \mathbb{E}_T, (WW, WZ, ZZ)\rightarrow\muμ + ≥ 2jets + \mathbb{E}_T
 - χ^2 test of $Z \rightarrow \mu\mu$ hypothesis
 - Contour cut in the \mathbb{E}_T vs. $\Delta\phi$(leading μ, \mathbb{E}_T) plane
Instrumental Backgrounds

- **Fake electron background (ee, e\(\mu\))**: Jet misidentified as an electron, or a non-isolated electron (b-decay)
 Estimation of background: Fit to electron likelihood

- **Fake muon background (e\(\mu\), \(\mu\mu\))**: Non-isolated muon misidentified as being isolated
 Background estimated from data

- **Fake \(E_T\) background (ee)**:
 \(Z/\gamma^* + \text{jets events do not produce real } E_T \text{ (no } \nu\); fake \(E_T\) can appear due to instrumental effects
 Estimated from \(\gamma + \text{jets sample} (E_T \text{ fake rate}) \text{ and } Z/\gamma^* \rightarrow \text{ee selection in low } E_T \text{ region (reversed } E_T \text{ cut)}

Jens-Peter Konrath, Universität Freiburg
Event Yields

- Signal expectation for $\sigma_{tt} = 7$ pb
- Signal efficiency for $m_{\text{Top}} = 175$ GeV

<table>
<thead>
<tr>
<th>Category</th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$ (≥ 2 jets)</th>
<th>$e\mu$ (1 jet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>integrated luminosity (pb$^{-1}$)</td>
<td>1036</td>
<td>1046</td>
<td>1046</td>
<td>1046</td>
</tr>
<tr>
<td>Z/γ^*</td>
<td>$2.4^{+0.4}_{-0.4}$</td>
<td>$2.7^{+0.4}_{-0.4}$</td>
<td>$3.6^{+0.7}_{-0.8}$</td>
<td>$5.5^{+0.8}_{-0.8}$</td>
</tr>
<tr>
<td>WW/WZ and other MC</td>
<td>$0.4^{+0.2}_{-0.2}$</td>
<td>$0.5^{+0.1}_{-0.1}$</td>
<td>$1.4^{+0.6}_{-0.6}$</td>
<td>$3.4^{+1.4}_{-1.4}$</td>
</tr>
<tr>
<td>Instrumental background</td>
<td>$0.2^{+0.2}_{-0.1}$</td>
<td>$0.4^{+0.2}_{-0.2}$</td>
<td>$1.8^{+0.6}_{-0.6}$</td>
<td>$1.2^{+0.4}_{-0.4}$</td>
</tr>
<tr>
<td>Total background</td>
<td>$3.0^{+0.5}_{-0.5}$</td>
<td>$3.6^{+0.5}_{-0.5}$</td>
<td>$6.7^{+1.2}_{-1.2}$</td>
<td>$10.2^{+1.8}_{-1.7}$</td>
</tr>
<tr>
<td>Signal efficiency (%)</td>
<td>$8.3^{+1.2}_{-1.2}$</td>
<td>$5.1^{+0.4}_{-0.4}$</td>
<td>$12.4^{+0.9}_{-1.0}$</td>
<td>$3.1^{+0.3}_{-0.3}$</td>
</tr>
<tr>
<td>Expected signal</td>
<td>$9.5^{+1.4}_{-1.4}$</td>
<td>$5.8^{+0.5}_{-0.5}$</td>
<td>$28.6^{+2.1}_{-2.4}$</td>
<td>$7.1^{+0.6}_{-0.7}$</td>
</tr>
<tr>
<td>Total Sig. + Bkg.</td>
<td>$12.5^{+1.5}_{-1.5}$</td>
<td>$9.4^{+0.7}_{-0.7}$</td>
<td>$35.3^{+2.8}_{-3.2}$</td>
<td>$17.2^{+2.0}_{-2.1}$</td>
</tr>
<tr>
<td>Selected events</td>
<td>16</td>
<td>9</td>
<td>32</td>
<td>16</td>
</tr>
</tbody>
</table>

$$
\sigma(p \bar{p} \rightarrow t \bar{t}) = \frac{N_{\text{observed}} - N_{\text{background}}}{A_{\text{tot}} \int L dt}
$$
Cross Section Results

\[ee : \quad \sigma_{\bar{t}t} = 9.6^{+3.2}_{-2.7} (\text{stat})^{+1.9}_{-1.6} (\text{syst}) \pm 0.6 (\text{lumi}) \text{ pb} \]

\[e\mu : \quad \sigma_{\bar{t}t} = 6.1^{+1.4}_{-1.2} (\text{stat})^{+0.8}_{-0.7} (\text{syst}) \pm 0.4 (\text{lumi}) \text{ pb} \]

\[\mu\mu : \quad \sigma_{\bar{t}t} = 6.5^{+4.0}_{-3.2} (\text{stat})^{+1.1}_{-0.9} (\text{syst}) \pm 0.4 (\text{lumi}) \text{ pb} \]

\[\text{dilepton} : \quad \sigma_{\bar{t}t} = 6.8^{+1.2}_{-1.1} (\text{stat})^{+0.9}_{-0.8} (\text{syst}) \pm 0.4 (\text{lumi}) \text{ pb} \]
After Final Selection Cuts
Systematic Uncertainties

- Jet energy scale, MC normalization and lepton identification give largest contribution

<table>
<thead>
<tr>
<th>Systematic Uncertainty Source (pb)</th>
<th>$\ell\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy calibration</td>
<td>$+0.3-0.3$</td>
</tr>
<tr>
<td>Jet identification</td>
<td>$+0.1-0.1$</td>
</tr>
<tr>
<td>Primary vertex identification</td>
<td>$+0.3-0.2$</td>
</tr>
<tr>
<td>Muon identification</td>
<td>$+0.2-0.2$</td>
</tr>
<tr>
<td>Electron identification</td>
<td>$+0.6-0.5$</td>
</tr>
<tr>
<td>Trigger</td>
<td>$+0.2-0.2$</td>
</tr>
<tr>
<td>Fake background</td>
<td>$+0.2-0.2$</td>
</tr>
<tr>
<td>MC normalization</td>
<td>$+0.3-0.3$</td>
</tr>
<tr>
<td>Other</td>
<td>$+0.2-0.2$</td>
</tr>
<tr>
<td>Total</td>
<td>$+0.9-0.8$</td>
</tr>
</tbody>
</table>
Spin Correlation

- Top has a very short lifetime: $\tau \approx 10^{-25}$ s \Rightarrow decay before hadronisation
- Top spin is not diluted by hadronisation but passed on to decay products

- Allows to test top production and decay:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d (\cos \theta_i) d (\cos \theta_\perp)} = \frac{1 + \kappa \cos \theta_i \cos \theta_\perp}{4}$$

- κ is 0.806 at NLO for the Tevatron using the beamline as quantisation axis

Asymmetry

$$\kappa = \frac{1}{4 \sigma} \left(\int_0^1 \frac{d \sigma}{d (\cos \theta_i \cos \theta_\perp)} d (\cos \theta_i \cos \theta_\perp) - \int_{-1}^0 \frac{d \sigma}{d (\cos \theta_i \cos \theta_\perp)} d (\cos \theta_i \cos \theta_\perp) \right)$$
Kinematic Reconstruction of Dilepton Events

- Neutrino four-vectors are unknown ⇒ underconstrained system of equations
- Zero, two or four solutions per event
- Twofold ambiguity: b (anti-)quark \Leftrightarrow jet assignment
Estimating the Sensitivity

\[Sensitivity = 4 \frac{\text{Asymmetry}(\kappa = 1) - \text{Asymmetry}(\kappa = 0)}{\sigma_{\text{Asymmetry}}(\kappa = 0)} \]

\(\kappa = 1 \)
A = 0.05
\(\kappa = 0 \)
A = -0.04
RMS = 0.37

Sensitivity = 0.26

Expected 1\(\sigma \) stat. Error: 1/Sensitivity / \(\sqrt{N} \)

50 dilepton Events: \(\delta \kappa = 0.55 \)
Summary & Outlook

- Dilepton cross sections have been measured with the full Run Ila dataset
 \[\sigma_{t\bar{t}} = 6.8^{+1.2}_{-1.1} \text{ (stat)} ^{+0.9}_{-0.8} \text{ (syst)} \pm 0.4 \text{ (lumi)} \text{ pb} \]

- The dilepton event selections are ready for top properties analyses
- Finalize cross section analyses for publication
- Improve kinematic reconstruction & measure spin correlation
Backup Slides
Dimuon Selection

- Contour cut: E_T vs. $\Delta \phi$ (leading E_T)
 - 2 neutrinos \Rightarrow a first cut is set: $E_T > 35$ GeV
 - To prevent from misreconstructed muon momenta: $\Delta \phi$ (leading E_T) $< 175^\circ$
 - To further reduce background, E_T cut is increased for $\Delta \phi$ (leading E_T) close to 0° or 180°
Z Rejection

- Z\(\rightarrow\)ll is the main background in the dileptonic decay channels
- Cut on \(M_{ee}\) to reject \(Z\rightarrow\) ee
- \(\chi^2\) test of \(Z\rightarrow\mu\mu\) hypothesis performs better than dimuon invariant mass cut
Object Selection

- **Leptons:**
 - Loose electrons: Track matched calorimeter cluster with shower shape & isolation cuts, $p_T > 15$ GeV, $|\eta|<1.1$ or $1.4<|\eta|<3.6$.
 - Tight electrons: additional likelihood cut
 - Muons: Cosmic veto, central track match, isolation cuts, $p_T > 15$ GeV, $|\eta|<2.0$

- **Primary Vertex:** $|z_{PV}|<60$ cm, $n_{Tracks} \geq 3$, $\Delta z(PV, \text{lepton}) < 1$ cm

- **Jets:** Apply JES, standard jet ID, no overlap with EM clusters

- **E_T:** Propagate JES corrections and muon p_T to E_T
Dielectron Selection

- Luminosity: 1.07 fb$^{-1}$
- Analysis cuts:
 - 2 tight electrons
 - \geq 2 jets
 - E_T depends on M_{ee}: $E_T > 40$ GeV for $15 \text{ GeV} < M_{ee} < 80 \text{ GeV}$ and $E_T > 35$ GeV for $M_{ee} > 100 \text{ GeV}$
 - Sphericity > 0.15
- Trigger: ORing of all dielectron triggers; Signal efficiency $\approx 94\%$
Electron-Muon Selection

- Luminosity: 1.04 fb^{-1}
- Analysis cuts:
 - Exactly one loose electron
 - ≥ 1 medium muon
 - No common track between the electron and any loose track matched muons
 - ≥ 2 jets
 - $\Delta R(\text{selected } e, \text{ jet}) > 0.5$ and $\Delta R(\text{selected } \mu, \text{ jet}) > 0.5$
 - $H_T = p_T(\text{leading lepton}) + p_T(2 \text{ leading jets}) > 115$
- Trigger: Oring of e triggers + matching online/offline objects; Signal Efficiency $\approx 86\%$
Dimuon Selection

- Luminosity: 1.05 fb$^{-1}$
- Analysis cuts:
 - Veto any top_loose electron
 - ≥ 2 tight isolated muons
 - ≥ 2 jets
 - $M_{\mu\mu} > 30$ GeV
 - Contour cut in the $E_T - \Delta \phi$ (leading E_T) plane
 - Z fitter $\chi^2 > 8$
- Trigger: Oring of all single muon triggers & matching reco / trigger objects (tracks, muons); Signal efficiency $\approx 88\%$
After All Cuts: Jet & Myon p_T

p_T of leading jet

p_T of second jet

p_T of leading muon

p_T of second muon
After All Cuts: E_T, Invariant Mass, Z fit χ^2, $\Delta\phi$(leading μ, E_T)