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Abstract

We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb−1 of data collected by the DØ
experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both
methods yield consistent results using ensemble tests of events generated with the DØ Monte Carlo simulation. We combine the results from the
two methods to obtain a top quark mass mt = 178.1 ± 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.
 2007 Elsevier B.V. All rights reserved.

PACS: 14.65.Ha

The top quark mass is an important parameter in Standard
Model [1] predictions. For example, loops involving top quarks
provide the dominant radiative corrections to the value of the
W boson mass. Precise measurements of the W boson and top
quark masses provide a constraint on the Higgs boson mass [2].

At the Tevatron, top and antitop quarks are predominantly
pair-produced. Top quarks decay to a W boson and a b quark.
If the W bosons from the top and the antitop quarks both de-
cay leptonically (to eν or µν) the final state consists of two
charged leptons, missing transverse momentum (/pT ) from the

* Corresponding author.
E-mail address: heintz@bu.edu (U. Heintz).

1 On leave from IEP SAS Kosice, Slovakia.
2 Visitor from Helsinki Institute of Physics, Helsinki, Finland.

undetected neutrinos, and two jets from the fragmentation of the
b quarks. We call this the dilepton channel. It has a relatively
small branching fraction (≈ 5%) but very low backgrounds.
The measurement of the top quark mass in the dilepton channel
is statistically limited. It provides an independent measurement
of the top quark mass that can be compared with measurements
in other t t̄ decay channels, and a consistency check on the t t̄

hypothesis in the dilepton channel.
The DØ detector is a multipurpose collider detector [3]. The

central tracker employs silicon microstrips close to the beam
and concentric cylinders covered with scintillating fibers in a
2 T axial magnetic field. The liquid-argon/uranium calorime-
ter is divided into a central section covering pseudorapidity
|η| ! 1.1 and two endcap calorimeters extending coverage to
|η| ! 4.2 [4], where η = − ln[tan(θ/2)] and θ is the polar

mailto:heintz@bu.edu
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angle with respect to the proton beam direction. The muon
spectrometer consists of a layer of tracking detectors and scin-
tillation trigger counters between the calorimeter and 1.8 T
toroidal iron magnets, followed by two similar layers outside
the toroids.

We present here two measurements that were carried out in-
dependently by two groups of analyzers. Both groups chose
to optimize their analyses in different ways, one using a rela-
tively loose event selection, the other taking advantage of the
low background in top–antitop samples selected using tagging
of b-quark jets. In the end, we combine the results from both
analyses taking into account the correlations between the re-
sults.

The event selection is based on the measurement of the cross
section for t t̄ -production in the dilepton channel [5] with a few
modifications. The analyses use about 370 pb−1 of data from
pp̄ collisions at

√
s = 1.96 TeV collected with the DØ detector

at the Fermilab Tevatron collider.
We select events with two oppositely charged, isolated lep-

tons (e or µ) with transverse momentum pT > 15 GeV and
at least two jets with pT > 20 GeV. Electron candidates are
isolated clusters of energy in the electromagnetic section of
the calorimeter that agree in their profile with that expected
from electromagnetic showers, based on Monte Carlo simula-
tions, and that are matched with a charged particle track re-
constructed in the central tracker. Electrons must be either in
the central calorimeter (pseudorapidity |η| < 1.1) or in the for-
ward calorimeter (1.5 < |η| < 2.5). Muons are reconstructed
as tracks in the muon spectrometer with |η| < 2, matched to a
charged particle track in the central tracker. They must be iso-
lated from other activity in the calorimeter and in the tracker.
Jets are reconstructed with the improved legacy cone algo-
rithm [6] with cone size $R =

√
$η2 + $φ2 = 0.5 and are

restricted to |η| < 2.5. All jets were corrected using the stan-
dard DØ jet energy scale corrections [7].

We distinguish eµ, ee, and µµ events. For eµ events we
require HT > 122 GeV, where HT is the scalar sum of the
larger of the two lepton pT values and the pT values of the
leading two jets. For ee events we require sphericity S > 0.15
and missing transverse momentum /pT > 35–40 GeV, depend-
ing on the dielectron invariant mass m(ee), and we reject events
with 80 < m(ee) < 100 GeV to reduce the background from
Z → ee decays. Sphericity is defined as 1.5 times the sum of
the first two eigenvalues of the normalized momentum tensor
calculated using all electrons, muons and jets in the event.

For µµ events we require inconsistency with the Z → µµ

hypothesis based on the χ2 of a kinematic fit. In some Z →
µµ events a muon momentum is significantly mismeasured.
These events are not consistent kinematically with Z decays
and they are therefore not eliminated by the kinematic fit. The
mismeasured muon momentum gives rise to pT imbalance in
the muon direction. We therefore require /pT > 35 GeV if the
azimuthal angle between the leading muon and the direction
of /pT , $φ(/pT ,µ) < 175◦. We tighten the /pT requirement to
85 GeV if the leading muon and the /pT are approximately
collinear in the transverse direction.

Table 1
Expected and observed dilepton event yields for t t̄ production with mt =
175 GeV and the backgrounds from WW and Z production based on Monte
Carlo, and from misidentified leptons (mis-id) based on collider data

Sample t t̄ WW Z Mis-id Total Data

'' no-tag 7.2 1.1 2.6 2.2 13.2
(+2.8
−2.1

)
12

'' b-tag 9.9 0.05 0.12 0.09 10.1 ± 0.9 14
'' tight 15.8 1.1 2.4 0.5 19.8 ± 0.6 21
' + track 6.3 0.01 1.8 0.4 8.5 ± 0.3 9

For our mass measurements we use the following samples
of events. The “b-tag” sample consists of events that have at
least one jet that contains a secondary vertex tag with transverse
decay length significance Λxy > 7 [8]. This sample has very
low backgrounds. The “no-tag” sample consists of events that
have no such secondary vertex tags. The 26 events in these two
samples consist of 20 eµ events, 5 ee, and 1 µµ event.

The “tight” sample does not use the b-tagging information.
It contains all ee and µµ events that are in either the b-tag or
the no-tag samples. For eµ events the tight sample requires the
more restrictive cuts HT > 140 GeV, /pT > 25 GeV and tighter
electron identification cuts to reduce backgrounds. To increase
the acceptance for dilepton decays, we also analyze a sample of
events that requires only one well-identified lepton (e or µ) with
pT > 15 GeV and an isolated track with pT > 15 GeV instead
of the second identified lepton. The events must also have at
least one jet with a secondary vertex tag, and /pT > 15–35 GeV,
depending on lepton flavor and the invariant mass of the lep-
ton + track system. We call this the “' + track” sample. Events
with two well-identified leptons are vetoed from this sample
so that there is no overlap between the ' + track sample and
the other dilepton samples. There are 6 e + track events and
3 µ + track events in this sample. The observed event yields for
each of the data samples are listed in Table 1.

Monte Carlo samples are generated for nineteen values of
the top quark mass between 120 and 230 GeV. The simula-
tion uses ALPGEN [9] with CTEQ5L parton distribution func-
tions [10] as the event generator, PYTHIA [11] for fragmentation
and decay, and GEANT [12] for the detector simulation. No
parton-shower matching algorithm was used in the generation
of these event samples. We simulate diboson production with
ALPGEN and PYTHIA and Z/γ ∗ → ττ processes with PYTHIA.
The number of expected events are determined by applying
the selection cuts to these Monte Carlo event samples. These
samples are corrected for lepton, jet and b-tagging efficiencies
determined from collider data.

The tagging efficiency for b-jets is measured in a data sam-
ple enhanced in heavy flavor jets by requiring at least one jet
with a muon in each event. Monte Carlo based corrections are
applied to correct for sample biases. The probability to tag a
light-flavor jet is measured from collider data using events with
a secondary vertex with negative decay length, meaning that the
tracks forming the secondary vertex meet in the hemisphere that
is on the opposite side of the primary vertex from the jet.

The energy of Monte Carlo jets is increased by 3.4% in addi-
tion to the nominal jet energy scale corrections. This factor was
determined by fitting the top mass and the jet energy scale in



12 DØ Collaboration / Physics Letters B 655 (2007) 7–14

lepton + jets events and brings the invariant mass distribution
of the two jets from the W boson decay in lepton + jets Monte
Carlo events in agreement with that observed in the data.

Event yield normalizations for Z → ee and Z → µµ are
obtained from data. The number of events with misidentified
leptons is dominated by jets misidentified as electrons. We con-
struct a likelihood discriminant to distinguish electrons from
misidentified jets based on the shape of the energy cluster in
the calorimeter and the on the matched track. We determine the
contamination by misidentified jets in our sample by fitting the
distribution of this likelihood discriminant before we cut on it.
Expected yields for signal and background are given in Table 1.

We use only the two jets with the highest pT in this analysis.
We assign these two jets to the b and b̄ quarks from the decay
of the t and t̄ quarks. If we assume a value mt for the top quark
mass, we can determine the pairs of t and t̄ momenta that are
consistent with the observed lepton and jet momenta and /pT .
A solution refers to a pair of top–antitop quark momenta that
is consistent with the observed event. For each assignment of
observed momenta to the final state particles and for each hy-
pothesized value of mt , there may be up to four solutions. We
assign a weight function w(mt) to each solution, as described
below. Events for which no solution exists are rejected from our
data and Monte Carlo event samples. The event yields in Table 1
include this additional selection requirement. Two events from
the collider data are rejected with this requirement.

We consider each of the two possible assignments of the two
jets to the b and b̄ quarks. We account for detector resolutions
by repeating the weight calculation with input values for the
lepton and jet momenta that are drawn from the detector res-
olution functions for objects with the observed momenta. We
refer to this procedure as resolution sampling. For each event
we obtain a weight W(mt) = 1/N × ∑N

j=1
∑n

i=1 w(mt)ij by
summing over all n solutions and averaging over N resolution
samples. This weight characterizes the likelihood that the event
is produced in the decay of a t t̄ pair as a function of mt .

The techniques we use are similar to those used by the DØ
Collaboration to measure the top quark mass in the dilepton
channel using Run I data [13]. The data are analyzed using two
different methods that differ in the event samples that they are
based on, in the calculation of the event weight, and in the al-
gorithm that compares the weights for the observed events to
Monte Carlo predictions to extract the top quark mass.

The matrix-element weighting technique (MWT) follows
the ideas proposed by Dalitz and Goldstein [14] and Kondo
[15]. The solution weight is

w(mt) = f (x)f (x̄)p(E∗
' |mt)p(E∗

'̄
|mt),

where f (x) is the parton distribution function of the proton
and x (x̄) is the momentum fraction carried by the initial
(anti)quark. The quantity p(E∗

' |mt) is the probability that the
lepton has energy E∗

' in the top quark rest frame for the hy-
pothesized top quark mass mt .

For each event we use the value of the hypothesized top
quark mass mpeak at which W(mt) reaches its maximum as the
estimator for the mass of the top quark. We generate probability
density functions of mpeak for a range of top quark masses using

Monte Carlo simulations. We call these distributions templates.
To compute the contribution of backgrounds to the templates,
we use Z → ττ and WW Monte Carlo events. Backgrounds
arising from detector signals that are misidentified as electrons
or muons are estimated from collider data samples.

We compare the distribution of mpeak for the observed events
to these templates using a binned maximum likelihood fit. The
likelihood is calculated as

L(mt) =
nbin∏

i=1

[
nssi(mt ) + nbbi

ns + nb

]ni

,

where ni is the number of data events observed in bin i, si(mt )

is the normalized signal template contents for bin i at top quark
mass mt , bi is the normalized background template contents
for bin i. The product runs over all nbin bins. The background
template consists of events from all background sources added
in the expected relative proportions. The signal-to-background
fraction is fixed to ns/nb with the numbers of signal and back-
ground events (ns , nb) taken from Table 1.

To calibrate the performance of our method, we generate a
large number of simulated experiments for several input top
quark mass values. We refer to each of these experiments as
an ensemble. Each ensemble consists of as many events of each
type as we have in our collider data sample. A given event is
taken from the signal and background samples with probabil-
ities that correspond to the fraction of events expected from
each sample. We use a quadratic function of mt to fit the − lnL

points to thirteen mass points centered on the point with the
smallest value of − lnL. The distribution of measured top quark
mass values from the ensemble fits gives an estimate of the par-
ent distribution of our measurement. The ensemble test results
indicate that the measured mass tracks the input mass with an
offset of 1.9 ± 0.8 GeV, which we correct for in the final result.

In general, the tails of the likelihood distribution for an en-
semble are not well approximated by a Gaussian. Thus it is
necessary to restrict the range of mass points that is included
in the fit to points near the observed minimum in − lnL. For
small data samples, however, there is a substantial statistical
uncertainty in the computed likelihood values which can be re-
duced by increasing the number of mass points used in the fit.
Thus the range of mass points that are included in the likeli-
hood fit must be optimized for the observed data sample size to
obtain the best possible agreement between measured top quark
mass and input top quark mass. This was done for both analyses
based on Monte Carlo ensembles that contain exactly as many
events as we observe in the data.

The MWT analysis uses the no-tag and b-tag samples
of events. Separating out the very-low-background b-tagged
events improves the precision of the result. The analysis is
performed with separate templates for ee, eµ, and µµ events
and separate signal-to-background fractions for events with-
out a b-tag and " 1 b-tags. The maximum of the joint like-
lihood for all events, shown in Fig. 1, corresponds to mt =
176.2 ± 9.2(stat) GeV after the offset correction. Fig. 2 shows
the distribution of mpeak from collider data compared to the sum
of Monte Carlo templates with mt = 180 GeV.
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Fig. 1. Joint likelihoods from the MWT analysis (closed circles) and the νWT
analysis (open circles). The minima of the likelihood curves do not include the
correction for the offset in the response.

Fig. 2. Distribution of mpeak from the MWT analysis (circles) compared to the
sum of Monte Carlo templates for the no-tag and b-tag channels and all lepton
flavors for mt = 180 GeV (open histogram). The shaded histogram indicates
the background contribution.

The neutrino weighting technique (νWT) ignores the mea-
sured /pT in reconstructing the event. Instead we assume a rep-
resentative range of values for the pseudorapidities of the two
neutrinos and the solution weight

w(mt) = 1
Nη

Nη∑

i=1

exp
[−(/pxi − /px)

2

2σ 2
x

]
exp

[−(/pyi
− /py)

2

2σ 2
y

]

characterizes the consistency of the resulting solutions with the
observed /pT . The sum is over the Nη steps of neutrino rapidity
values, /pxi and /pyi

are the x and y components of the sum of
the neutrino momenta computed for step i, and σx and σy are
the measurement resolutions for /px and /py . We then normal-
ize the event weight W(mt) over the range 80 < mt < 330 GeV
and integrate it over ten bins in mt . Every event is thus charac-
terized by a 9-component vector (W = (W1, . . . ,W9) (the 10th
bin is fixed by the first nine and the normalization condition).
We compare the vectors from the collider data events to sets of
N Monte Carlo events generated with different values of mt by

Table 2
Summary of dilepton mass measurements

MWT νWT Combined

Top quark mass 176.2 179.5 178.1 GeV

Statistical uncertainty 9.2 7.4 6.7 GeV
Systematic uncertainty 3.9 5.6 4.8 GeV

Jet energy scale 3.6 4.8 4.3 GeV
Parton distribution functions 0.9 0.7 0.8 GeV
Gluon radiation 0.8 2.0 1.5 GeV
Background 0.2 1.4 0.9 GeV
Heavy flavor content – 0.6 0.3 GeV
Monte Carlo statistics 0.8 1.0 0.9 GeV
Jet resolution – 0.6 0.3 GeV
Muon resolution – 0.4 0.2 GeV

Total uncertainty 10.0 9.3 8.2 GeV

computing the signal probability

fs( (W |mt) = 1
N

N∑

j=1

9∏

i=1

exp[−(Wi − WMC
ij )2/2h2]

∫ 1
0 exp[−(W ′ − WMC

ij )2/2h2]dW ′
,

where (WMC
j is the vector of weights from Monte Carlo event j .

The value of the resolution parameter h is optimized using en-
semble tests based on simulated events to give the best agree-
ment between input mass and measured mass. We compute a
similar probability fb( (W) for backgrounds and combine them
in the likelihood

L(mt , n̄b, n) = G(nb − n̄b,σ )P (ns + nb,n)

×
n∏

i=1

[
nsfs( (Wi |mt) + nbfb( (Wi)

ns + nb

]
,

which we optimize with respect to mt , the number of signal
events ns , and the number of background events nb. G is a
Gaussian constraint on the difference between nb and the ex-
pected number of background events n̄b, and P is a Poisson
constraint on ns + nb to the number of events n observed in
data.

The νWT analysis uses the tight sample and the ' + track
sample. The analysis is performed with separate templates for
ee, eµ, and µµ events in the tight sample and the two lepton
flavors in the ' + track sample. We fit the − lnL points for val-
ues of mt within 20 GeV of the point with the smallest value of
− lnL with a quadratic function of mt . The performance of the
νWT algorithm is checked using ensemble tests as described
for the MWT algorithm. The average measured values of mt

track the input values with an offset of 1.7 ± 0.2 GeV. For the
νWT analysis, the maximum of the joint likelihood of all events
(Fig. 1) corresponds to mt = 179.5 ± 7.4(stat) GeV after the
offset correction.

We also use ensemble tests to study the size of systematic
uncertainties (see Table 2). By far the largest systematic uncer-
tainty originates from the uncertainty in the calibration of the
jet energy scale of 4.1%. We determine the effect of the uncer-
tainty on the measurement by generating ensemble tests with
the jet energy scale increased and decreased by one standard
deviation.
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We estimate the sensitivity of the result to uncertainties in
the parton distribution functions by analyzing ensembles gener-
ated with a range of available parton distribution function sets.
The next to largest uncertainty originates from the modeling of
gluon radiation in the Monte Carlo. Gluon radiation can give
rise to additional jets in the event. In the data about one third of
the events have more than two jets. The two analyses used dif-
ferent procedures to estimate this effect. For the νWT analysis,
events with three reconstructed jets from t t̄ + 1 parton events
generated with ALPGEN were analyzed in ensemble tests with
templates derived from t t̄ events with only two jets and the
difference in reconstructed top quark mass was applied as an
uncertainty to the fraction of events with more than two jets. In
the MWT analysis the fraction of events with only two jets was
varied in ensemble tests within the range that is consistent with
the jet multiplicity spectrum observed in the data and analyzed
with the nominal templates. The observed variation in the result
was applied as systematic error.

We estimate the effect of uncertainties in the shape of the
background distributions to determine the background uncer-
tainty. For the MWT analysis we also perform tests with en-
sembles in which we varied the background fraction, which
was fixed in the mass fit, by its uncertainty. For the ' + track
sample, the heavy flavor content in the background is a signif-
icant source of uncertainty. This only contributed to the νWT
analysis. The finite size of the Monte Carlo samples limits the
statistical precision with which we can extract the top quark
mass. This is accounted for in the Monte Carlo statistics un-
certainty. Finally, we generated ensembles with varied jet and
muon momentum resolutions to estimate the effect of their un-
certainties. The resulting uncertainties for the νWT analysis are
quoted in Table 2. The effect on the result of the MWT analysis
was negligible.

We follow the method for combining correlated measure-
ments from Ref. [16] in combining the results from the MWT
and νWT analyses. We determine the statistical correlation be-
tween the two measurements using ensemble tests. The corre-
lation factor between the two analyses is 0.35. The systematic
uncertainties from each source in Table 2 are taken to be com-
pletely correlated between the two analyses. The results of the
combination are also listed in Table 2.

In conclusion, we measure the top quark mass in the dilepton
channel. We obtain mt = 178.1 ± 6.7(stat) ± 4.8(syst) GeV as
our best estimate of the top quark mass. This is in good agree-
ment with the world average mt = 172.5±2.3 GeV [17], based
on Run I and Run II data collected by the CDF and DØ Collab-
orations.
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