D0-Grid Technology review

Introduction

This document is intended to give background information on current Grid-enabling technologies that may be useful in the construction of the D0 Grid. Those discussed are wide-ranging so as not to presume a particular architecture. Together with the use-cases and further detailed technology appraisal, this document will help in defining an architecture. Included for each is: -

· Broad functionality, both existing and planned

· Requirements and inter-dependencies

· Committed users

· Possible Grid-enabling extensions.

1Introduction

2D0 Metacomputing solutions

2D0RunII Releases

2Runtime Environment

2SAM

2Replica Catalogue

2Data Definition.

2Information

2Stations

3Optimiser for MSS

3‘Standard’ Grid Elemental Technologies

3GSI - Globus Security Infrastructure

3GridFTP

4MDS – Metacomputing Directory Service

4MDS - Directory Update Issues

5MDS – Persistency Issues

5RSL – Resource Specification Language

5GRAM – Global Resource Allocation Manager

5GASS – Global Access to Secondary Storage

5Condor ClassAds

5Condor-G

6Other Grid higher-level Services

6European DataGrid

6Resource Broker

6Job Submission Server

6Information Service

6Logging Service

6Replica Catalogue

6Dynamic User Accounts

7GDMP – Grid Data Mirroring Package

7MOP – Monte Carlo Production

D0 Metacomputing solutions

D0RunII Releases

Allows easy and assured distribution of weekly code updates to all D0 workstations. Each release is self-contained and self-consistent, and could be published as a high level Grid resource ClassAd. The only requirements are Redhat 6.1,7.1 with ups/upd installed, plus a D0 friendly system administrator.

Runtime Environment

Extricate a single executable, with all it needs to run, from the D0 code tree. This is intended to ease non-expert code development, but also allows trivial deployment of code to nodes without the required (or any) D0 release.

http://www-d0.fnal.gov/computing/mcprod/Meetings/2001-09-13/RuntimeEnvironmentforD-Zero.ppt
SAM

SAM (Sequential Access via Metadata) is a file based data management and access layer between the storage management system and the data processing layers. It has been fully integrated with the experiment DZero, as the production-level data handling service for the online, the reconstruction and montecarlo production systems, and for the data analysis activities. It provides access to the detector calibration and configuration data. Furthermore, the configuration of the policies for the data management reflects the organization in physics groups of the experiment. The SAM system is fully supported 24x7 by teams of experts both in USA and Europe. It is still under active development to enhance core services and to integrate and interface the emerging grid technologies.

SAM has been designed to provide a high level of transparency to the user in accessing the data. Data is grouped via Dataset Definitions, a set of criteria, which are used to select the files/events of interest for a physics analysis. A series of tools, GUI and CLI based, are available to the user to define and browse the Datasets and the Metadata Catalog. The details of the mapping of Dataset with physical file location are left to the system, which maintains a File Replica Catalog. Service registration and discovery is responsibility of the system as well, and it is implemented via the CORBA naming service.

Efficiency in the access to the data was another focus in the design of the system. An Optimizer (Resource Manager) organizes access to the mass storage systems by grouping file access requests. Access to disk elements and compute resources is managed by the Station servers. The Stations provide caching and forwarding services via the use of Stager Servers (data movers), which serve individual disk storage units. Stations enforce the group policies on data management by the use of configurable caching algorithm. Also, Stagers are highly flexible for what concern the file transport protocols and, as of today, rcp, Kerberized rcp, bbftp, encp, and GridFTP are supported.

SAM provides a logging service, mainly used for tracking the data processing history. This catalog of data transformation is of central importance for the reproducibility of the physics results.

Another focus of the implementation was robustness and scalability. “Fall-back” and negotiation mechanisms are in place, making the system fault tolerant to the typical error conditions that arise in data transfer and job management. As for the scalability, SAM stations are currently deployed in a couple of dozen sites worldwide, and this number will reach about the one hundred sites, one year from now. The single points of failure, that are still present in the system, are going to be decentralized during the current year, in order to enable full local autonomy in processing locally available data. On the other hand, a higher level of integration between the job dispatch mechanisms and the data handling service is going to globalize the utilization of resources, increasing the efficiency of the whole data analysis process.

Replica Catalogue
Data Definition.

A Dataset Definition is a set of criteria, which are used to select the files/events of interest for a physics analysis. The criteria corresponding to a Dataset Definition are translated into an actual set of files (Dataset) when starting a new Analysis Project (submitting a job to SAM). The same Dataset Definition may produce a different Datasets at various points in time. To allow reproducibility of analysis results, each Dataset is stored into the SAM database. A user may decide to run his/her job on an old Dataset or a newly generated one.
Information
Configuration details for stations, e.g. BS`s, disks, groups…

Stations

The Station is responsible for controlling and monitoring the currently running projects, including recognizing local disk cache, copying files from the tape vaults to local disk, optimising concurrent requests per its known set of resources, etc.
The station keeps track of the file cache, by recording the date and time that all files were placed into and removed from cache. It can use different algorithms, specified by the single groups, to optimise and enforce policies on the cache management. The station allows groups to lock files in cache for later use, minimizing robot arm activity.

The station makes sure that the user job is submitted to the underlying batch system. If no file of the job’s Dataset is currently available in the cache, the job is submitted in hold until a file has been delivered. The job interacts with the station by calling SAM specific APIs. It first needs to register itself as a consumer of the Dataset (many consumers are allowed in parallel) and start a consumer process; then it can requests files sequentially to sam. There is no guarantee on the order the files are provided, but it is guaranteed that they are provided “once and only once”.

Lot of efforts has been put in providing a high level of fault tolerance. This makes sam a robust service for data replication. There are still single points of failure in the system, which are going to be replaced by a complete distributed architecture (CORBA Naming Service, SAM DB servers).

Optimiser for MSS

Manages staging requests to optimise tape access. Controls all file transfer requests; currently only requests to and from tape storage are optimised. A project asks the optimiser for permission before initiating a file transfer. Transfer between station disks receives an automatic yes, while stage requests are grouped into tape volumes and prioritised to optimise tape mounts.

There is no communication with the job, so currently no possibility for a JustInTime staging service.

‘Standard’ Grid Elemental Technologies XE "Globus2"
GSI - Globus Security Infrastructure

An authentication and authorisation system making it possible to authenticate a user just once, using public key infrastructure (PKI) mechanisms to verify a user-supplied Grid Credential. GSI handles the mapping of the Grid credential to the diverse local credentials and authentication/authorisation mechanisms that apply at each site.

Resource owners receive a host certificate from a local Certification Authority (CA). Trusted users can acquire a certificate via a local contact well known to the responsible CA person. The Grid site has a ‘grid map file’ that maps user certificates to user accounts. (Also see Dynamic user accounts section.)

http://www.globus.org/security/
GridFTP

GridFTP provides a high-quality, robust, multi-threaded, production-oriented data transfer tool. The currently available implementation is GSIFTP, a subset of the GridFTP protocol and essentially the standard FTP enhanced to use GSI security (http://www-fp.mcs.anl.gov/dsl/scidac/datagrid/GridFTP Overview.pdf and http://www.globus.org/datagrid/gridftp.html for more information)

For the first round of integration of GridFTP with SAM (Jan 2002), we use a password-less credential for the user sam. As for bbftp, a wrapper script mimics the semantic of the rcp command, invoking the GridFTP client. The rcp wrapper is packaged and distributed via Fermilab’s ups/upd. The package currently relies on the installation of the globus tools in order to work.

For the second round of integration, we plan to give SAM a service certificate. SAM will transfer files on behalf of registered DZero collaborators, with valid credentials. The registration/authentication mechanism is now (Feb 2002) under study. The advantage of this approach is increased security and the possibility of tracking/logging user/group activities.

MDS – Metacomputing Directory Service

MDS provides the necessary tools for building an LDAP-based (LDAP: Lightweight Directory Access Protocol) information infrastructure for computational grids. It is an integrated GRIS/GIIS server (GRIS: Grid Resource Information Service, GIIS: Grid Index Information Service), and includes support for GSI (Grid Security Infrastructure) authentication and access control. MDS is based on OpenLDAP and OpenSSL code, and comes with a set of core information providers, i.e., programs that adhere to the input and output interfaces of the GRIS back end. The MDS core providers are mostly shell scripts extracting data about CPU, OS, memory, network interfaces, etc.

Steps for adding new information provider are fairly straightforward:

1) Define provider schema, OIDs (Object Identifiers), and namespace.

2) Create a provider program, which must generate LDIF (LDAP Data Interchange Format) objects as its output.

3) Enable the provider program in the GRIS back end.

The main advantage of LDAP and its hierarchical tree-like structure of directory entries is that it is well suited for distributed systems and highly optimised for queries on single objects in the directory structure. In other words, if all queries are known in advance, one can build a database that will answer all of these queries very rapidly. However, if one fails to anticipate the query, getting an answer out of the directory service could be very expensive. The LDAP query language cannot give results based on computation on two different objects in the directory structure (or, expressed in the relational language, there is no join operation).

MDS - Directory Update Issues

While LDAP defines operations for interrogating and updating the directory, for adding, deleting and changing entries, as well as for searching for information (ldapsearch, ldapmodify, and ldapdelete in OpenLDAP) , MDS provides only search capabilities from the command line (grid-info-search). The only way to update its directory is via information providers, which are executed by the GRIS back end and can only add information (old information is removed by the GRIS server after its validity period expires). This is a considerable drawback of using MDS.

MDS – Distributed Directory Issues

OpenLDAP supports both subordinate and superior knowledge information, as well as the capability for a master/slave replication scheme.

Subordinate knowledge information is maintained in the directory as a special referral object which acts as a delegation point gluing two services together. This mechanism is used by the GIIS server for creating a hierarchical directory service, in which data from an information provider propagates up through a hierarchy of GIIS servers. Similarly, a superior knowledge information may be specified using the referral directive pointing to a superior directory service.

In the master/slave replication scheme LDAP protocol is used to update a slave database from the master. However, this scheme does not seem to be supported by MDS.

MDS – Persistency Issues

MDS uses memory-based caching backends for GRIS and GIIS. On the other hand, OpenLDAP’s primary database backend is LDBM, which requires either BerkleyDB or GNU Database Manager. In other words, a specialized GRIS with LDBM backend using either one of the above mentioned databases would have to be deployed is persistency is desired.

References:

http://www.cs.northwestern.edu/~pdinda/relational-gis/GWD-GP-7-1.pdf
http://www-unix.globus.org/mail_archive/discuss/2001/Archive/msg01418.html
http://www-unix.globus.org/mail_archive/discuss/2001/Archive/msg01452.html
http://www.globus.org/gt2/mds2.1/NewFeatures.html
http://www.globus.org/gt2/mds2.1/hierarchical_GIIS.pdf
http://www.globus.org/gt2/mds2.1/
http://www.globus.org/gt2/mds2.1/creating_new_providers.pdf
http://www.openldap.org/doc/admin/

http://www.openldap.org/software/man.cgi?query=ldap
RSL – Resource Specification Language

Probably superseded by Condor classads

http://www-fp.globus.org/gram/rsl_spec1.html
GRAM – Global Resource Allocation Manager

Supports remote submission of a computational request to a remote resource, and subsequent monitoring and control of the resulting job.

http://www-fp.globus.org/gram/
GASS – Global Access to Secondary Storage

Provides mechanisms for transferring data between a remote HTTP, FTP, or GASS server. Condor-G uses GASS to transfer the executable, stdin, stdout, and stderr to/from the remote resource.

http://www-fp.globus.org/gass/
Condor ClassAds

Condor-G

CondorG is an extension to the client side (job submission) part of the Condor BS. Rather than submitting to a node in a condor pool, it submits the job to a remote Globus jobmanager that submits the job to it’s local BS, typically not Condor. The job can then be monitored and controlled, via GRAM, as if it were in a local Condor pool. It incorporates Globus2 security (GSI), and ensures a valid proxy with sufficient lifetime is present before submitting the job. It also periodically checks for a new proxy, and uses it instead. The user is responsible for keeping the proxy valid for the duration of a job. XE "Condor-G"
The job is described by the standard Condor ClassAds in a Job Description File (JDF) with the following extensions:-

Universe=globus

Globusscheduler=sampc.hep.ph.ic.ac.uk/jobmanager-pbs

Globusrsl=(directory = /home/walker/scratch)

Only the executable is transferred by CondorG.

The requirements are:-

Must have a grid proxy, i.e. can type grid-proxy-init, on the submitting node. This is ensured by a full Globus installation, but really just requires the GSI part.

Full Globus installation with gatekeeper and jobmanagers on the remote resource.

User account on remote CE’s.

The next CondorG version, 6.3.2, will include Kerberos support. This presumably means seamless access to Grid resources even on Kerberized sites

http://www.cs.wisc.edu/condor/condorg
Other Grid higher-level Services

European DataGrid

Resource Broker

Input files list of Logical or Physical File Names (LFN/PFN). Application speaks directly to SE to get file using a DataAccessProtocol (GridFTP, HTTP, open(),..)

Implements getPhysicalFileName(LFN) to access EDG Replica Catalogue. Will implement getBestPFN after M9. A broker info file, containing file location and protocol information, sits in the job working directory. There is a BrokerInfo C++ class to parse and access this info file from an application, and also corresponding API’s.

It appears that the application is responsible for initiating file transfers, i.e. the concept of a project master, to ensure timely data delivery and control the executable, does not exist in EDG.

Job Submission Server
Information Service
Logging Service
Replica Catalogue
Dynamic User Accounts

To avoid the requirement that a trusted user actually needs a personal account on any Grid resource used, dynamically assigned user accounts can be used. The resource sys admin creates a pool of accounts and these are leased to incoming Grid users. Some mechanism outside of Globus (eg a hourly cron job) revokes the leases after a specified time and makes them available to other users.

This is achieved by a small hack of Globus from Andy McNab at Manchester, which changes the interpretation of the grid map file. This then temporarily maps authorized certificates to a pool of user accounts, rather than one named account. Several pools are possible on the same resource, e.g. users cmsXXX, samXXX, d0mcXXX, with perhaps different privileges or quotas.

http://www.gridpp.ac.uk/gridmapdir/
GDMP – Grid Data Mirroring Package

The GDMP client-server software system is a generic file replication tool that replicates files securely and efficiently from one site to another in a Data Grid environment using several Globus Grid tools. In addition, it manages replica catalogue entries for file replicas and thus maintains a consistent view of names and locations of replicated files. All kinds of file formats are supported for file transfer and for Objectivity database files a particular plug in exists. All files are assumed to be read-only.
GDMP is a collaboration between the European DataGrid project (in particular the Data Management work package, Work Package 2 (WP2)) and the Particle Physics Data Grid Project (PPDG).

http://cmsdoc.cern.ch/cms/grid/

MOP – Monte Carlo Production

MOP is a system for distributing CMS production jobs. There is a MOP

master site where jobs are defined by the CMS production scripts. The

mop_submitter then distributes those jobs to remote sites through

CondorG and Globus. When the jobs are finished, the output is

collected by GDMP.

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi
