The SAM-Grid Job Matching Policy:
Proposed Design

Gabriele Garzoglio, Parag Mhashilkar, Daniel Wicke
June 02, 2005

Abstract

The SAM-Grid job management component does not currently
regulate the flow of jobs to the execution sites. When multiple jobs
are submitted to the same execution site, they all enter the gateway
node more or less at the same time. Because job preparation at the
gateway is a CPU intensive activity, we have observed high value of
load (20) at the gateway machine. We believe this is the cause of
problems we observe with the mechanism that reports the job status
to the grid: alow % of jobs are reported in "held” or ” completed” state
before the jobs actually finish. This affect IN2P3 and the fnal-farm in
particular.

This document proposes a mechanism to limit the flow of jobs to
execution sites and discusses various throttling policies.

Contents
1 Introduction
2 Job Submission Control in Condor

3 SAM-Grid Job Submission Policies
3.1 Level 0 Policy: no more than N “submitting” jobs allowed
3.2 Level 1 Policy: no more than N “submitting” and “output-
gathering” jobs allowed
3.3 Level 2 Policy: no more than N “submitting” jobs allowed
AND no more than M total jobs running

1 Introduction

The SAM-Grid team and the DZero reprocessing group are discussing mech-
anisms and policies to regulate the flow of jobs to the execution site. In
this document we discuss the policies of job submission and the proposed
SAM-Grid implementation. We plan to use the native condor match making
mechanisms to regulate the flow of jobs to the execution sites.

These policies aim at limiting the number of grid jobs at an execution site
irrespectively of the number of batch processes currently running at the site.
These policies are also being discussed, but are not going to be proposed in
this document.

2 Job Submission Control in Condor

Within the condor framework, both jobs and resources can express “Require-
ments” condition. If either requirement conditions evaluate to FALSE during
the process of job / resource matching, the match fails and the job will not be
submitted to that resource. The SAM-Grid uses the requirement attribute
of the job classad to select resources with specific characteristics, such as a
user-specified sam station name. The requirement attribute of the resource
classad is not currently used. We plan to use this attribute to control the
flow of jobs to a certain resource in the following way.

At every job / resource match, the condor match making service can
be programmed ! to increase the value of an attribute (CurMatches) of the
resource classad by one unit. This is effectively a counter of the number of
jobs submitted to the resource. Using this counter within the Requirements
expression of the resource classad, it is possible to stop any match with the
resource. This happens when the expression evaluates to FALSE.

The following is a simple example used to illustrate the mechanism. To
limit the number of jobs submitted to a resource within a certain time to
a maximum value MaxMatches, the requirement expression of the resource
classad can look like

Requirements = (CurMatches < MazMatches)

CurMatches can be reset to 0 every time the resource advertises its clas-
sad. In the SAM-Grid, the advertisement cycle is generally 5 minutes. This

ITo activate this feature, the resource classad must contain the attribute WantAdReval-
uate = TRUFE

way, the flow of job is restarted at every advertisement cycle.

3

SAM-Grid Job Submission Policies

This section discusses the policies that the SAM-Grid plans to implement to
control the flow of jobs to a given resource. It also describes the resource
attributes needed for the implementation of the policies discussed.

The grid interacts with a job dispatched to an execution site via a Grid to
Fabric interface called job-manager. The job-manager is a process spawned
by the gatekeeper and can be in different states. Certain job-manager states
are more resource intensive than other. The different policies of job streaming
consider these states in order to decide whether to submit further jobs to the
site or not.

The SAM-Grid job-managers can be in one of the following 5 states:

1.

Submitting Jobs: when the job enters the site, the job environement
is prepared, the fabric services are notified of the new job (e.g. for
file pre-staging), and batch processes are submitted to the local batch
system. This state is cpu intensive.

Polling Jobs: periodically, the grid polls the status of the job. The
status of the multiple batch processes corresponding to the grid job is
aggregated and returned to the grid.

Updating the Monitoring: periodically the SAM-Grix XML monitoring
system is updated with the status of the local batch processes.

Cancelling Jobs: upon user request, jobs can be deleted from the site
batch system

Gathering Output: when the job terminates or it is cancelled, the
output streams (stdout, stderr) and log files are gathered in an output
sandbox and sent back to the grid, in order for the user to download
it. This state is cpu intensive.

3.1 Level 0 Policy: no more than N “submitting” jobs
allowed

We observe that the load of the gateway node raises considerably when the
job-manager is in “submitting” state. We believe that some failures of the
infrastructure are related to the high load of the gateway. We want to con-
trol the maximum number of grid jobs in “submitting” state. A job is in
submitting state as soon as it enters the site.

The site needs to advertise

o MaxSubmittingJobs: the maximum number of jobs in “submitting”
state that the site allows. It can be configured as part of the site
configuration

e CurrentSubmittingJobs: the number of job-managers in “submitting”
state. This value is constant until a new classad is advertised. This
can be obtained with the ps command.

e CurMatches = CurrentSubmittingJobs : CurMatches is the attribute
that the match maker increments every time a new job is submitted.
With this algorithm, the match maker considers a job in “submitting”
state as soon as it is matched to the resource.

e Requirements = (CurMatches < MaxSubmittingJobs)

3.2 Level 1 Policy: no more than N “submitting” and
“output-gathering” jobs allowed

The “Gathering Output” state is CPU instensive, as several tar commands

are executed sequencially. The load to the machine raises when the job is in

this state. We speculate that jobs in “submitting” state may suffer from the

high load, due to the jobs in “gathering output” state. This policy prevents

new jobs from being submitted to the site, if the sum of the jobs in the

“submitting” and “gathering output” states are above a certain threshold.
The site needs to advertise

o MaxSubmittingAndOutputGatheringJobs: the maximum number of
jobs in “submitting” AND “gathering output” state that the site al-
lows. It can be configured as part of the site configuration

CurrentSubmittingJobs: the number of job-managers in “submitting”
state. This value is constant until a new classad is advertised. This
can be obtained with the ps command.

CurrentGatheringOutputJobs: the number of job-managers in “gath-
ering output” state. This value is constant until a new classad is ad-
vertised. This can be obtained with the ps command.

CurMatches = CurrentSubmittingJobs + CurrentGatheringOutputJobs

Requirements = (CurMatches < MaxSubmittingAndOutputGather-
ingJobs)

3.3 Level 2 Policy: no more than N “submitting” jobs

allowed AND no more than M total jobs running

After a job-manager has finished the “submitting” phase and before entering
the “output gathering” phase, it consumes little resources. On the other end,
we speculate that a large number of job-manager processes may increase the
load or hit other system limits. Every process accesses the xml database, the
file system, the network, etc. A site may want to cap the total number of
grid jobs running at his site at any time.

The site needs to advertise

MaxJobs: the maximum number of jobs at the site in any state. It can
be configured as part of the site configuration

MaxSubmittingAndOutputGatheringJobs: the maximum number of
jobs in “submitting” AND “gathering output” state that the site al-
lows. It can be configured as part of the site configuration

CurrentJobs: the total number of jobs running on the system. This
value is constant until a new classad is advertised. This can be obtained
with the ps command.

CurrentSubmittingJobs: the number of job-managers in “submitting”
state. This value is constant until a new classad is advertised. This
can be obtained with the ps command.

CurrentGatheringOutputJobs: the number of job-managers in “gath-
ering output” state. This value is constant until a new classad is ad-
vertised. This can be obtained with the ps command.

CurMatches = CurrentJobs

JobsMatchedSinceLastAdvertisement = CurMatches - CurrentJobs :
this is a positive number, initially 0, that increases as jobs are matched
to the resource.

Requirements = (CurMatches < MaxJobs) && (JobsMatchedSince-
Last Advertisement + CurrentSubmittingJobs + CurrentGatheringOut-
putJobs) < MaxSubmittingAndOutputGatheringJobs

