
Extending the Cluster-Grid Interface Using Batch System Abstraction and
Idealization

A. Nishandar, D. Levine, S. Jain
University of Texas at Arlington, Arlington,

TX 76019, USA
{nishanda, levine}@cse.uta.edu,

sankalp@fnal.gov

G. Garzoglio, I. Terekhov
Fermi National Accelerator Laboratory, Batavia,

IL 60510, USA
{garzoglio, terekhov}@fnal.gov

Abstract
The grid computing technologies in use today provide
simplistic interfaces to various batch systems that manage
the clusters connected to a grid. These interfaces work
fine for running simple applications but when complex
applications such as High Energy Physics simulations are
run on a grid, problems are exposed with these simplistic
interfaces which make the integration of a cluster into a
grid complex. In addition to this the grid middleware is
not completely isolated from the batch systems. Thus in
order to incorporate a new batch system into a grid, a
new interface must be written for that batch system. This
requires an understanding of the functioning of the grid
middleware. Development and testing of these interfaces
requires a lot of human effort. In this paper we identify
some of the problems in integration of batch systems into
a grid that are overlooked by current grid technologies
and propose a framework which remedies these problems
and enables the easy integration of clusters in a grid by
providing a layer of abstraction between the grid
middleware and the batch system managing the cluster.

1. Introduction

A typical grid environment consists of multiple
clusters of computers running standard operating systems
with additional middleware, for example Globus [1]. Each
cluster may be administered by different organizations
and may be controlled by different batch systems that
have different interfaces for cluster job management. For
a computational grid to incorporate different types of
clusters, the grid middleware must support many types of
batch systems or at least have the provision support new
batch systems. For example in Globus this integration is
done by writing a jobmanager for each batch system that
is to be included in a grid. The jobmanagers implement
simplistic interfaces to submit, kill and poll local jobs at a
site.

A large amount of human effort is expended in the
integration of computational resources with a grid
middleware since enabling job management at a local site
in a grid requires more sophisticated interfaces than just
simple batch system interfaces. The rest of this paper is
organized as follows: First an overview of cluster
computing environment is presented. Then an overview of
computational grids consisting of multiple batch systems
is provided. Then we discuss problems that are
encountered during integration of a batch system into a
grid. Then we discuss the tools that we have developed to
enable the integration of clusters with a grid middleware.

2. Background

A computational cluster is a group of computers that
are connected together over high speed networks such as
Gigabit Ethernet and work together as a unit to solve
complex and computationally intensive problems. The
computers that are a part of the cluster run standard
operating systems such as Linux, Sun OS or Microsoft
Windows and middleware to provide management of the
cluster resources such as Portable Batch System [2],
Condor [3], and Farms Batch System Next Generation
[4]. The middleware that provide management of
resources in a cluster is also called a batch system. A
cluster has a homogeneous environment i.e. all the
computers in the cluster have the same processor
architecture, the same operating system and run the same
cluster management middleware. A unit of computation
on a cluster is called a job, where a job can be running an
independent executable or it could be the part of a
complex parallel application that has many jobs running
on other nodes (computers) in the cluster.

The batch systems provide interfaces that let users
submit, monitor and kill jobs. These interfaces are most
often in the form of a command line interface and a
programmer’s interface. While submitting job(s) the user
specifies the executable to run, the requirements of the job
such as physical memory required by the job, required

computational time, any arguments to the executable and
the path on local machine where the standard output and
error files from the job’s execution should be created.
These requirements are submitted to the batch system
server or scheduler, which then starts the execution of the
job at one of the computers in the cluster. The machine
from where the jobs can be submitted to the scheduler is
called the submit node of the cluster and the machines
where the actual computation takes place is called the
worker nodes. Depending on the size of the cluster it may
have multiple schedulers and multiple submit nodes.

To facilitate the execution of jobs at worker nodes a
daemon process runs at each worker node. When a job is
submitted to the scheduler it communicates with the
daemon process at a worker node instructing it to launch
the execution at that node. The scheduler then keeps track
of the execution by periodically communicating with the
daemon. The users can keep track of the jobs that they
submitted by using the batch system commands for
checking the status of jobs. Similarly one can kill jobs by
using the batch system commands. Once a job completes
the standard output and error files are returned to the
computer and directory path specified at the time of
submission. The way this job management is
implemented in a cluster differs from one batch system to
another, but in general execution of any batch system
command results in some network communication
between the batch system servers and the daemons
running at the worker nodes.

 Table 1: Different batch system commands
Command

Type
PBS CONDOR FBSNG

Job
Submission
command

qsub <arg list>
e.g. qsub

condor_submit
<jdf_file>

fbs submit
<jdf_file> or
fbs submit
<arg list>

Job Lookup
command

qstat condor_q fbs lj

Job Kill
command

qdel condor_rm fbs kill

Different batch systems have different

interfaces/commands to allow user operations. Table 1
lists the command line interfaces for three batch systems
– PBS, Condor and FBSNG. In PBS jobs can be
submitted to the batch system using the qsub command
which accepts a list of arguments to specify the path of
the executable, requirements of the job, and arguments. In
the Condor batch system, in order to submit a job the user
must create a job description file (jdf) that contains the
executable, its arguments and requirements. FBSNG
accepts either command line arguments or a job
description file for job submission.

3. Computational grids

A computational grid consists of many clusters of
computers connected together by grid middleware such as
Globus. Each cluster may be managed by a different batch
system. Figure 1 shows a computational grid that has
three batch systems connected to it – PBS, Condor and
FBSNG. As shown, each cluster runs grid middleware in
addition to the local batch system at the cluster. In
addition, each cluster may be under separate
administration.

The process of job submission to a grid is similar to
that in a cluster. The user specifies the executable to run,
its arguments, the requirements of the job, and the path on
local machine where the standard output and error files
from the job need to be deposited. It is the responsibility
of the grid scheduler to find a resource (in this case a
cluster) that meets user requirements and launch the
execution there.

 Figure 1: A computational grid with multiple clusters

It is worthwhile to note that the grid middleware
provides only the grid level job management. The local
job management at each cluster is still provided by the
batch system running at that cluster. The grid level job
management involves finding a cluster that is capable of
running user job(s) and once such a resource is identified
the grid scheduler needs to start the execution of the job at
that cluster. This is done by submitting batch or local
job(s) to that cluster using the batch system interfaces
available there. In a grid environment the machine that is
used as the submit node by the grid scheduler is called the
gateway node or the head node of the cluster. The grid
middleware also needs to keep track of the grid job status
and once the job finishes return the output to the user. For
this the middleware invokes the batch system interfaces
and checks the status of the local jobs submitted as a
result of the grid job.

The grid middleware completely isolates the batch
systems from the grid user. The user does not even know
which cluster is running the grid job. Thus the grid
middleware needs to interface with different batch
systems at different sites and give the user an abstraction
of a homogeneous computing environment.

4. Problems with batch system integration in
computational grids

When a batch system is used in conjunction with a
grid, new problems are exposed which may be acceptable
to a user who is using the batch system locally (an
interactive user) but not to the grid middleware. Below we
identify some of these problems and discuss how they
effect the execution of jobs in a grid environment.

If a batch system command fails due to some reason,
such as the command timing out or some other transient
network failure, it will result in the grid middleware
failing to execute the appropriate batch system interface
correctly. For example, during the submission of a grid
job, if the grid middleware at a cluster fails to invoke the
job submission command because the batch server was
busy and hence the command timed out, the grid
middleware will interpret the job submission to be a
failure and return an error to the grid user. As another
example during the polling for local jobs if the batch
system command to check the status of local jobs fails,
because of a transient network failure, the grid
middleware will again interpret the grid job to have failed.
Such failures will needlessly cause the grid job to fail.

In such cases an interactive user, who sees the output
of batch system commands, will simply reissue the
command after a few minutes and continue working.
Moreover the grid user will not be able to determine the
exact cause of failure in such cases. Since almost all the
batch system commands trigger some sort of network
communication with a server they are particularly
vulnerable to such transient failures. This problem is
exacerbated when there are a number of jobs running in
the batch system which is a common occurrence in a grid
scenario. Such failures can be avoided by simply retrying
the command in intervals spanning over a couple of
minutes. Even though the grid job will still fail if the
problem is particularly severe, such retrials increase the
overall robustness of the system.

Typically a grid job results in the submission of
multiple local jobs at a site. There is a need to create a
mapping between the grid job and the local jobs in the
batch system so that the grid middleware can track the
progress of the grid job and determine when it has
finished. This mapping can also be used to give the grid
user a better indication of the progress of the grid job. For
example the grid middleware can report to the user that
the grid job has created n number of local jobs of which x
are running, y have finished and z are queued. The way
this mapping is created is totally dependent on the batch
system at a particular site.

In a cluster, every worker node has a certain amount of
scratch space reserved for local jobs which serves as their
working area. In a cluster environment it is important that
each local job runs in its own separate scratch directory at

the worker nodes. This ensures mutual isolation between
jobs that get scheduled to the same node simultaneously.
However not all batch systems provide support for scratch
management at the worker nodes where the actual
computation takes place. For example some batch systems
like Condor provide full fledged scratch management
while other batch systems like PBS do not have scratch
management support. The interactive users who are
familiar with the setup of their local cluster submit jobs
that have wrapper scripts around them to perform scratch
management. However a grid user cannot create such
wrapper scripts for a cluster as the grid user does not
know about the scratch management implementation.
Thus there is a need to abstract the scratch management
capabilities of the batch system from the grid user. For
this the grid middleware should support scratch
management for grid jobs submitted to a batch system
that does not provide this service.

The results of the batch system commands need to be
interpreted by the grid middleware so that the middleware
can determine the outcome. Typically this is done by the
having grid middleware parse the output of the batch
system commands. However the output produced by
commands in various batch systems differs from each
other. For example some batch system represent the status
of a running job simply as running while other batch
systems may call it active. Thus there is a need to map the
batch system specific status of a local job to a set of
standard statuses that the grid middleware understands.

Another problem that is prevalent in cluster computing
is what the Black Hole Effect [5]. In a cluster, if even a
single node has a configuration problem or hardware
problems which results in jobs failing quickly (much
faster than the execution time of the job), it reduces the
turn around time at that node. This results in the batch
system scheduling more and more jobs to the same node
not knowing that they will fail as well. Consequently the
faulty node acts like a black hole, eating up a lot of jobs
from the batch system queue. This problem is particularly
severe when a job runs for many hours and there are
hundreds of such job queued up in the batch system.
Consider for example a local job runs for 10 hours. There
are 100 such jobs submitted to a cluster off which 10 are
scheduled and started immediately. One of the nodes in
the cluster results in the job failing in less than a minute.
In the view of the scheduler this node is up for selection
again. Depending on the size of the cluster and the user
priority there, if a job is scheduled again to the same node
the same cycle will be repeated. If the jobs are
continuously dispatched to the same node it will result in
only 9 out of the 100 jobs finishing successfully.
Common examples of faults that cause the Black Hole
Effect are a faulty network interface at the node resulting
in files getting corrupted and DNS miss-configurations at
a worker node. An interactive user can usually spot such a

problem immediately and simply resubmit jobs to the
batch system asking it to avoid the faulty node. However
in the case of a grid user this is not possible because the
batch system is transparent to the grid user. There is a
need to maintain a list of nodes that are causing problems
and avoid job submission to such nodes and subsequently
if such a problem is spotted, then resubmitting the job to
some other node.

The submission of a grid job to a site results in the
submission of one or more local jobs to the batch system
at the site. The local jobs produce files such as the
standard output file, standard error file, log files, and job
output. In a grid environment it is necessary to ensure that
the job files produced by two grid jobs do not interfere
with each other to ensure mutual isolation between grid
jobs. The job files created at the head node need to be
transferred back to the client machine to enable the user to
determine the outcome of the grid job and debug
problems. So there is a need to track all the local job files
created by a grid job. Finally, when a grid job finishes, it
is necessary to ensure proper clean up of its job files to
prevent the disk space from unnecessarily filling up.

In most batch systems the local job files are created
either in a user specified location or a default location
such as the HOME area of the user. The directory where
the job files are created must be different for each grid
job. There is a need to initialize a unique working
directory for each job submitted through the grid to
ensure mutual isolation. This further assists returning the
output of the job back to the grid user and cleaning up
operations at the head node.

5. Batch system abstraction

The problems identified here are common to most

batch systems. These problems can be handled within the
middleware. But this will lead to really complex
interfaces with the batch system and adding a new batch
system to a grid infrastructure will be even more complex.

 Figure2: Abstracting grid middleware from batch systems

By providing a layer of abstraction above the batch
system we can shield the grid middleware from these
problems, giving it the view of a grid friendly batch
system. This layer provides the middleware with a set of
services through which the middleware can interact with
the underlying batch system in a uniform way irrespective
of the batch system at hand. This can significantly speed
up the deployment of the grid middleware. Figure 2
depicts how the grid middleware is abstracted from the
underlying batch system using SAM batch adapters and
the batch system idealizers. The grid middleware also
uses local file management service provided by JIM
sandboxing to manage grid job files as described further.

6. Batch system idealizers

Batch System Idealizers implement the interfaces

required to perform batch system operations such as
submitting jobs. While the batch system itself directly
provides these interfaces, in order to overcome the
problems noted earlier these interfaces are enhanced and
are implemented in the idealizers. The idealizer scripts are
totally batch system specific and to add a new batch
system to the grid infrastructure, an idealizer script must
be written for it.

In order to overcome the problems with transient
failure in batch system commands retries are incorporated
with every batch system command. The time interval for
these retries is configurable, but for it to be effective it
must be in the order of several minutes. This is because
the typically observed failures these retrials mitigate
should usually disappear in a few minutes [6]. If the
problem is severe and lasts more than the retrial interval
then it is best to fail and return appropriate error
condition.

The Idealizers also create a mapping between the grid
job and the local jobs in the batch system. To create this
mapping the idealizers accept a unique identifier
associated with a grid job. The batch idealizers can then
associate this id with the local jobs submitted as part of
the grid job submission. The way the mapping is created
differs from one batch system to another. For example, in
PBS the batch jobs are submitted with their name attribute
set to the id of the grid job. In order to read the list of
local jobs belonging to a grid job the PBS idealizer will
search for all the jobs in the batch system queue with their
name attribute set to the id of the grid job.

To provide a uniform interface of the batch system to
the grid middleware the output of various commands must
be uniform irrespective of the batch system. For this
reason the batch idealizers convert the output of the batch
system command to a uniform format. Thus the grid
middleware just needs to be aware of this uniform format
and not worry about different batch systems. The
idealizers also perform a mapping of the batch system

status to a set of common status. The statuses that are
currently supported are: active, failed, suspended,
pending, and submitted. Thus if a batch system reports a
job as submitted the batch idealizers will report its status
as pending to the grid middleware.

The batch idealizers also provide scratch management
support for batch systems that do not already do so. This
is done by writing a scratch management script which
forms the first stage of execution at the worker nodes.
This script and the user executable are transferred to the
worker nodes through the batch system. Upon its
execution the scratch management script creates a unique
directory (based on the local job id) for a job in the
scratch disk at the worker nodes. The location of scratch
disk at the worker nodes is read from configuration at the
head node. The scratch management script then launches
the user executable from under the unique scratch area for
the job. When the user executable finishes, the scratch
management script then cleans up the job area in the
scratch disk. A problem with this scheme is that if the job
is deleted from the batch system, its scratch area is left
dangling i.e. its job area won’t be cleaned up. The clean
up operations of the scratch management script will not
be invoked in this case. This problem may be eliminated
by having the scratch management script at the beginning
of its execution examine the scratch area and cleaning up
any directories belonging to jobs that are no longer in the
batch system queue. Thus if the scratch directory for a job
is left dangling it will be cleaned when the next job is
scheduled at that node.

Earlier, we described the Black Hole Effect problem
with clusters. While solving this problem in an automated
way is complex, the batch idealizers may alleviate its
effect by maintaining a neglect list, which contain the
names of the nodes discovered to have problems. During
job submission the idealizers explicitly ask the batch
system not to schedule jobs to nodes in the neglect list.
Currently this list is being maintained manually and
whenever a problem is identified the site administrator
will need to update this list. The manual interference of
the administrator does not solve the problem for the grid
user. However once the computation of the neglect list is
automated, the grid user can resubmit jobs knowing that it
won’t suffer the same problem again.

7. SAM batch adapters

SAM batch adapter [7] is a package developed at
Fermilab [8] as part of the SAM project [9]. We have
adopted this package as a configuration tool that provides
the grid middleware with interfaces to invoke the
appropriate batch idealizer at a site. While the idealizers
implement the interfaces to allow interactions with the
batch system, the grid middleware still needs to know
how to invoke them. This is accomplished through SAM

batch adapters. Thus the batch system idealizers
combined with SAM batch adapters provide a complete
abstraction of the underlying batch system to the grid
middleware. SAM batch adapter package has many
features; here we just discuss the aspects of the package
that are relevant within. For a more detailed reading on
the topic refer to [7].

SAM batch adapter contains in its configuration the
batch idealizer commands that implement various batch
system operations. The configuration of the package is
stored in a local Python module which can be updated
using an administrative interface the package provides.
Figure 3 shows a part of SAM batch adapter
configuration. Each command stored in the configuration
has a command type associated with it. The command
types that we use are – job submit command, job kill
command, and job lookup command. The function of a
command can be derived from their types.

Each command has a command string associated with
it which may contain any number of predefined string
templates. String templates are used for plugging the user
input into a command string, which then gives a
command that the user or API client can execute to get
the desired results. For example in figure 3 the command
string for the job lookup command is
“…/sam_condor_handler.sh job_lookup --
project=%__USER_PRO JECT__ --local-job-
id=%__BATCH_JOB_ID__”. In order to perform lookup
operation the API client or the user can read the command
string giving its command type (in this case “job lookup
command”) and then replace the template strings with
user input. The template strings in this case are
“%__USER_PROJECT__” which needs to be replaced
with the grid id of a job and “%__BATCH_JOB_ID__”
which optionally needs to be replaced with a local job id
if performing lookup on a single batch job. The resulting
command string when executed will invoke the batch
idealizer’s (in this case a Condor idealizer) lookup
operations based on the grid id.

Each batch command can have multiple results or
possible outcomes associated with it. The result is
characterized by the exit status of the command and may
have an output string associated with it which may
contain a string template. The exit status in question here
is the status which is returned by the operating system
when the command is executed after template
substitution. In figure 3 there are three results associated
with the job lookup command. The first result says that an
exit status 0 corresponds to success. The second result
extends this by saying that the output produced by the
command upon its successful execution is a list batch job
ids and their status. The third result states that an exit
status of 1 means that the command has failed.

 Figure 3: SAM Batch Adapter Configuration

It is worthwhile to note that the SAM batch adapter
itself does not execute the commands to perform batch
system operations. It just provides a functionality to
prepare commands for execution. It is the responsibility
of the API client to execute commands and interpret their
results. The commands that get executed are the batch
idealizers with their enhancements to the batch system
interfaces.

As mentioned earlier there are many string templates
defined in SAM batch adapter, but only a few are used in
our scheme. Table 2 lists the string templates used in our
scheme along with their purpose.
 Table 2: Use of string templates

Template String Purpose
%__USER_PROJECT__ Specify the grid id of a job to the

idealizer scripts
%__USER_SCRIPT__ Specify the name of the

executable to be submitted to the
local batch system

%__USER_SCRIPT_ARGS__ Specify the arguments if any, to
the executable submitted to the
local batch system

%__USER_JOB_OUTPUT__ Specify the path where the
standard output file of the batch
job should be deposited

%__USER_JOB_ERROR__ Specify the path where the
standard error file of the batch
job should be deposited

%__BATCH_JOB_ID__ Specify the id of a single batch
job

%__BATCH_JOB_STATUS__ Specify the current status of a
batch job
(used mainly in command
results)

8. JIM sandboxing

JIM Sandboxing [10] provides a local file management
service to the grid middleware. It is a tool used to
initialize the relevant input files for a job and return a
collection of all the output and diagnostic files produced
by a grid job. Normally, when a job is submitted
interactively to a batch system, the standard output and
error files are deposited in either a user specified location
or a default location such as the home area of the user. In
a grid environment the user cannot provide this
information, it is transparent to the user. This can be set to
some fixed location configured at each site or some other
default location. However it will result in multiple grid
jobs that are running in parallel producing there job files

under the same path at the head node. In this case keeping
track of the job files of a grid job becomes difficult as a
typical job will have hundreds of job files associated with
it. If two grid jobs produce a file with same name it will
interfere with their execution violating their isolation.
This also complicates the collection of job files for a grid
job which need to be transferred back to the client
machine and the cleanup of the job files.

JIM Sandboxing provides the mutual isolation between
two grid jobs by initializing a unique sandbox area for
each grid job. A sandbox is a directory on a local disk
which is serves as the working area for the grid job. The
grid middleware can instruct the batch system to create
the standard output and error files for a batch job in its
sandbox area. All the job files produced by local jobs
belonging to a grid job are deposited in the sandbox area
for that grid job.

The sandbox area also serves as a staging area for the
input files needed by the batch jobs. JIM Sandboxing
supports the concept of an input sandbox which is a
collection of user supplied input files needed for the
execution of local jobs. The user can supply the input
sandbox at the time of grid job submission and it can be
transferred to the head node through the grid middleware
and unpacked in the sandbox area of the grid job.

Once the grid middleware has initialized the sandbox
area for a grid job it can then package it. During the
packaging of a sandbox, a control script is created which
forms the executable that is submitted to the batch system.
When launched, this control script copies all the contents
of the sandbox area from the head node to the worker
nodes and launches the user executable. JIM Sandbox
also provides an interface to collect all the job files or
output files present in the sandbox area of a grid job.
Using this grid middleware can easily transfer the output
of a grid job back to user machine.

9. Integration with Condor-G and Globus

The tools and methods described here have been put to
use in the SAM-Grid project [11] based at Fermilab. The
grid middleware used in SAM-Grid is Condor-G system
[12] which combines software from Condor with Globus.
In Condor-G there is a process called the gatekeeper
running on the head node of a cluster that can be invoked
by the grid scheduler. The gatekeeper executes a process
called the job manager for each grid job submitted to the
cluster. Here we discuss how the job managers in SAM-
Grid make use of the tools described, to interact with the
batch system.

When a job is submitted, the job managers initialize a
unique working area for the grid job using the JIM
Sandbox interface. If there is any input sandbox
transferred by Condor-G then it is unpacked into the
sandbox area and then the job managers package the

sandbox area. Using SAM batch adapter the job managers
read the command string for the job submit command.
Then template substitutions are performed replacing the
executable template with the sandbox control script, the
standard output and error file templates with the path to
the sandbox area and filenames and finally the grid id
template with the id of the grid job. Then the resulting
command is executed to submit jobs to the batch system.
In order to submit multiple local jobs the job managers
simply need to execute the same command multiple
times.

For checking the status of the grid job the job
managers need to read the job lookup command through
the batch adapters and then perform template substitution
appropriately and execute the resulting command. The job
managers can parse the output of job lookup commands
and determine the status of the grid job.

The job manager operations described above are same
at all the sites irrespective of the batch system being used
there. Thus this enables writing a uniform job manager
that can be deployed at all sites. The batch systems that
have been incorporated into the SAM-Grid i.e. the batch
systems for which an idealizer has been implemented are
– The batch at CC-IN2P3 (BQS), the Portable Batch
System, the Condor Batch System and Farms Batch
System Next Generation.

The SAM-Grid project is in use for running physics
applications such as Monte Carlo simulations. Here we
quote some figures about the performance of the grid
infrastructure from the SAM-Grid project. Over a period
of 9 months (Jan 2004 through Sep 2004) SAM-Grid has
delivered 17 years worth of computation on a 1 GHz
computer [13]. The overall efficiency of the grid
infrastructure that has been measured over this interval is
close to 99%.

10. Conclusions

The grid computing technologies in use today are not
completely isolated from the batch system that is being
run on a cluster. By providing a layer of abstraction
between the batch systems and the grid middleware we
have bridged the gap between the local job management
provided by various batch systems and the grid level job
management provided by the grid middleware. It has
resulted in a system that can be easily incorporated with
any grid middleware for easily connecting clusters to a
grid.

A new batch system can be incorporated into a grid by
simply writing an idealizer script for the batch system.
This does not require any knowledge about the
functioning of the middleware. In addition to this standard
software can be distributed with the grid middleware
which interfaces with the tools described here and so the
grid middleware need not deal with different batch

systems. This significantly speeds up the deployment of a
grid middleware. The idealizers also mitigate the
deficiencies in batch systems, which we identified in
section 4 that makes their integration into a grid difficult
increasing the overall robustness of the system. The
sandboxing mechanism allows for easy file management
of grid jobs and also ensures mutual isolation between
grid jobs.

11. References

[1] The Globus Alliance home page, www.globus.org
[2] Open PBS home page, http://www.openpbs.org
[3] Tannenbaum, T., et al., "Condor - A Distributed Job

Scheduler", in Thomas Sterling, editor, Beowulf Cluster
The MIT Press, 2002. ISBN: 0-262-69274-0

[4] Farm Batch System Next Generation,
http://www.isd.fnal.gov/fbsng

[5] Nishandar, A., et al., “Black Hole Effect: Detection and
mitigation of application failures due to incompatible
execution environment in computational grids”, submitted
to CCGRID-2005

[6] The SAM-Grid deployment issues, http://www-
d0.fnal.gov/computing/grid/deployment- issues.html

[7] SAM Batch Adapters, http://d0db.fnal.gov/sam
_batch_adapter/ sam_batch_adapter.html

[8] Fermi National Accelerator Laboratory, www.fnal.gov
[9] Carpenter, L., et al., “SAM Overview and Operation at the

D0 Experiment” in the proceedings of Computing in High
Energy and Nuclear Physics, Beijing, China, September
2001

[10] Garzoglio, G., et al., “The SAM-Grid Fabric Services” in
IX International Workshop on Advanced Computing and
Analysis Techniques in Physics Research (ACAT),
Tsukuba, Japan 2003

[11] Garzoglio, G., et al., “SAM-GRID project: architecture and
plan” at the 8th International Workshop on Advanced
Computing and Analysis Techniques in Physics Research
(ACAT-02), Moscow, Russia, Jun. 2002, Published in
Nuclear Instruments and Methods in Physics Research,
Section A, NIMA14225, vol. 502/2-3 pp 423 – 425

[12] Frey, J., et al., “Condor-G: A Computation Management
Agent for Multi-Institutional Grids” in the proceedings of
Tenth IEEE Symposium on High Performance Distributed
Computing, San Francisco, California, August 2001

[13] Garzoglio, G., et al., “Experience producing simulated
events for the DZero experiment on the SAM-Grid” in the
proceedings of Computing in High Energy and Nuclear
Physics, Interlaken, Switzerland, September 2004

