
Ph.D. THESIS PROPOSAL
A globally distributed system for job, data and
information handling for high energy physics

Gabriele Garzoglio

September 08, 2004

Abstract

The computing infrastructures of the modern high energy physics
experiments need to address an unprecedented set of requirements.
The collaborations consist of hundreds of members from dozens of in-
stitutions around the world and the computing power necessary to an-
alyze the data produced surpasses already the capabilities of any sin-
gle computing center. A software infrastructure capable of seamlessly
integrating dozens of computing centers around the world, enabling
computing for a large and dynamical group of users, is of fundamental
importance for the production of scientific results. Such a computing
infrastructure is called a computational grid.

The SAM-Grid offers a solution to these problems for CDF and
DZero, two of the largest high energy physics experiments in the
world, running at Fermilab. The SAM-Grid integrates standard grid
middleware, such as Condor-G and the Globus Toolkit, with software
developed at Fermilab, organizing the system in three major com-
ponents: data handling, job handling, and information management.
This research proposal presents the challenges for such a computing
infrastructure and introduces the solutions already working and the
ones in phase of development.

1

Contents

1 Introduction 3
1.1 The standard grid middleware 4
1.2 The SAM-Grid system . 6

2 The information management component 10
2.1 The configuration infrastructure 11

2.1.1 The configuration process 13
2.1.2 Site and Product configuration 14

2.2 The Monitoring and Logging Infrastructures 16

3 The Job Management Component 20
3.1 The SAM-Grid Client . 24
3.2 The Job Submission Service 28
3.3 The Resource Selection Service 31

4 The Execution Site 35
4.1 Local Batch System Adaptation 36
4.2 Dynamic Product Installation 37
4.3 Local Sandbox Management 39

5 Summary 40

2

1 Introduction

The collaborations of high energy physics experiments are traditionally large
and geographically distributed. Only a few laboratories around the world
offer the facilities necessary to conduct innovative programs of research in the
field. Physicists from all over the world gather at these sites, building particle
detectors specifically designed to best exploit the unique characteristics of
these facilities. Nowadays, collaborations involving scientists from dozens of
different nationalities are becoming increasingly common. In addition, in the
past decades, the complexity and the cost of these detectors have increased
dramatically, as new and more advanced physics questions have become the
focus of the community. To confront the unprecedented budgets and the
challenges posed by the research programs, the collaborations have naturally
increased in size, involving typically many hundreds of scientists.

The complexity of the physics and the detectors does not only entail larger
numbers of collaborators. The amount of data to be gathered, catalogued,
processed and analyzed, in fact, is on the order of a Petabyte per year per
experiment. Various factors contribute to the exponential growth of the data
size. First, the observation of the physics of interest requires a much greater
spatial resolution than in the past: the typical number of data channels of a
modern detector reaches in the millions, an order of magnitude larger than
a decade ago. Second, high energy physics studies phenomena statistical
in nature and most of the particles studied in today’s research programs
have an extremely rare probability of occurring. The characteristics of such
rare particles can be studied with the required level of statistical significance
only if enough of them are observed during the data taking. In the modern
experiments, it is usual to gather data for many years and observe a few dozen
occurrences of a certain rare particle, while the total number of background
particles amounts to many billions.

In this scenario, addressing the computing needs of the modern high en-
ergy physics collaborations presents many challenges, and the amount of data
and large geographical scale are only the most evident. For most experiments
today, the processing power required to produce innovative scientific results
is already larger than what a single central computing facility can provide.
In the past, the multinational institutions participating in the experiment
generally financed the hosting laboratory to buy the computing hardware
and take the responsibility of managing it. Today, this trend is reversing,
and, typically, national funding agencies are willing to invest in computing

3

infrastructures as long as they are maintained locally and dedicated to more
than one experiment or even discipline. This politics is popular because
it promotes the development of national computing centers and expertise,
and, at the same time, it streamlines the maintenance of the computing sys-
tems by promoting resource sharing. This trend leads to the formation of
computing centers very diverse with respect to hardware, software systems,
configurations, management policies, and availability. A global software in-
frastructure capable of interfacing to each individual center is therefore the
key to enabling transparent access to the total pool of computing resources.

Besides the diversity of the computing fabric, another important challenge
is the dynamic nature of the membership to the collaborations. Typically,
scientists join and leave the physics collaboration throughout the lifetime of
the research program. This group of people, temporarily working together
to accomplish a common goal, is sometimes referred to as a “Virtual Orga-
nization”. A successful distributed computing infrastructure must preserve
the efficiency and, at the same time, guarantee the security of the computing
environment.

In summary, the challenges of such a global software infrastructure is
to enable a Virtual Organization to handle Petabytes of data in a secure,
accountable and transparent fashion, accessing a Petaflop-scale pool of shared
and distributively owned resources. This software infrastructure is also called
a “Computational Grid” [1], in analogy to the Electrical Power Grid: in the
same fashion as the power grid provides electricity to the users irrespectively
of where it is produced, analogously, the computational grid gives transparent
access to geographically distributed computing resources.

1.1 The standard grid middleware

Astronomers and high energy physicists have started moving toward grid
computing between five to ten years ago (see the collaborations of BaBar [2],
Belle [3], DZero [4], CDF [5], SDSS [6], and LIGO [7]). At the same time,
many groups of physicists and computer scientists are addressing the same
problems for the next generation of experiments, which will start taking data
in 2007 at the Large Hadron Collider (LHC) at the European Laboratory for
Particle Physics (CERN) [8], Switzerland (see the collaborations of CMS
[9, 10], Alice [11, 12] , LHCb [13], and Atlas [14]). In this scenario, the
proliferation of distinct solutions to very similar problems risks to become
a big concern. Not only is this a duplication of effort in a time where the

4

budget for high energy physics research grows only by one to two percent per
year, but this also implies in projection a cost to educate the scientists to use
many different computing infrastructures. At this point, there is clearly a
need for the scientific community to come together and define what services
a grid must provide and by what protocols and interfaces.

Since 2001, these matters are discussed by hundreds of people gathering
at the Global Grid Forum (GGF) Conferences [15]. The conferences are
organized around working groups, which provide documents to define the
specific problems, to propose the standards and, sometimes, provide reference
implementations. The leader in this effort is the Globus Alliance [16], which
provides open source technologies that are used as building blocks of many
grids for scientific communities and the industry. Their Globus Toolkit [17]
provides a de facto standard implementation of four major components of a
grid computing system:

1. Security: the Globus Security Infrastructure (GSI) is based on a Public
Key Infrastructure that uses X509 certificates. Certificates define the
identity of software services and people. They are generated by users
and administrators and certified (signed) by Certificate Authorities,
which, ultimately, define the trust relationship in the system. All the
software in the Toolkit is integrated with GSI.

2. Data Management: these components offer data movement via a GSI-
enabled FTP service called GridFTP, and replica location services via
the Globus Replica Catalog.

3. Information Services: the resources of a computing cluster and the jobs
running therein can be monitored using the Monitoring and Discovery
Service (MDS), a GSI-enabled version of an LDAP server. MDS offers
also an indexing service, which provides access to information across
multiple information servers.

4. Resource Management: provides a reference implementation of the
Globus Resource Allocation and Management (GRAM) protocol. The
GRAM server, called gatekeeper, offers simple interfaces to manage
jobs running on underlying batch systems.

Various other groups also provide similar or competing software components,
which are less popular than the Globus Toolkit within the high energy physics

5

community (see Avaki [18], Platform Computing [19], Entropia [20], Sun Grid
Engine [21], United Devices [22], Parabon [23], ProcessTree [24], Popular
Power [25], Mojo Nation [26], and DataSynapse [27]).

Despite its wide acceptance, the components of the Globus Toolkit are
not usable “out of the box” as a complete grid solution. The GRAM protocol
is not user friendly and it does not provide persistency in the job submis-
sion request or error recovery mechanisms. The Monitoring and Discovery
Service is well suited for gathering information upon request, but it does not
allow information to be pushed into the system, a characteristic needed to
monitor event driven systems. The Data management tools do not provide
mechanisms for space allocation, data caching or scratch space management.
In other words, the components are too low level to provide, alone, a full
solution.

Because of this, various groups have developed software that offer higher-
level services, building on top of the Globus Toolkit [28, 29, 30, 31]. A leading
such group is the Condor Team, the developers of the Condor batch system
[32]. For more than a decade, they have been developing software to support
high throughput computing, delivering large amounts of processing capacity
over long periods. In the past years, they have reused some of the concepts
of the Condor batch system to address the problem of job management on
the grid. Condor-G [33], the GRAM enabled extension to Condor, provides
reliable and robust job management via durable distributed transactions and
error recovery mechanisms as well as a user-friendly system interface.

The Globus Toolkit and Condor are solutions so widely used together
that are often referred to as the standard middleware. They are the central
piece of various middleware distribution packages [34, 35] and are the basic
components of many grid projects throughout the world [36, 37, 38, 39, 40,
41, 42, 43, 44, 45].

1.2 The SAM-Grid system

The SAM-Grid [46, 47, 48, 49, 50, 51] is a computing project started at
the Fermi National Accelerator Laboratory [52] in January 2002 and it is
one of the first grids deployed for the high energy physics community. The
Laboratory, in Batavia Illinois, operates the particle accelerator with the
highest energy in the world, the Tevatron. The accelerator is used by two of
the largest particle physics experiments currently taking data: CDF (Central
Detector at Fermilab) [5] and DZero [4]. The project is conducted as a collab-

6

orative effort between physicists and computer scientists and it is financed by
the Particle Physics Data Grid (PPDG) [53], in the US, and GridPP [54], in
the UK. The goal of the SAM-Grid is to enable fully distributed computing
for the DZero and CDF experiments, integrating standard grid tools with in-
house software, when the standards do not provide an appropriate solution.
The SAM-Grid computing infrastructure is the focus of this dissertation.

The SAM-Grid architecture is composed of three major components: the
data handling, the job and the information management systems. This divi-
sion is mostly natural as it closely follows the organization of the standard
middleware and best capitalizes on the software already developed at Fermi-
lab for the experiments. The most notable of this in-house software is the
Sequential Access via Metadata (SAM) [55, 50, 56, 57, 58, 59, 60, 61, 62], the
data handling system of the experiments. Figure 1 shows an architectural
diagram of the SAM-Grid.

The SAM project was started at Fermilab in 1997 to address the data han-
dling challenge that the DZero experiment was going to face throughout the
following decade. As the system grew more configurable and operationally
stable, in 2001 CDF opted to adopt SAM for its data handling needs. Today
the system manages a throughput of Terabytes of data throughout dozens of
sites in America, Europe and Asia.

The SAM project is designed and implemented with four principal goals
in mind. First, to provide reliable data storage, for data coming either di-
rectly from the detector or from data processing facilities around the world.
Second, to enable data distribution among all the collaborating institutions,
today on the order of 70 per experiment. Third, to thoroughly catalogue
the data for content, provenance, status, location, processing history, user-
defined datasets, et cetera. Fourth, to manage the distributed resources in
order to optimize their usage and, ultimately, the data throughput, while
enforcing the administrative policies of the experiments.

Other groups have developed systems that address some of these goals
(SRB [63], GDMP [64, 65], Giggle [66], NeST [67] and references therein,
Magda [68], DataCutter [69], and the Global Grid Forum [70]). As of today,
SAM is still arguably the most comprehensive data handling solution for the
high energy physics domain.

The flexibility and stability of the SAM system is of central importance for
the job and information management infrastructure of the SAM-Grid. Both
services rely heavily on the maturity of SAM, in order to provide solutions to
classical grid problems, such as data pre-staging and job/data colocation (see

7

Figure 1: The SAM-Grid is divided into three major components: data han-
dling, job handling and information management. All three components are
integrated with strong security mechanisms. Each orange bobble represents
an abstract aggregated service, whose implementation appears in the blue
label next to it. The major challenge of the project was integrating all the
services to enable globally distributed computing for the DZero and CDF
experiments at Fermilab.

section 3.3). For these reasons, the SAM system is thoroughly described in
the dissertation, even if the focus of this research is the job and information
management components.

In high energy physics, as in other fields, a computational task can be
decomposed in one or more units of computation, called jobs. The job han-
dling component of the SAM-Grid is designed to provide robust, fault tolerant
and efficient management of jobs on the grid. In addition, it provides a user
interface especially designed for high energy physics applications. Various
groups address this problem in the context of other grid infrastructures. The
European Data Grid (EDG) [36] software has provided a solution with the
development of a large, arguably monolithic code base, based on the standard
middleware. LCG [37] is extending the infrastructure of EDG to address the

8

needs of the LHC experiments. The GriPhyN (Grid Physics Network) [42]
project uses the standard middleware for the low level job management, and
introduces the concept of virtual data to organize job dependencies. See also
[71] and [72].

The Condor and the SAM-Grid teams decided in 2001 to address the
computational requirements of large high energy physics experiments by en-
hancing the Condor-G framework. The advantages of such approach consist
mainly in promoting the standards and ease the maintenance of the infras-
tructure by encapsulating the domain specific software to a series of modu-
lar, lightweight plug-ins. The challenges posed by this work are presented in
chapter 3 and the solutions proposed will be discussed in the dissertation.

In order to reliably execute jobs, the job management component of every
grid relies on a series of services at the resources. In addition to standard
services, such as a local scheduler, the grid needs services that manage the
grid jobs and the resources at the site. These services are sometimes called
the fabric services. In the SAM-Grid architecture, they provide local batch
system adaptation for the incoming grid jobs, dynamic product installation,
intra cluster transport of the job and its output, et cetera. For most of these
services, standard and mature technologies are not available to the commu-
nity, thus, the necessity of spending most of our in-house development on
them. A discussion on the design of the SAM-Grid fabric services can be
found in this research proposal in chapter 4 and the details of the implemen-
tation in the dissertation.

In most grid infrastructures, the job management and data handling com-
ponents heavily depend on the information management system to accom-
plish their tasks. The data handling is interfaced to the information system
for a number of services. The first and foremost for high energy physics is
data bookkeeping, as it enables the reproducibility of the physics results. The
resource selection service, a central component of any sophisticated job dis-
patch infrastructure, cannot function without an information system capable
of discovering resources and propagating their characteristics. The resource
selection service of LCG, also called the broker [73] relies on the RGMA (Re-
lational Grid Monitoring Architecture) [74] information service to function.
The SAM-Grid resource selection service is based on the information collec-
tion mechanisms of the Condor match making service (chap. 3). Finally, the
information system is used by the users to track the progress of their jobs
and the status of the resources.

For the SAM-Grid, the information management is organized in three

9

categories: first, the static or semi-static information, which deals with the
configuration of the grid products, services and resources. Second, the dy-
namic information, which is mostly used for monitoring. Third, the historical
view of the previous information, which consists of the logging and bookkeep-
ing services. Each category of information, when considered in the context
of a grid system, presents a different set of challenges. The SAM-Grid infor-
mation management infrastructure is discussed in chapter 2.

As the SAM-Grid is expanding in size and usage, we are gathering useful
first hand information on the challenges of deploying and operating a grid for
high energy physics. In addition to describing the system, the dissertation
will present such challenges and report on the “lesson learned” for this first
generation of grid systems.

The proposed dissertation will focus on the job and information man-
agement components of the SAM-Grid and will address problems that have
arisen during the phase of design, implementation, and deployment of the
system. We now present these problems and our developed solutions orga-
nized by component.

2 The information management component

A software environment designed to support the computing of a modern high
energy physics experiment needs to address the challenges associated with
handling large amounts of data, processed by jobs that run on a distributively
owned, shared and dynamic resource infrastructure. In recent years, various
research groups have proposed theoretical models to describe the status of
such software environments. Some of these groups use simulations to study
the behavior of the systems and propose different configurations to optimize
metrics, such as time to completion of jobs or network bandwidth [75]. While
in a theoretical model the information associated with the system can be
viewed as the system status over time in some abstract parameter space, in
a physical system, such as the SAM-Grid, it is hard to deal with concepts
like global status or list a complete set of parameters that would define such
status. Rather, information management can benefit from a classification of
the information in three categories, treated in practice with different software
tools:

1. the information that is static or semi-static in nature, such as the
global parameters of the grid or the setup of services and resources
at a site. Changing this information generally involves a human in-

10

tervention, typically by a system or service administrator. We refer to
this category of information with the generic name of grid configuration
and we talk more about it in section 2.1;

2. the information associated with the behavior of the entities in the grid,
such as resources, services, jobs, et cetera. This information is dynamic
in nature and it is captured in various degrees and representations by
the monitoring infrastructure of the grid (section 2.2);

3. the historical view of the previous two categories, with the appropriate
level of synthesis: this category is useful mainly for bookkeeping, an
activity of fundamental importance for the reproducibility of scientific
results, and for statistical studies of the grid, interesting for the com-
parison between theoretical models and physical systems. We discuss
this last category of information in section 2.2.

2.1 The configuration infrastructure

The SAM-Grid configuration system provides facilities to manage only those
parameters that define the behavior of its services. It does not attempt to
offer tools to administer the whole grid infrastructure, such as operating
system components (e.g. libraries and devices) or standard system appli-
cations (e.g. batch and file systems). This latter problem is addressed on
the Grid by a few emerging software infrastructures [76, 77, 78] that extend
the classical software distribution mechanisms for local clusters. It should
be noted that these tools address configuration at the level of the operating
system and of a few standard applications. The configuration of high-level
software services is in general more complex in nature and not necessarily
configurable automatically. We expose the problem in more detail in the rest
of this section.

There are various challenges that a grid configuration infrastructure must
address, first of all the large number of parameters. This factor has two main
impacts. The first is the high likelihood of name conflicts. In order to prevent
name conflicts, the framework will have to use some form of name spacing
for the parameters. The second impact is the potential for inefficient man-
agement of information. The framework must thus use a technology that
optimizes access to the parameters. Another challenge is that the configura-
tion should be distributed to foster site autonomy and maintainability, but,

11

on the other hand, should be easy to manage from anywhere within the grid
and resilient to concurrent management attempts. For example, in order to
describe the configuration of different groups of resources and services at a
site, the system should allow the organization of the information into a single
repository, central to the site, as well as into multiple repositories managed by
different administrators, with different access policies, et cetera. In any case,
the specific organization strategy should be transparent to the information
management mechanisms. In addition, it is crucial to present a consistent
view of the configuration throughout the system, a task not trivial consider-
ing the distributed nature of the services and the fact that different services
need to represent the configuration in different formats. For example, the
resource advertisement service (see section 3.3) and the monitoring service
must provide the same information regarding the resource characteristics of
a certain site, even if they are physically instantiated on different machines.
Moreover, in order to increase the usability of the system, the configuration
framework should provide the same interface to describe the resources and
services at a site, as well as to configure the individual services and software
products.

In the dissertation, we will present our work on developing a system that
is designed to satisfy the requirements stated above. At this time, the system
has been implemented and has been used for the initial deployment of the
SAM-Grid.

In order to address the concerns relative to the large parameter space,
we have chosen to represent the system configuration in XML format. The
primary reason for this choice is the fact that XML is a language that nat-
urally expresses context-based structures, thus easily allowing the definition
of name spaces for the parameters. At the same time, available to the com-
munity are a set of querying and transformation languages, such as XPath,
XUpdate, XSLT and XQuery, which address the problem of efficiently ac-
cessing and manipulating XML documents. The challenge of allowing remote
and concurrent access to the configuration is addressed by storing the XML
configuration in XML databases. All of the XML databases available to-
day support remote data management via transport mechanisms such as
CORBA, XMLRPC and SOAP. Furthermore, they provide database seman-
tics for concurrent client accesses via the use of emerging standards such as
XUpdate. For the SAM-Grid deployment, the database that we have chosen
is Xindice [79], an opensource software developed within the XML project of
the Apache Software Foundation. Xindice is implemented as a java servlet,

12

that we generally run using the Tomcat Servlet Engine.
In the SAM-Grid deployment scheme, every site makes available at least

one XML database. The SAM-Grid products and services installed locally are
configured with the URL of the site database from which they can read their
own configuration as well as the portion of the site configuration that is rel-
evant to them. Thus, the remote accessibility of the configuration repository
allows the distribution of the services within the site. In addition, through
the use of the SAM-Grid advertisement service (section 3.3), the URL of each
database is registered with a central information collector, hence allowing the
traversal of all the grid configuration repositories from anywhere within the
grid.

2.1.1 The configuration process

The configuration of the SAM-Grid services and products, as well as their
hierarchy and relationship with the physical resources at a site, are mainly
gathered through interviews with the system administrators. For this reason,
a dedicated software tool to drive the interviews is of central importance in
the configuration process. A dedicated tool guarantees a consistent integra-
tion with the configuration framework, so that, in the case of SAM-Grid, the
resulting answers could be represented in XML format and stored at the site
in an XML database. On the other hand, in order for this tool to be usable, it
should be easily configurable and flexible enough to fit the logic of all the most
relevant interviews. A way to achieve this is for each product to come with
a template that drives the tool through the interview. Incidentally, it should
be noted that this template could be thought of as a meta-configuration,
alluding to the fact that it would be the configuration of how to gather a
product or service configuration. The meta-configuration language should
address specifically the problem of driving interviews, offering the developers
characteristics that could be preferable to a generic language, such as Perl,
Python or UNIX shell. The first minimum requirement is that it should
allow the expression of simple logic, such as loops and branches in the ques-
tions. Second, it should provide facilities to determine the best default to a
question, considering previous answers as well as the configuration of other
services and resources. Third, the structure of the template should reflect
the final configuration of the given product, a characteristic useful to ease
maintenance.

While the literature on system configuration languages is abundant [80,

13

81, 82], the study of meta-configuration languages is far from being fully
explored. At this time, the SAM-Grid configuration framework uses a pro-
totype tool developed by the team, called the meta-configurator, which is a
first attempt to address the concerns expressed above. The template con-
sists of an XML document, where the tags and attributes define the name
of the configuration parameters. The logic of the interview is defined at
each tag with special attributes, which are interpreted as directives to the
meta-configurator. In the dissertation, we will thoroughly describe the meta-
configuration language presenting examples and commenting on our experi-
ence using the tool.

2.1.2 Site and Product configuration

The SAM-Grid organizes the configuration of its services and resources, as
well as their mutual relationships, breaking it down in sub-domains, corre-
sponding approximately to the participating sites and institutions. Although
other breakdown structures are, in principle, also possible, ranging from a
configuration model where each service and resource is independent to a com-
pletely central model, the site-centric approach follows naturally considering
the importance of site autonomy. Hence, in this context, the boundaries of a
site correspond to the ownership boundaries of the resources. On the other
hand, defining all the configuration parameters of a site in a single docu-
ment becomes verbose and soon difficult to manage. Therefore, a modular
approach is preferable, since many parameters are only meaningful to the
service that uses them. In other words, it is beneficial to organize the in-
formation in a single site description that outlines the relationships between
services and resources, while the internal details of their configuration are
deferred to different units. As it is possible to organize the configuration of
the whole grid in different sub-domains, similarly there are multiple ways of
defining such units. Possible models range from grouping the information rel-
ative to a service in a single document, to producing a configuration structure
for every tool and program that composes the service. Then again, software
is typically organized in products, which group together tools and programs
that cooperate to accomplish a well defined set of tasks. Thus, we have de-
cided to organize the configuration of the SAM-Grid services according to
their natural breakdown in software products.

In this research proposal, we argue that in order to promote the main-
tainability of the system, both the site and the product configuration should

14

be manageable using a single set of tools. This toolkit should provide an
interface to the configuration framework, which other programs, such as the
meta-configurator, could use. Moreover, although it should use XML to
represent configurations and XML Databases to implement persistency and
remote accessibility, it should provide robustness in case of occasional net-
work access problems, in order for the SAM-Grid not to trade accessibility
for reliability. On the other hand, such a system faces the nontrivial problem
of maintaining the synchrony between a local and remote database. In the
dissertation, we will present in detail the SAM-Grid configuration tools.

Despite the benefits of treating site and product configurations symmetri-
cally, their usage by the rest of the system poses a different set of constraints
on them and their management infrastructure. In fact, while it is crucial
for the site configuration to have unambiguous parameter names, organized
in a well thought out schema that directly represents the grid view of the
relationship among services and resources, such care is not always necessary
in the definition of internal configuration parameters of software products.
Conversely, a generic tool that manages product configurations needs to be
able to interface to different product management systems, such as PACMAN
[83], Linux RPM, UPS (Unix Product Support) [84]: this is a requirement
that simply does not apply to a site configurator. In the dissertation, we will
discuss how the product configuration is organized and how the configuration
tool is interfaced to the UPS product management system. We will also show
the mechanism used to eliminate the configuration process during upgrades,
in those cases where this is possible.

For what concerns the site configuration, today the grid computing com-
munity is still investigating how to describe the services and resources at
a site. This description is used by other services to represent and interact
with the sites and affects the design of grid services, such as monitoring or
brokering, as well as other basic infrastructures, such as the job description
language. One of the most interesting ongoing studies of the subject is repre-
sented by the GLUE schema [85], which will be adopted by the Large Hadron
Collider (CERN, Geneva, Switzerland) Computing Grid Project (LCG) [37].
The GLUE schema describes the entities at a site at a very fine-grain level,
using UML notation to represent the relationship among them. The entities
considered not only include high-level grid services and standard resources,
such as gateway nodes, storage elements or computing clusters, but also tra-
ditionally lower-level resources and their characteristics, such as single nodes
in a cluster, their memory, local disk size, processor speed, et cetera.

15

While the studies related to the GLUE schema are of extreme practical
interest, we argue in this research that its level of detail may not be necessary
to describe a grid site. We believe, in fact, that the most interesting infor-
mation for users and other grid services is of aggregate nature. Of course,
there is a minimal level of detail that the grid infrastructure must be able to
provide, especially when dealing with characteristics of principal importance
to the user, such as job status or cluster utilization. Despite the arguable
usefulness of these local details, we believe that there is little incentive today
for the system administrators to keep this information up to date. In fact,
maintenance and trouble shooting are generally operated using site-specific
tools, which today give a variety of diverse views of the services and re-
sources, views not necessarily compatible with the details sought by these
grid schemas. Also, automating the collection of this type of information
implies the installation of servers at the worker nodes of a cluster, a practice
that in general is contrary to the paradigm of distributed ownership of the
resources. Then again, studies of the type of the GLUE schema may lead to
the definition of standard quantities of interest, which eventually could be
gathered with site-specific implementation adhering to the standards agreed
upon by the community.

In the dissertation, we will present the site description of the SAM-Grid.
This site description is aggregate in nature and the entities considered are
organized in a simple hierarchical structure. The site configuration is man-
aged through the SAM-Grid configuration framework, in a uniform way with
respect to the configuration of the products.

2.2 The Monitoring and Logging Infrastructures

The monitoring, logging and configuration infrastructures are the three as-
pects of the SAM-Grid information management component. The monitoring
infrastructure captures mostly dynamical information relative to main enti-
ties of the grid, such as services, resources, jobs, et cetera. On the other
hand, the historical information relative to the same entities is recorded by
the logging infrastructure. Both of these infrastructures are discussed in the
present chapter.

The monitoring infrastructure of the SAM-Grid mainly implements two
different approaches to access information. In the first approach, events rele-
vant to the entities of the grid are published to the information repositories,
hence adopting a “push” model. This approach is best suitable to record a

16

change of state of these entities, independently from the external interest on
the information at the time. The information gathered with this model is
generally maintained persistently, as it is always significant with respect to
some entity, and it is often used by the logging infrastructure as well. The
second approach, instead, consists in gathering information upon request,
adopting a “pull” model. In this model, the monitoring services maintain
the information in transient caches, where the knowledge is built incremen-
tally when needed. This information is generally not maintained persistently,
since its gathering is prompted by the interest in the status of the entity at
the time and not by some relevant event occurring within the entity itself.
For both push and pull models, the information repositories must be dis-
tributed and it must be easy to compose information coming from different
repositories.

It should be noted that other information gathering models are also pos-
sible, for example most notably the “heart beat”. In this model, information
is gathered periodically and recorded persistently. The drawbacks of this
model are that, for logging, it does not necessarily record relevant statuses of
the system, and, for monitoring, it shows by design stale information. On the
other hand, this model is ideal to take a series of measurements for quantities
that vary slowly with respect to the sampling rate. It is also straightforward
to implement and the SAM-Grid uses it to monitor the stability of some data
handling services, using a tool called SAM TV [86].

Various technologies have been developed to address the problem of mon-
itoring on the grid. The solution provided by the Globus Toolkit is the Mon-
itoring and Discovery Service (MDS) [87, 88, 89, 98]. The Condor team has
developed a product called Hawkeye [90], while the European Data Grid and,
now, LCG use RGMA [74]. Zhang, Freschk and Schopf compare the three
technologies for scalability and performance [91]. Another popular monitor-
ing system in the grid community is MonALISA [92], based on Java and Jini
[93] technologies. Plale, Dinda and Laszewski compare the performance of
hierarchical versus flat table organization of the information [94]. Plale also
compares the performance of a MySQL relational database [95] versus the
Xindice XML Database [79] for a set of standard database operations [96].
Incidentally, Xindice is the technology chosen by the SAM-Grid for its XML
Databases.

The technology used by the SAM-Grid for its pull model monitoring [97]
is the Globus MDS, complemented by the information collector of the re-
source selection service (see section 3.3). The core of MDS is a Lightweight

17

Directory Access Protocol (LDAP) server [99, 100]. The information is gath-
ered by information repositories (GRIS) and it is organized in trees, where
each node has a unique identity code. The uniqueness of the nodes facilitates
the composition of information trees coming from different repositories. The
composition of information is also facilitated by a registration service (GIIS),
used by the information repositories. In addition, the organization in a tree
structure is well suited for a monitoring system where knowledge is built in-
crementally, a typical pattern when the information is explored by a human
being. The information for each node is gathered by launching executables
called information providers. The information providers are launched when
MDS is queried for the information contained in a certain node. The informa-
tion in the node is then maintained in transient caches in order to optimize
access time and server load [91].

The SAM-Grid deploys an MDS per site. The information monitored via
MDS tends to be aggregate in nature and reflects the status of distributed ser-
vices at the site, such as the SAM data handling services. The configuration
of MDS is derived from the SAM-Grid site configuration, by transforming
the XML representation of the site resources to the LDAP Data Interchange
Format (LDIF) [101]. This translation mechanism provides for a consistent
view of the resources and services at the site, irrespectively of the service
that publishes the information (section 2.1). A full account of how MDS is
used to monitor the SAM-Grid services is described in the dissertation.

For the push model monitoring, the SAM-Grid uses the same XML database
infrastructure that is used by the configuration framework. As for the con-
figuration infrastructure, the SAM-Grid has developed a library that facil-
itates the insertion and the update of information to the database. This
event-driven monitoring infrastructure is currently used to log the statuses
associated with the user jobs [102]. A job submitted to the SAM-Grid is
decomposed in an appropriate number of parallel instances at the remote
execution cluster and submitted to the local job scheduler (see section 4.1).
Being able to monitor and to log the complex status of the job, i.e. at the
granularity of the single job instance running at a certain node of a cluster,
is of crucial importance.

To present a uniform view of the job status, we need a representation
independent from the status given by the particular type of local job sched-
uler. The schema representing the job status should also be flexible enough,
to allow the addition of extra information, as our understanding of the asso-
ciated relevant metrics evolves with time. Moreover, in the spirit of the grid,

18

we promote a distributed logging architecture, where every local monitoring
service is remotely accessible. These considerations are a strong incentive
for the reuse of the XML databases deployed at each site. In addition, the
hierarchical structure of the jobs in the SAM-Grid is naturally represented
in XML format. The details of the information logged with this mechanism
are described in the dissertation.

The information saved in the SAM-Grid logging infrastructure can be de-
composed in three major categories. First, the data processing history, which
consists of information of fundamental importance for the reproducibility
of the scientific results. This information is recorded in the SAM relation
database as a side effect of using the data handling services. It includes an
identifier of the processing application, as well as the dataset processed with
all its relevant metadata. The dissertation will talk about the SAM database,
even if it is not the focus of the present work. Second, the history of the sta-
tuses of main entities of the grid, such as services and jobs. This information
can be used to study the system, but do not participate in the accounting of
the scientific discoveries. The complex job status logging information is part
of this category as are a series of SAM tools [103, 86]. Third, the debugging
messages logged by each service on the grid. This information is of interest to
developers only and in case some error condition occurs. The infrastructure
consists of a set of distributed logging servers, capable of logging unstruc-
tured messages. The information transfer is unreliable but not blocking by
design, using the UDP network protocol. This system could be improved by
making the logging servers more easily distributed and allowing the handling
of structured method [104].

The SAM-Grid did not adopt a uniform solution to address all the cate-
gories of information, mainly for historical reasons. The SAM team is looking
into the adoption of a more integrated solution, similar to the LCG rGMA
system [74] at this time. On the other hand, the system allows a semi-
uniform access to the information for the users by the use of various web
interfaces. For the SAM-Grid monitoring system, the web site [105] uses
a set of PHP [106] scripts that present a consistent hierarchical extensible
view of the whole system. This development is the result of a collaboration
with NorduGrid [39], who shared with us their initial implementation of their
web monitoring pages. The content of the SAM-Grid monitoring web site is
elaborated in the dissertation.

19

3 The Job Management Component

Modern high energy physics experiments, such as DZero and CDF, typically
acquire more than one TB of data per day and move even ten times as much.
To give an example, during the past year the SAM system has stored 400
TB of data for DZero alone. However, this much data is not only a challenge
for storage and data handling, but for the data processing as well, which
must make use of the computational resources of all the participating sites,
in order not to be the limiting factor in achieving the goals of the physics
program.

Aside from the stream of data from the detector, various other computing
activities contribute to the one TB of data stored per day. Three of the
most typical activities are data filtering, also called data “reconstruction”,
the production of simulated events, and data analysis. This third activity
broadly consists of the selection and the statistical study of particles with
certain characteristics, with the goal of achieving physics measurements. In
addition, it should be noted that the first two activities are indispensable
for the third one. During data reconstruction, the binary format of events
from the detector is transformed into a format that more easily maps to
abstract physics concepts, such as particle tracks, charge, spin, et cetera. The
original format, called in jargon “raw”, is instead very closely dependent on
the hardware layout of the detector, in order to guarantee the performance
of the data acquisition system, and is not suitable for data analysis. On
the other hand, the production of simulated events, also called “montecarlo”
production, is necessary to understand the characteristics of the detector
either related to the hardware, such as the particle detection efficiency, or to
physics phenomena, such as signal to background discrimination.

These three typical activities, which ultimately correspond to software
application families, differ among themselves principally, but not uniquely, by
the usage of the computing resources. The communities that run the software
range from a handful of almost dedicated experts in the case of reconstruction
and montecarlo activities, to potentially the whole physics community in the
case of data analysis. The typical duration of a single reconstruction or
montecarlo job is dozens of hours, while data analysis ranges from a few
minutes to days, depending on the problem studied. All the activities are
CPU intensive, but while both reconstruction and analysis are highly I/O
intensive, montecarlo is not. In fact, montecarlo almost never requires any
input data, while for reconstruction and, especially, analysis the input ranges

20

Activity Description Community Load time/job
Reconstruction data filtering Small CPU & I/O 10 hours
Montecarlo data simulation Small CPU 10 hours
Analysis data mining Large CPU & I/O hours to days

Activity Input/Job Output/Job Input/Year Output/Year
Reconstruction GB GB 100 TB 100 TB
Montecarlo None 10 GB None TB
Analysis 100 GB GB varies varies

Table 1: Comparison of different characteristics among three typical compu-
tation activities of the DZero experiment. The bottom table focuses on the
input/output data size. The numbers represent the order of magnitude.

from a GB to hundreds of GB. In addition, while the data access pattern
of reconstruction is highly predictable, since all the “raw” data have to be
filtered a few times throughout the lifetime of the experiment, the data access
patterns of data analysis varies widely, as a few datasets can be accessed over
and over again, while others may be almost neglected. All three activities
can be run trivially in parallel because of the independent nature of particle
physics events. On the other hand, while montecarlo and reconstruction are
purely “batch” activities, analysis is run in both interactive and “batch”
modes.

Table 1 summarizes the order of magnitudes of different characteristics
of reconstruction, montecarlo and data analysis for the DZero experiment.

Various requirements can be identified for a job management infrastruc-
ture capable of running these three types of application families. The prob-
lem that we propose to solve with this research activity is implementing a
job-handling system that can run applications in batch mode, addressing the
requirements formulated below.

1. This infrastructure must foster site autonomy, as to satisfy the grid
paradigm of distributed ownership of the resources. This means that
the grid must not impose any specific choice of local fabric manage-
ment systems, such as local schedulers, intra-cluster data distribution
mechanisms, or monitoring tools. In particular, the grid should not
impose the presence of any daemon running on the worker nodes of the

21

local batch system.

2. It should not require continuous network connectivity with the machine
from which the user manages the job. In other words, the user should
not need to have login access to special job management machines, but
rather the system should provide some lightweight user interface to a
core of highly available job management services. This user interface
software, in principle, should be able to run on the user’s laptop.

3. The job management infrastructure should be reliable, handling the
job instance persistently, and guaranteeing the retrieval of any output
and/or errors of the application and the middleware. Incidentally, this
feature is also of fundamental importance during the development of
the infrastructure itself. This is in fact the time when errors and log
files are studied with particular care.

4. The system should provide an automatic resource selection service.
This service, sometimes called “broker”, should analyze the job re-
quirements and select the best resource available for the job, according
to some dynamically configurable algorithm. Given the complexity and
dynamic nature of a grid, though, the system should be able to react to
suboptimal decisions of the broker and consider the resource selection
process mainly as a “recommendation”.

5. The system should implement some form of fault tolerance, especially
to temporary disruption of service. During job submission, for example,
there should be a mechanism for automatic resubmission to the same
resource, with capabilities of asking the broker to select a different one
in case of prolonged unavailability.

6. It should be possible to automatically execute jobs that expose to the
grid their internal interdependencies. We call this type of jobs “struc-
tured”, as opposed to “unstructured” jobs, which are treated as atomic
processing units. The job management infrastructure should execute
the atomic jobs composing a structured job in the right order, possi-
bly relying on the data handling system to handle input and output.
It should also provide some mechanism to check the success of each
atomic job not only by its exit status, but also in the context of the
whole structure. In addition, in case of failure, it should allow the
resubmission of the jobs that failed or had not yet run.

22

7. The system should comply with minimum performance requirements
for metrics such as the number of jobs that can be submitted per unit
time or the “cost” of job submission. In this regard, we want to stress
that for CDF and DZero, the former is not a concern in the case of
reconstruction and montecarlo. In fact, as previously discussed, these
jobs run for hours or tens of hours and are submitted by a small number
of experts in a coordinated fashion. Thus, this community is willing
to wait minutes for every single job submission, if this means running
more consistency checks over the job request, and therefore increasing
the probability of terminating the job successfully.

We address these requirements with an infrastructure composed of four ma-
jor components, organized in a three-tier architecture, as shown in figure
2. The first tier consists of a thin layer of software that interfaces the user
to the system. For job submission, this user interface should accept two
pieces of information: first, the description of the job, specified in a high-
level language meaningful to the physicists; second, and optionally, the set
of all the files necessary to run the application i.e. executables, libraries,
configurations, et cetera. After submission, the user interface should assign
the job a unique identifier, usable as a handle for any further management.
Aside from when managing the jobs, the user interface should not mandate
network connectivity in order to comply with the above requirements. The
envisioned multiplicity of this tier is up to one per user i.e. up to hundreds
of instances. The proposed functionalities and implementation of this soft-
ware layer is described in detail in section 3.1. The second tier maintains
a persistent queue of grid jobs and, being interfaced with the first tier, acts
as a mediator between the user and the job instance. Because this tier acts
on behalf of the user, submitting the job to a resource capable of execut-
ing it, it is also called the “submission” tier. The envisioned multiplicity of
this tier is of a few instances per nation, or, in other words, a few dozens
throughout the grid. The submission tier is described in detail in section
3.2. The third tier consists of the sites that ultimately run the jobs. These
sites must provide computing and storage resources, tied together by a set of
local and grid services. In jargon, these local resources are sometimes called
the grid “fabric”. The fabric management and execution site grid services
are described in chapter 4. Execution sites advertise their characteristics to
a Resource Selector service, including such information as computing clus-
ter availability and their gateway entry point, the reference to the local data

23

handling services, the local monitoring system URL, et cetera. The Resource
Selector acts as the glue of the job-handling infrastructure, recommending
to the submission sites what resource best matches the requirements of each
job. Today this service is centralized. Nevertheless, should scalability prob-
lems arise, the service could be easily decentralized. The resource selector is
described in details in the section 3.3.

The SAM-Grid implements this job-handling architecture using Condor-
G as the underlying middleware. We now discuss what modifications have
been made to Condor-G in order for it to manage large high energy physics
applications on the grid. The details of how the Condor framework was
integrated with the SAM-Grid will also be presented.

3.1 The SAM-Grid Client

The SAM-Grid client software implements the user interface to the collective
job management services of the grid. Since the goal of the SAM-Grid project
is to address the distributed computing needs of the DZero and CDF exper-
iments, the language used to interact with the grid via this user interface
must be tailored for high energy physicists. This means that the client soft-
ware must recognize terms related to the typical activities of a high energy
physics experiment: montecarlo event production, data reconstruction and
data analysis. Moreover, it must provide a way for the user to specify the
internal structure of the jobs related to these activities. In fact, montecarlo
and reconstruction especially require multiple stages of data processing be-
fore producing data usable by the whole community. A typical example of
a post processing stage is the merging of the files produced by the parallel
processes involved in reconstruction and montecarlo production. Being able
to declare to the user interface the dependencies among these stages and
having the system automatically carry over the related tasks without human
intervention significantly increases the overall computing efficiency. Further-
more, the client software must not require continuous network connectivity,
thus not imposing on the grid system specially maintained client machines
with user accounts for a large number of collaborators.

The client software is organized in two distinct layers. The top layer,
closest to the user, exposes the interface specific to the high energy physics
domain. The bottom layer, which consists of standard middleware from the
Condor-G system, implements the low-level job management mechanisms.
In particular, for job submission, the top layer corresponds to the SAM-Grid

24

Figure 2: The SAM-Grid job submission management infrastructure is based
on a three-tier architecture. The first tier is the user interface (top), a thin
layer of software used to manage the jobs. The second tier is the submission
site, a suite of services that maintain the queue of grid jobs, mediate the
interaction between the users and the remote resources and can submit jobs
on behalf of the user. The third tier is the execution site (bottom), where
the jobs are run on the available resources (the figure shows only local job
handling resources and services, for clarity). The resource selector collects
the resource characteristics advertised by each execution site, and assists the
submission site in deciding where to run each job.

25

Job Description Language (JDL) interpreter and the bottom layer to the
native Condor-G job dispatcher. In the rest of the section we discuss the
JDL interpreter.

The main responsibility of the JDL interpreter is to translate the descrip-
tion of the job provided by the user into a low-level set of directives to the
services of the grid. In addition, the interpreter is a natural place to check
the consistency of the parameters presented by the user: this is important
because the typical latencies of a grid imply that trivial, application specific,
mistakes in the value of the parameters are detected by the infrastructure
hours after the job submission and they generally result in unrecoverable fail-
ures. The consistency checks are essential to implement a fast fail submission
mechanism.

The interpreter translates the user job description into a set of directives,
which can be categorized based on what grid services they affect:

• Directives sent to the interpreter itself: these have an effect in particular
on the creation of the software archive containing the user executable,
libraries and configuration files. In jargon, this archive is called the
“user input sandbox”. It should be noted that in the SAM-Grid model
the user sandbox is, in principle, only part of the software required to
run the overall application. The rest of the software is retrieved via
the data handling system and dynamically deployed by the sandboxing
fabric services (chap. 4).

• Directives sent to the Resource Selection Service: these affect the logic
used by the resource selector to associate a job with an execution site.
An example of a typical logic used for data analysis gives priority to
those sites that have already cached the highest percentage of the data
requested by the job. Another typical logic is random site selection. We
propose to study and implement site ranking heuristics that optimize
various metrics, such as minimal time to job completion or minimal
bandwidth, for the three types of high energy physics applications. See
section 3.3 for more details.

• Directives sent to the submission site services: most notably, these
configure the logic for resubmitting/rematching jobs in case of failure.
It should be noted that not all the jobs can safely be automatically
resubmitted (section 3.2). Another example of a typical directive in this

26

category is the configuration of the email address to which notification
should be sent after job completion.

• Directives affecting the fabric services at the execution site: these are
aimed at recreating the job execution environment. In particular, they
can program the dynamic product installation mechanism, declaring
specific products as necessary to the job (section 4.2).

• Directives to the data handling system: these include, for example,
what dataset the job requests or what physics group is accountable for
the “cost” of the data caching.

The design and implementation of the interpreter, as well as the relevant
parts of the SAM-Grid JDL, are discussed in the dissertation. At this time,
SAM-Grid is supporting Montecarlo and Merging job types. Other job types,
such as Analysis and “Structured” jobs, are in the prototypical phase, while
others, such as Reconstruction jobs, are under development. In the disserta-
tion, we will provide a full solution for the prototypical job types and compare
the SAM-Grid JDL with other grid JDL [107, 108]. We summarize below
the main problems that this involves.

The requirements of the data analysis job type are more stringent than
the montecarlo type, since it involves many more users accessing data in un-
predictable patterns. We foresee potential scalability problems in the mid-
dleware, in particular at the gateway machine of the execution sites. The
GRAM protocol, in fact, instantiates a process for every grid job submit-
ted to the site. If the number of grid jobs running concurrently reaches the
hundreds, the load of such processes may surpass the processing power of
the typical gateway machine. Another problem is the local monitoring in-
frastructure (section 2.2). It is based on an XML database, a technology
known to still have problems in dealing with documents larger than 1 MB
and with the transaction management of hundreds of concurrent updates.
The solution that we plan to investigate for both problems consists in limit-
ing the number of jobs running at the execution sites, by throttling the flow
of jobs from the submission sites. In the SAM-Grid architecture, this can be
achieved by developing Resource Selection Service algorithms that are aware
of the maximum number of jobs acceptable by each site. These limits can
be made available to the Resource Selection Service by the sites themselves
using the Advertisement service. A similar solution has been adopted within
the context of the Condor-G framework to do resource load balancing in a

27

BioInformatics grid and it was demonstrated at the Super Computing 2003
Conference, Baltimore, by the Condor Team [109]. That grid consisted of
half a dozen sites, each available to queue up to two dozens jobs. Even if no
scalability limit was hit in that context, the demonstration was nevertheless
a proof of principle of the functionality of the framework to deal with this
types of problems.

Structured jobs manage a combination of other job types. Structured
jobs capabilities have been requested by the community since the beginning
of our work on the SAM-Grid. The ability for the infrastructure to auto-
matically submit dependent jobs, checking at each stage the success of the
dependencies before submitting new tasks, is appealing, mainly because it
virtually eliminates the dead times that occur between job submissions when
a human operator is involved. Structured jobs also allow organizing in a sin-
gle processing unit a potentially complex task, thus reducing the errors that
an operator could make when managing the task step by step through days
of processing. Other groups interested in high energy physics make also use
of structured jobs [42, 110]. It is interesting to note that these groups, as well
as the SAM-Grid, have implemented structured jobs using the same middle-
ware, the Direct Acyclic Graph job Manager (DAGMan) [111]. DAGMan is
a workflow management layer on top of the Condor middleware. The depen-
dencies among the jobs can be declared to DAGMan, so that it can compute
the order of job execution. In case some jobs fail, DAGMan automatically
computes a “recovery” DAG, to allow the reprocessing of the failed jobs and
its dependencies only. In the dissertation, we will discuss in detail how the
SAM-Grid uses DAGMan to implement structured jobs and how DAGMan
could be improved to be more usable by large grid infrastructures.

3.2 The Job Submission Service

The job submission service is the second tier of the job management com-
ponent, interacting with both the client software at the first tier and the
execution site services at the third tier. This component has three main
responsibilities in the overall architecture.

1. It maintains the queue of the grid jobs, holding the job description as
well as the user input sandbox. The information is stored persistently
and the status of the service and of the jobs can be recovered after a
shutdown.

28

2. It interacts with the Resource Selection service, providing upon request
the description of the pending jobs and receiving a recommendation on
where each job should be submitted (see section 3.3).

3. It is a mediator of the interactions between the user and the remote
resources for the management of the jobs, when the user is online.
Conversely, it acts on behalf of the user, when the user is offline. In
particular, the submission service maintains up to date the status of
the job, resubmits the job to the grid resources in case of failure, and
receives the output sandbox from the job upon completion.

In the SAM-Grid model, the output sandbox consists of “small” user files and
meta-processing information, such as the standard output and error streams
and the application log files. In other words, the output that is of little inter-
est to the community as a whole and does not need to be catalogued. On the
other hand, the main results of the computation, often many GB in size, are
catalogued and handed over to the data handling system. The information
in the output sandbox is of fundamental importance for troubleshooting the
system as well as the application, despite the fact that it is not permanently
stored nor catalogued. The user can download the sandbox from the sub-
mission site via the web. If the output is not retrieved, it is deleted after a
week, according to the typical submission site policy. Another popular model
of output sandbox management requires that the users specify a location to
store the job output. This model is adopted with some variations by LCG as
well as by the CDF distributed Analysis Farms (CAF) [112]. In the case of
CAF, the user is responsible to check that the chosen storage accepts the user
credentials and that it has enough space to store the output. If these condi-
tions are not true, generally the system buffers the output for some time at
the execution site. In practice, today the CAF system is fully integrated only
with kerberos, instead of more common grid standards, such as the Globus
Security Infrastructure, and the storage system of choice is usually the user’s
home area. Within these restrictions, though, most users consider that the
convenience of finding the output directly in the user’s home area overcomes
the responsibilities that the model imposes to them. On the other hand,
we believe that the SAM-Grid model offers a reasonable trade off between
user convenience and responsibilities, as it requires the user to download the
output, but does not require the users to be responsible for the availability
of the storage system.

29

Another open problem for the SAM-Grid is the integration of a credential
management system. The Globus security infrastructure allows the creation
of short-lived proxies for long-lived identity certificates. This mechanism
minimizes the risk of long-lived credentials theft, as the short-lived proxies
can always be used in place of the long-lived credentials for the user au-
thentication. On the other hand, it is not always clear how long the proxy
credential should last. In general, a job needs a proxy to access resources
on behalf of the user, but the lifetime of a job spans from a few hours to
several days. Typically, users tend to create proxies that last days, being
more concerned about a delayed job not storing its results rather than about
the risks of identity theft. Yet, we believe that a grid system should offer the
users a convenient mechanism to overcome this problem. At the minimum,
the system should allow the distribution of proxies, renewed periodically by
the user, to all the services that act on behalf of the user, including the job.
On the other hand, this distribution system is non trivial, since it is difficult
to coordinate the propagation of the new proxies from the client to all the
entities in need. In addition, requiring the user to manually renew the proxy
is not a very usable mechanism. An elegant solution to this problem is inte-
grating an online credential repository service with the grid. In this model,
initially, the user can upload medium-lived proxy credentials to the reposi-
tory, so that, subsequently, all the entities in need can prompt the service
to issue short-lived proxies on behalf of the user. We propose to integrate
the SAM-Grid with the MyProxy server [113], which is the de facto standard
technology in this field. We expose hereby our plan.

The SAM-Grid components that should be integrated are the submission
site service, the user jobs and the execution site job managers. A job manager
is a process forked by the Globus Gatekeeper at the execution site gateway
machine. The job manager is the grid interface to the local fabric services,
most notably to the local job scheduler. The SAM-Grid has developed a
suite of such interfaces, tailored for each of the main high energy physics
computation activities (chap. 3). The job manager runs under the user
identity and it uses delegated proxy credentials, which we want to renew
with MyProxy. The job manager can obtain the new credentials directly
from MyProxy or from the submission site service. This second option is
possible because as of April 2004 MyProxy is fully integrated with the Condor
framework. On the other hand, providing a consistent mechanism to renew
the credentials for the job will be more difficult. In general, the credentials
can be propagated using either a push or a pull model. In the push model, the

30

job manager uses the facilities of the local scheduler to update the credentials
of the job running at a worker node. In the pull model, a process started
at the worker node monitors the lifetime of the local credentials and invokes
MyProxy upon their expiration. The disadvantage of the push model is that
not all the local schedulers can move files to the job environment after job
submission. Thus, this model would limit the types of local schedulers to
which the SAM-Grid could interface. The disadvantage of the pull model,
on the other hand, is that firewalls may block the communication with the
MyProxy server, hence incapacitating the credential renewal mechanism. We
propose to further investigate both approaches and implement a solution that
will best serve our system.

Another interesting problem consists in developing the logic for the sub-
mission site to resubmit jobs on behalf of the user, in case of failure. As
already mentioned, the instructions of the resource selector to the submission
service must be considered as recommendations only. The resource selector,
in fact, may not know of local problems at the resources or may have stale
information (section 3.3). Developing algorithms to react to the unavailabil-
ity of grid resources can improve the fault tolerance of the whole system. On
the other hand, the resubmission logic should be tuned to recognize different
types of faults. For example, the submission service should try to resubmit a
job in case a resource has rejected it because of local policies, internal prob-
lems, or a temporary disruption of service. On the other hand, it should not
try to resubmit a job whose delegated credentials are expired, as it would only
generate traffic without any chance of success. As of today, the SAM-Grid
team has only experimented with some very simple resubmission algorithms
and has decided to disable this function until a more complete study on the
matter can be done. We propose to complete this study by categorizing the
types of faults and implementing in each case an automatic reaction to deal
with them.

3.3 The Resource Selection Service

Like most of the grid systems deployed today, the SAM-Grid offers an auto-
matic resource selection service as part of its job and resource management
component. Many groups have worked on the problem of resource manage-
ment. Buyya, Chapin and DiNucci [114] study different architectures for
resource management, comparing models that organize resources and ser-
vices in a hierarchy with models inspired by the economic principles. A more

31

comprehensive work is proposed by Krauter, Buyya and Maheswaran [115],
who present a taxonomy of the resource management systems using a dozen
characteristics. The three major types of Grids identified are Computational
Grids, Service Grids and Data Grids. In a Computational Grid, applications
are executed in parallel on multiple machines as if the aggregate system were
a supercomputer. Storage management is provided via specialized infras-
tructures. A Service Grid is a system that provides aggregate services that
are not provided by a single machine. Typical examples are systems that
connect users and applications into collaborative workgroups and infrastruc-
tures for realtime multimedia applications. A Data Grid integrates grid level
data management services with computing resource management services.
Its focus is generating new information by processing data from distributed
repositories. The SAM-Grid is an example of a Data Grid.

For computational grids, the literature on resource selection and schedul-
ing algorithms is conspicuous [116, 117, 118, 119, 120]. Fujimoto and Hagi-
hara [121] measure the performance of a few classical algorithms and compare
their relative performance. Buyya, Stockinger, Giddy and Abramson [122]
concentrate on economical scheduling models.

In addition to the theoretical work, various groups have implemented re-
source selection middleware for computational grids [29, 32, 123, 124, 125],
and for hybrid computational and service grids [126, 127, 128, 28]. Buyya
compares these technologies in his Ph.D. thesis [129], investigating the ad-
vantages of an economical model using the NimrodG system.

Because of their higher level of complexity, the research on data grids is
not as advanced as for computational grids. In particular, the SAM-Grid
has the unique opportunity of implementing and measuring the performance
of scheduling algorithms for data grids, since it deploys an infrastructure
used to run real high energy physics job. The different algorithms can be
implemented within the framework of the resource selection service.

In the case of the SAM-Grid, the resource selection service gives recom-
mendations to the submission sites on how to match jobs to execution sites.
In other words, in the architecture of the job management component, this
service multiplexes the jobs queued at the second tier to the third tier. Thus,
having knowledge of both these tiers, the Resource Selection service is also
an invaluable hub of information for the whole grid, making it suitable as a
component of naming and monitoring services.

As for the submission and client site software, the SAM-Grid implemen-
tation of the Resource Selection service is based on the condor middleware.

32

In fact, one of the outcomes of the collaboration between the Condor and
the SAM-Grid teams was enhancing the Condor match making service [130]
to select grid resources [131]. To achieve this goal, resources and job-related
services register with this matchmaker, exposing characteristics of their inter-
faces and internal statuses. For example, submission site services advertise
their current address, so that other entities can manage jobs or acquire de-
tails on the job queue. Execution sites, instead, advertise attributes such as
their grid entry point, the URL of the local XML database (section 2.1), the
name of the local SAM data handling services, the address of the SAM nam-
ing service, and other aggregate information on the cluster (see also chap. 2).
It is worth noting that while the technology used to describe resources and
services is the Condor Classad [132] , most of the syntax and the semantics
of the description are specific to the SAM-Grid. In order to adapt to the
dynamism of a grid system, the match making service treats the incoming
information as a soft-registration. This means that the registration is auto-
matically discarded after a configurable amount of time, thus reducing the
impact of stale information. It should be noted that this does not prevent
stale information from being in the system. In fact, this is one of the reasons
why the resource selection should be considered as a “recommendation” only.

The resource advertisement service uses the site configuration description
as input (section 2.1.2). All the resources and services at a site are organized
in a hierarchical structure, represented in XML and stored in the site’s XML
database. The advertisement service is responsible for decomposing this hi-
erarchy in a set of flat descriptions, represented in the form of Classads. Each
Classad aggregates a series of services and resources at the site, which, to-
gether, are used to run grid jobs. The content of the Classads is determined
by policies, presented to the advertisement service in the form of plug-ins
that use XQuery to manipulate the XML description of the site.

The resource selection is processed in match making cycles. Periodically,
every submission site is queried about the details of the jobs queued therein.
For every job, resources are initially skimmed by looking at the job require-
ments. The remaining matching candidates are then ranked according to
various configurable algorithms. When the “best” match is selected, the job
description is enriched with information from the resource. The job descrip-
tion, in fact, can refer to resource attributes using specially named variables.
The foremost attribute used in this process is the grid entry point, or Globus
URL. This URL is used by the submission site to submit and manage the jobs
at the resource. This attribute is now a standard of the Condor middleware

33

and was one of the modifications introduced to the Condor match making
service as part of the collaboration of the Condor team with the SAM-Grid.
Other attributes from the resource description, such as the XML database
URL or the name of the SAM station, are used to build the execution envi-
ronment of the job.

It is recommendable to limit the amount of information contained in the
registration Classad to a few dozen attributes. The use of this technology
for much larger data volumes, in fact, has not been fully investigated, but
it is likely to lead to an inefficient match making process. On the other
hand, it should be possible to base the resource selection on criteria that
require a large amount of information, such that it would hardly fit into
a Classad because of the size limits stated above. For example, a popular
criterion to match analysis jobs is selecting the resource that has already in
its storage elements most of the data requested by the job. The amount of
data at every site may easily reach tens of thousands of files, making thus
impractical sending the information to the match making service for every
execution site, and, in particular, sending it via a Classad. To overcome this
problem, the resource selector of Condor has been modified to call externally
provided functions when evaluating a match. Both the job and the resource
descriptions can define any attribute of their Classad using these functions,
passing to them as arguments any other attributes of the two Classads.

Using this mechanism, the SAM-Grid is able to rank the matches for
analysis jobs according to the amount of data cached at the execution site.
This feature, together with the ability for SAM to pre-stage the data as soon
as the job enters the site, is a prototypical solution to the problem of job
and data colocation. In the dissertation, we will describe the details of this
mechanism.

We believe that this approach to job brokering is very promising. The
modification to the Condor resource selector is now part of the standard
middleware, which can be used in different contexts by different groups.
This effort promotes the development of a modular resource selector, which
implements matching algorithms that plug into a thin middleware layer, po-
tentially common to several grids.

Within the context of this research, we propose to study brokering criteria
specific to the typical high energy physics computing activities. In particular,
we are initially interested in optimizing the selection of resources to produce
montecarlo events. This type of job is computing intensive with little require-
ments on I/O (see Table 1). Therefore, the prototypical criterion for job and

34

data colocation cannot be applied and new solutions must be studied. An-
other longer-term study is the selection of resources for reconstruction jobs,
which are both I/O and CPU intensive. Today, the SAM-Grid offers only a
random selection criterion, while it would be nice to have at least round-robin
and load-balancing criteria. This task involves the study of what information
needs to be advertised by the resources as well as the implementation of the
ranking function. Matching criteria for other types of computing activities
will be contingent on the request by the experimenters.

Other groups have already studied interesting solutions to the load bal-
ancing problem in the context of LCG. In particular, researchers from the
Leiden University and NIKHEF, Holland, have approached the problem by
estimating how long a job would stay idle in the queue of the local scheduler
at a site [133]. A statistical model produces this estimate using a simulator
of the local scheduler and the status and history of the local job queue. This
estimate is prompted by the LCG resource broker, in order to select the least
busy resource.

4 The Execution Site

The modern computing infrastructures of a high energy physics experiment
consist of resources pooled together by a set of grid services. Because the
resources at a site are owned and managed by the collaborating institutions,
the scope of the grid services is limited to the granularity of the site. Within
each site, a different set of services is responsible to coordinate the local
resources and execute the jobs that are coming from the grid. The local
services and resources at these execution sites are called the “Fabric”.

This separation of responsibilities between fabric and grid services func-
tions because of an intermediate layer that acts as an active interface between
them. This interface has two main responsibilities. First, it adapts the input
and the output between the grid and the fabric in order to comply with the
specifics of the fabric. Second, it coordinates the usage of the local resources
according to the specification of the grid jobs and the local policies. For
example, when data intensive jobs enter the site, the interface should be re-
sponsible to trigger the local data handling services to enable the pre-staging
of the data, while the job is idle in the scheduler queue. Other examples are
the splitting of a grid job in multiple local job instances or the recreation
of the local job environment. It should be noted that these types of tasks

35

couldn’t be accomplished by the jobs discovering and accessing directly the
fabric services [102].

In our experience, the local fabric services and the grid/fabric interfaces
do not have the same level of maturity of the grid services. In particular, the
SAM-Grid project suffered because of the lack of standards for basic fabric
services, such as local scratch management or local storage management. It
is in fact only recently that the Storage Resource Management interface is
arising as a standard [134]. The lack of standards was overcome by program-
ming the grid/fabric interface against a set of “ideal” fabric services. We
present three of these ideal services, or “idealizers”:

1. the adapter to the local batch system: this idealizer is a uniform inter-
face to “any” underlying local job scheduler.

2. the dynamic product installation: this idealizer is used to recreate the
job environment. The worker nodes of a batch system, in fact, do not
have installed experiment specific software, in order to foster resource
sharing.

3. the local sandbox management: it is responsible for packaging and
delivering within the cluster the software needed to run the job and for
gathering the job’s output.

At each site, these idealizers have been implemented by aggregating different
physical services. It should be noted that this approach clearly encapsulates
the parts of the software that are site specific.

4.1 Local Batch System Adaptation

After our first experience deploying the SAM-Grid, we concluded that the
”standard” batch system interfaces implemented in the Globus Toolkit are
not flexible enough to include most of the resources of DZero and CDF. Even
at sites running the same batch system, we observed that different admin-
istrators frequently configure the batch system differently because of local
constraints, thus requiring the local users to submit jobs using slightly dif-
ferent commands. In some other cases, the terms of the agreement to use
the resources could be respected only by adding special attributes to the job
submission request. For example, when DZero submits montecarlo produc-
tion jobs at the condor cluster of the University of Wisconsin at Madison,

36

the job description file must include special attributes to prevent job evic-
tion. Another example is running montecarlo jobs at the IN2P3 computing
facility in Lyon, France: the BQS batch system is locally configured to let
the job overcome the downtime of their local mass storage system only in the
case when the job is submitted with a special option. These attributes and
submission options are all nonstandard and site specific. Other grids, such
as LCG [37], solve this problem by exposing to the grid the interface of the
local scheduler. Conversely, our approach encapsulates this level of details
within the boundaries of the fabric services.

Another point to consider, besides the site-specific peculiarities of the
batch system, is that the typical high energy physics applications are seldom
submitted directly to the batch system. They are rather submitted through
experiment specific local interfaces that take care of the job preparation.
Such preparation steps include the triggering of data handling systems such
as SAM, the use of local job sandboxing mechanisms, or the decomposition
of the job into smaller tasks, generally executed as parallel instances.

In order to address this concern, the SAM-Grid team has developed a
series of job management scripts that use the experiment-specific interfaces.
These scripts are invoked via standard grid mechanisms, such as the Globus
Gatekeeper. From within these scripts, the invocation of the local batch
system commands is done via an intermediate layer that abstracts the basic
interactions with the batch system. This layer is configured locally with the
specific commands used for job submission, look up and cancellation. The
batch system adapter is also configured to interpret the output of the batch
system commands, to enable the extraction of relevant information, such as
the local job id after submission, the status of the job after lookup or the
error messages after any command invocation.

This additional level of indirection in the configuration of the local job
management has proved to be of fundamental importance during the phase
of deployment. In the dissertation we will discuss in detail the advantages
and disadvantages of this approach.

4.2 Dynamic Product Installation

In order to execute jobs on the grid, the code must be portable. DZero
has developed tools that recreate the Run Time Environment (RTE) [135]
of the typical DZero applications. These infrastructures give the users the
ability of packaging their programs with all the software dependencies, thus

37

enabling the execution in rather ”hostile” computing environments. There
are certain classes of jobs, though, that use standard applications driven
by user specified configuration parameters, which require little or no user-
provided code. These applications can be quite large (on the order of a few
Gigabytes, even when compressed) and packaging them for every job would
be quite costly. These costs add up, considering that every such archive
needs to be transported and temporarily stored possibly in more than one
place throughout the lifetime of the job.

On the other hand, experiments maintain dedicated clusters, configured
to provide access from any node to a series of experiment specific software
products. When running on these clusters, users just need to provide their
custom version of the code or the configuration files to run the standard
applications. Administrators are responsible for installing and maintaining
these products, trying to compromise between the available disk space and
the large span of product versions that the users need. This model is quite
expensive for the administrator and does not let the users take advantage of
non-dedicated clusters that may be available to the community using RTE
mechanisms.

Within the SAM-Grid, we use a hybrid model that promotes the advan-
tages of the two approaches. Many commonly used applications, such as
the montecarlo production products, which are made portable via RTE tech-
niques as in the first model, are stored into the data handling system of the
experiments. The clusters that are part of the grid are configured to provide
a local data cache, managed by a SAM data handling service. Users who
run jobs that use these standard applications can specify them in the Job
Description File as dependencies, as in the second model. After the job has
entered a cluster, the middleware is responsible for the delivery of the depen-
dencies to the worker nodes, before passing control to the user’s application.
This approach has many advantages. First, products are no longer installed
and maintained by the system administrator, but rather, brought into the
data handling cache and installed upon request. Therefore, the size of the
software provided directly by the user can be rather small. Second, since the
cache is automatically managed, there is no longer a maintenance concern for
the availability of older software versions at a site. Third, applications and
their usage can be thoroughly catalogued using the metadata mechanisms
of the SAM data handling system. Fourth, this mechanism can be used in
conjunction with user-provided RTE executables, providing a high degree of
flexibility in running the jobs.

38

4.3 Local Sandbox Management

When submitting a job to the grid, a user is required to supply a description
of the characteristics of the job, such as application name, product dependen-
cies, optional input dataset, etc., and/or an archive containing the software
and configuration files needed to run the application. This archive is some-
times referred to as the input sandbox. The output of the job, such as the
error and output streams, relevant log files and output files is sometimes
called the output sandbox. It should be noted the SAM-Grid handles the
large input and output data files and potentially the product releases via
the SAM data handling service, hence dramatically reducing the size of the
sandboxes, since these files do not need to be part of them.

The standard grid tools implement a protocol, GRAM [17], that allows
the transport of the sandboxes and the submission and monitoring of the
job. Nevertheless, there are no standard tools to manage the sandboxes at
the local cluster. Ideally, the sandbox management should be able to rely on
a local storage service, with a well-defined interface to, at a minimum, store,
retrieve and remove input and output files from anywhere within the cluster.
Even if implementations of local storage services are available [136, 67], they
are not very widely deployed and generally considered nonstandard. Instead,
what is generally provided at the cluster is disk space accessible from the
gateway node, and some mechanism of intra-cluster communication. This
is achieved at every site using a wide variety of different strategies. Typi-
cally, either nodes use a common network file system, or the batch system
is configured with some form of input file stagein/output file stageout, or
the nodes have access to an open network. Each of these strategies is not a
general solution and each has weaknesses. For example, the typical network
file systems used, NFS, has scalability problems, especially during writes;
stagein/stageout often can only be triggered from special places within the
cluster and at certain times only, such as e.g. from the head node at the time
of submission; open networks are becoming less and less popular, considering
the proliferation of site firewalls.

Considering that no standard local storage service exists today, the SAM-
Grid sandbox management infrastructure, instead of trying to adapt to all
possible different cluster configurations, starts up dynamically a gridftp server,
hence guaranteeing a uniform intra-cluster transport mechanism. Input sand-
boxes coming from the grid are kept compressed at the gateway node in a
disk area unique to the job. For every job, the infrastructure creates a self-

39

extracting archive, containing the user’s delegated credentials, the gridftp
client and the directives necessary for the delivery of the input sandbox and
the dependent products. It then submits an appropriate number of parallel
instances of the job, using the batch system adaptation mechanism described
above, relying only for this first executable on the native intra-cluster trans-
port mechanism. At the worker node, the environment of the job is recreated
and the control passed to the user’s application. After the execution has
terminated and before cleaning up the scratch space, the custom output is
packaged and transferred to the gateway node, in order for it to be bundled
together with the output of all the other job instances and sent back to grid.
The SAM-Grid makes this output bundle available to the user for download
from the web. The details of this mechanism are thoroughly discussed in the
dissertation.

5 Summary

This chapter summarizes the research topics proposed in this document. The
topics are put in context in a highly condensed fashion. For more information,
the reader is referred to the sections relative to each topic.

The SAM-Grid is an integrated grid system for high energy physics (HEP).
It consists of data, job, and information management components. The sys-
tem is used by the DZero and CDF experiments at Fermilab for part of their
distributed computing needs. This dissertation focuses on the job and infor-
mation management components of the SAM-Grid and addresses problems
that have arisen during the phase of design, implementation, and deployment
of the system (chap. 1).

The SAM-Grid information management component consists of the con-
figuration, monitoring, and logging infrastructures. The focus on configura-
tion management is relatively new for data grids and our solution is a dis-
tributed configuration system based on a network of XML databases (chap.
2). The information is decomposed in two categories of configurations (sec-
tion 2.1.2):

1. the relationship among services and resources at a site. This site config-
uration is central to the main activities of the fabric and grid services.
Specifying a functional and descriptive site configuration is one of the
goals of our research;

40

2. the configuration of the software products, which implement the ser-
vices. A goal of this research is providing a tool that treats the two
categories of configuration uniformly.

The system uses a dedicated language, developed by the SAM-Grid team, tai-
lored to drive interviews with the persons responsible to install the software.
We will study the limitations and advantages of such a language (section
2.1.1).

The monitoring infrastructure of the SAM-Grid is based on both push
and pull models, implemented on the Globus MDS and a network of XML
databases. In the dissertation we will discuss the architecture and implemen-
tation of such monitoring system (section 2.2).

The research topics on information management summarized above are
mainly completed.

The job management component of the SAM-Grid is organized in a three-
tiers architecture: the user interface, the submission, and the execution site
tiers. The resource selection service cooperates with the submission tier
recommending the “best” execution site to run the jobs (chap. 3). Part
of this work consisted in enhancing Condor-G so that it could be used as
the SAM-Grid job management middleware. The match making service of
the condor batch system was modified to match jobs with grid resources,
ranking the matches according to externally provided logic. We propose
to implement various brokering algorithms for HEP applications. This work
should be completed by the end of the year. Using these brokering algorithms
together with SAM, the data handling component, the SAM-Grid provides
a solution to the problem of job and data colocation and data pre-staging.
We will study what characteristics of the grid sites should be advertised to
the resource selection service. The advertisement process is implemented
plugging into the advertisement framework algorithms that manipulate the
description of the services and resources at the site. The implementation of
an extensible advertisement framework is completed and will be discussed in
the dissertation (section 3.3).

In the next 3 months, the SAM-Grid will be extended to run Reconstruc-
tion and structured jobs. In particular, structured jobs are a composition of
other types of HEP jobs. We will augment the SAM-Grid using the Directed
Acyclic Graph Manager (DAGMan) to manage structured jobs (section 3.1).

We also propose to investigate

1. the management of security tokens using an online credential repository

41

service, such as MyProxy (section 3.2);

2. the study of error recovery mechanisms via the automatic resubmis-
sion/rematching of jobs to the grid sites (section 3.2).

The SAM-Grid implements a thick active interface between the grid and
the fabric services at the execution sites, in order to coordinate the local
resource usage. The fabric services do not have the same level of maturity
of the grid services. To overcome this problem, the grid/fabric interface was
implemented against a set of “ideal” fabric services. Part of our research
consists in implementing these “idealizers” for various configurations of the
local services: this work is mostly done (chap. 4). These fabric services
include local batch system adaptation, dynamic product installation service
and local sandbox management service.

A final important part of the dissertation consists in reporting to the
community the “lesson learned” in deploying and operating an integrated
functional grid for two running HEP experiments.

References

[1] I. Foster, C. Kesselman, S. Tuecke, ”The Anatomy of the Grid: En-
abling Scalable Virtual Organizations”, International J. Supercom-
puter Applications, 15(3), 2001.

[2] The BaBar Collab., D. Boutigny et al., ”Technical Design Report”,
SLAC-R-95-457.

[3] The BELLE Collab., M. T. Cheng et al., ”Technical Design Report”,
KEK-Report 95-1.

[4] The D0 Collab., ”The D0 Upgrade: The Detector and its Physics”,
Fermilab Pub-96/357-E.

[5] CDF Collab., R. Blair et al., ”The CDF II Detector Technical Design
Report”, FERMILAB-Pub-96/390-E.

[6] D. G. York, et al., ”The Sloan Digital Sky Survey: Technical Sum-
mary”, The Astronomical Journal 120 (2000) 1579-1587

42

[7] Bruce Allen, et. al., ”Determining Upper Limits on Event Rates for
Inspiralling Compact Binaries with LIGO Engineering Data”, LIGO
technical report T010025-00-Z (2001).

[8] CERN: http://www.cern.ch/

[9] The CMS Collaboration, ”The Compact Muon Solenoid Technical Pro-
posal”, CERN/LHCC 9438, LHCC/P1 1994

[10] The CMS Collaboration, ”Computing Technical Proposal”,
CERN/LHCC 96-45, (Geneva 1996)

[11] P. Saiz, L. Aphecetche, P. Buncic, R. Piskac, J. E. Revsbech and V.
Sego, ”AliEn - ALICE environment on the GRID”, Nuclear Instru-
ments and Methods in Physics Research, Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, Volume 502, Issues
2-3 , 21 April 2003, Pages 437-440

[12] The ALICE Collaboration, ”ALICE Technical Proposal for A Large
Ion Collider Experiment at the CERN LHC”, CERN/LHCC/95-71, 15
December 1995

[13] The LHCb Collaboration, ”LHCb: Technical Proposal”, CERN-
LHCC-98-004;

[14] The Atlas Collaboration, ”Atlas - Technical Proposal”,
CERN/LHCC94-43, CERN, December 1994.

[15] Global Grid Forum: http://www.ggf. org/

[16] Globus Alliance: http://www.globus.org/

[17] I. Foster and C. Kasselman, ”Globus: A Metacomputing Infrastructure
Toolkit”, International Journal of Supercomputer Applications, 11(2):
115-128, 1997

[18] A.S. Grimshaw, A. Natrajan, M.A. Humphrey and M.J. Lewis, A.
Nguyen-Tuong, J.F. Karpovich, M.M. Morgan, A.J. Ferrari, ”From
Legion to Avaki: The Persistence of Vision”, Grid Computing: Making
the Global Infrastructure a Reality, eds. Fran Berman, Geoffrey Fox
and Tony Hey, 2003.

43

[19] Platform Computing, ”PLATFORM GLOBUS TOOLKIT: Open-
source, commercially supported toolkit for building grids”, On line
http://www.platform.com/products/Globus/

[20] A. Chien, B. Calder, S. Elbert, and K. Bhatia, ”Entropia: Architecture
and Performance of an Enterprise Desktop Grid System”, Journal of
Parallel Distributed Computing, Vol 63, Issue 5, May 2003, pages 597-
610.

[21] Sun Grid Engine: http://wwws.sun.com/software/gridware

[22] United Devices: http://www.uniteddevices.com/

[23] Parabon: http://www.parabon.com

[24] ProcessTree: http://www.processtree.com/ , Distributed Science Inc,
Nov. 2000.

[25] Popular Power: http://www.PopularPower.com/

[26] Mojo Nation: http://www.mojonation.net/

[27] DataSynapse: http://www.datasynapse.com/

[28] R. Buyya, D. Abramson, and J. Giddy, ”Nimrod-G: An Architecture
for a Resource Management and Scheduling System in a Global Com-
putational Grid”, The 4th International Conference on High Perfor-
mance Computing in Asia-Pacific Region (HPC Asia 2000), May 2000,
Beijing, China, IEEE Computer Society Press, USA.

[29] F. Berman and R. Wolski, ”The AppLeS Project: A Status Report,
Proceedings of the 8th NEC Research Symposium”, Berlin, Germany,
May 1997.

[30] J. Novotny, ”The Grid Portal Development Kit”, Concurrency: Prac-
tice and Experience 2000; 00:1-7

[31] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis, M. Ri-
peanu, E. Seidel, and B. Toonen, ”Supporting Efficient Execution in
Heterogeneous Distributed Computing Environments with Cactus and
Globus”,in Proceedings of Super Computing 2001, Nov. 2001, Denver,
Colorado.

44

[32] J. Basney and M. Livny, ”Deploying a High Throughput Computing
Cluster”, High Performance Cluster Computing, R. Buyya (editor).
Vol. 1, Chapter 5, Prentice Hall PTR, May 1999.

[33] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, ”Condor-
G: A Computation Management Agent for Multi-Institutional Grids”,
in Proceedings of the 10th International Symposium on High Perfor-
mance Distributed Computing (HPDC-10), IEEE CS Press, Aug. 2001.

[34] I. Foster, ”Grid Technologies & Applications: Architecture & Achieve-
ments”, in Proceedings of Computing in High Energy and Nuclear
Physics (CHEP01), Beijing, China, Sep. 2001

[35] J. Moore, ”Portals could lower grid barriers”, Federal Computer Week,
Oct 2003

[36] W. Hoschek, J. Jean-Martinez, A. Samar, H. Stockinger, K. Stockinger,
”Data Management in an International Data Grid Project”, 1st IEEE
/ ACM International Workshop on Grid Computing (Grid 2000), Ban-
galore, India, Dec. 2000.

[37] J. Apostolakis, G. Barrand, R. Brun, P. Buncic, V. Innocente, P.
Mato, A. Pfeiffer, D. Quarrie, F. Rademakers, L. Taylor, C. Tull, T.
Wenaus, ”Architecture Blueprint Requirements Technical Assessment
Group (RTAG)”, Report of the LHC Computing Grid Project, CERN,
Oct. 2002

[38] P. Buncic, F. Rademakers, R. Jones, R. Gardner, L.A.T. Bauerdick,
L. Silvestris, P. Charpentier, A. Tsaregorodtsev, D. Foster, T. Wenaus,
F. Carminati, ”LHC Computing Grid Project: Architectural Roadmap
Towards Distributed Analysis”, CERN-LCG-2003-033, Oct-2003

[39] P. Eerola, B. Konya, O. Smirnova, T. Ekelof, M. Ellert, J.R. Hansen,
J.L. Nielsen, A. Waananen, A. Konstantinov, J. Herrala, M. Tuisku,
T. Myklebust, F. Ould-Saada, and B. Vinter, ”The nordugrid produc-
tion grid infrastructure, status and plans”, in Proceedings of the 4th
International Workshop on Grid Computing, pages 158-165. IEEE CS
Press, 2003.

[40] EGEE - Enabling Grids for E-science in Europe: http://egee-
intranet.web.cern.ch/egee-intranet/gateway.html

45

[41] E. Hjort, J. Lauret, D. Olson, A. Sim, A. Shoshani, ”Production mode
Data-Replication framework in STAR using the HRM Grid”, in Pro-
ceedings of Computing in High Energy and Nuclear Physics (CHEP04),
Interlaken, Switzerland, Oct. 2004 (to appear)

[42] I. Foster, J. Vckler, M. Wilde, Y. Zhao, ”Chimera: A Virtual Data Sys-
tem for Representing, Querying, and Automating Data Derivation”, in
Proceedings of 14th International Conference on Scientific and Statis-
tical Database Management (SSDB ’02), Edinburgh, July 2002.

[43] The Grid2003 Project, ”The Grid2003 Production Grid: Prin-
ciples and Practice”, iVDGL, Technical Report, 2004: On line
www.ivdgl.org/grid2003.

[44] The Particle Physics Data Grid, ”GRID2003 Lessons Learned”, PPDG
Document 37, http://www.ppdg.net

[45] L. Pearlman, C. Kesselman, S. Gullapalli, B.F. Spencer, Jr., J. Futrelle,
K. Ricker, I. Foster, P. Hubbard, C. Severance, ”Distributed Hybrid
Earthquake Engineering Experiments: Experiences with a Ground-
Shaking Grid Application”, in Proceedings of the 13th IEEE Sympo-
sium on High Performance Distributed Computing (HPDC-13), 2004.

[46] SAM-Grid project: http://www-d0.fnal.gov/computing/grid

[47] I. Terekhov, A. Baranovski, G. Garzoglio, A. Kreymer, L. Lueking, S.
Stonjek, F. Wuerthwein, A. Roy, T. Tannenbaum, P. Mhashilkar, V.
Murthi, R. Walker, F. Ratnikov, T. Rockwell, ”Grid Job and Informa-
tion Management for the FNAL Run II Experiments”, in Proceedings
of in Proceedings of Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, La Jolla, California, March
2003.

[48] R. Walker, A. Baranovski, G. Garzoglio, L. Lueking, D. Skow, I.
Terekhov, ”SAM-GRID: A System Utilizing Grid Middleware and SAM
to Enable Full Function Grid Computing”, in Proceedings of the 8th
International Conference on B-Physics at Hadron Machines (Beauty
02), Santiago de Compostela, Spain, Jun. 2002

[49] G. Garzoglio, A.Baranovski, H. Koutaniemi, L. Lueking, S. Patil, R.
Pordes, A. Rana, I. Terekhov , S. Veseli, J. Yu, R. Walker, V. White,

46

”The SAM-GRID project: architecture and plan.”, talk at the 8th
International Workshop on Advanced Computing and Analysis Tech-
niques in Physics Research (ACAT-02), Moscow, Russia, Jun. 2002,
Nuclear Instruments and Methods in Physics Research, Section A,
NIMA14225, vol. 502/2-3 pp 423 - 425

[50] I. Terekhov et al., ”Meta-Computing at D0”; talk at the VIII Inter-
national Workshop on Advanced Computing and Analysis Techniques
in Physics Research (ACAT-02), Jun. 2002, Nuclear Instruments and
Methods in Physics Research, Section A, NIMA14225, vol. 502/2-3 pp
402 - 406

[51] M. Burgon-Lyon et al., ”Experience using grid tools for CDF Physics”;
talk at the IX International Workshop on Advanced Computing and
Analysis Techniques in Physics Research (ACAT-03), Tsukuba, Japan,
Dec 2004; to appear in Nuclear Instruments and Methods in Physics
Research, Section A

[52] Fermi National Accelerator Laboratory: http://www.fnal.gov/

[53] PPDG: http://www.ppdg.net/

[54] GridPP: http://www.gridpp.ac.uk/

[55] SAM project: http://d0db.fnal.gov/sam

[56] L. Loebel-Carpenter, L. Lueking, C. Moore, R. Pordes, J. Trumbo,
S. Veseli, I. Terekhov, M. Vranicar, S. White, V. White, ”SAM and
the particle physics data grid”, in Proceedings of Computing in High-
Energy and Nuclear Physics. Beijing, China, Sep 2001.

[57] I. Terekhov, R. Pordes, V. White, L. Lueking, L. Carpenter, J. Trumbo,
S. Veseli, M. Vranicar, S. White, H. Schellman, ”Distributed Data Ac-
cess and Resource Management in the D0 SAM System”, in Proceed-
ings of the 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10), San Francisco, California, Aug.
2001

[58] I. Terekhov, V. White, L. Lueking, L. Carpenter, H. Schellman, J.
Trumbo, S. Veseli, and M. Vranicar, ”SAM for D0-a fully distributed

47

data access system”, talk at Advanced Computing And Analysis Tech-
niques In Physics Research (ACAT 2000) Batavia, Illinois, Oct 2000,
in American Institute of Physics (AIP) Conference Proceedings Vol
583(1) pp. 247-249. August 20, 2001

[59] V. White et al., ”D0 Data Handling”, in Proceedings of Computing
in High Energy and Nuclear Physics (CHEP01), Beijing, China, Sep.
2001

[60] L. Carpenter et al., ”SAM Overview and Operational Experience at
the D0 experiment”, in Proceedings of Computing in High Energy and
Nuclear Physics (CHEP01), Beijing, China, Sep. 2001

[61] L. Lueking et al., ”Resource Management in SAM and the D0 Particle
Physics Data Grid”, in Proceedings of Computing in High Energy and
Nuclear Physics (CHEP01), Beijing, China, Sep. 2001

[62] L. Lueking et al., ”The Data Access Layer for D0 Run II”; in Proceed-
ings of Computing in High Energy and Nuclear Physics (CHEP 2000)
Padova, Italy, Feb. 2000

[63] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A.
Jagatheesan, C. Cowart, B. Zhu, S.Y. Chen, R. Olschanowsky, ”Storage
Resource Broker - Managing Distributed Data in a Grid”, Computer
Society of India Journal, Special Issue on SAN, Vol. 33, No. 4, pp.
42-54 Oct 2003.

[64] H. Stockinger, A. Samar, S. Muzaffar, and F. Donno, ”Grid Data Mir-
roring Package (GDMP)”, Scientific Programming Journal - Special
Issue: Grid Computing, 10(2):121-134, 2002.

[65] H. Stockinger, F. Donno, E. Laure, S. Muzaffar, P. Kunszt, G. Andron-
ico, P. Millar, ”Grid Data Management in Action: Experience in Run-
ning and Supporting Data Management Services in the EU DataGrid
Project”, in Proceedings of Computing in High Energy and Nuclear
Physics (CHEP03), La Jolla, Ca, USA, March 2003

[66] A. Chervenak, E. Deelman, I. Foster, W. Hoschek, A. Iamnitchi, C.
Kesselman, P. Kunszt, M. Ripeanu, H. Stockinger, K. Stockinger, and
B. Tierney, ”Giggle: A Framework for Constructing Scalable Replica

48

Location Services”, in Proceedings of the International IEEE Super-
computing Conference (SC 2002), Baltimore, USA, November 2002.

[67] J. Bent et al., ”Flexibility, Manageability, and Performance in a Grid
Storage Appliance”, in Proceedings of the The 11th IEEE International
Symposium on High Performance Distributed Computing (HPDC-11),
Edinburgh, Scotland, Jul. 2002

[68] W. Deng, T. Wenaus, ”Magda - Manager for grid-based data”, in Pro-
ceedings of Computing in High Energy and Nuclear Physics (CHEP03),
La Jolla, California, March 2003

[69] M. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, J. Saltz,
”Distributed Processing of Very Large Datasets with DataCutter”, Par-
allel Computing, 2001, pp. 1457-1478.

[70] V. Raman, I. Narang, C. Crone, L. Haas, S. Malaika, T. Mukai, D.
Wolfson, C. Baru, ”Services for Data Access and Data Processing on
Grids”, Global Grid Formum Document GFD-I.14 Feb. 2003.

[71] A.Tsaregorodtsev, V.Garonne, J. Closier, M. Frank, C. Gaspar, E. van
Herwijnen, F. Loverre, S. Ponce, R.Graciani Diaz, D. Galli, U. Mar-
coni, V. Vagnoni, N. Brook, A. Buckley, K. Harrison, M.Schmelling,
U.Egede, A. Bogdanchikov, I. Korolko, A. Washbrook, J.P.Palacios, S.
Klous, J.J.Saborido, A. Khan, A.Pickford, A. Soroko, V. Romanovski,
G.N. Patrick, G.Kuznetsov, M. Gandelman, ”DIRAC - Distributed In-
frastructure with Remote Agent Control”, in Proceedings of Comput-
ing in High Energy and Nuclear Physics, La Jolla, California, March
2003

[72] K. Harrison, W. T. L. P. Lavrijsen, C. E. Tull, P. Mato, A. Soroko, C.
L. Tan, N. Brook, R. W. L. Jones, ”GANGA: a user-Grid interface for
Atlas and LHCb”, in Proceedings of Computing in High Energy and
Nuclear Physics, La Jolla, California, March 2003

[73] G. Avellino et al., ”The EU DataGrid Workload Management Sys-
tem: towards the second major release”, in Proceedings of Computing
in High Energy and Nuclear Physics (CHEP03), La Jolla, California,
March 2003

49

[74] The DataGrid team, ”DataGrid Information and Monitoring Services
Architecture: Design, Requirements and Evaluation Criteria”, Techni-
cal Report, DataGrid 2002

[75] A. Iamnitchi and I. Foster, ”A Peer-to-Peer Approach to Resource Lo-
cation in Grid Environments”, In J. Weglarz, J. Nabrzyski, J. Schopf,
and M. Stroinski eds. Grid Resource Management, Kluwer Publishing,
2003.

[76] GridWeaver Technical Reports: http://www.epcc.ed.ac.uk/gridweaver/docs/

[77] P. Goldsack, ”SmartFrog - a framework for configuration”, Talk at the
Large Scale System Configuration Workshop, Nov. 2001

[78] P. Anderson et al, ”Towards automation of computing fabrics using
tools from the fabric management workpackage of the EU DataGrid
project”, in Proceedings of Computing in High Energy and Nuclear
Physics (CHEP03), La Jolla, Ca, USA, March 2003.

[79] The Apache Software Foundation, Apache Xindice:
http://xml.apache.org/xindice

[80] P. Anderson, ”What is This Thing Called Configuration?”, Talk at the
Configuration Workshop LISA XVII, San Diego, California, USA, Oct.
2003

[81] M. Holgate, W. Partain, ”The Arusha Project:A Framework for Col-
laborative Unix System Administration”, in Proceedings of the LISA
2001, 15th Systems Administration Conference, San Diego, California,
USA, Dec. 2001

[82] The World Wide Web Consortium, ”RDF Primer” W3C Recommen-
dation Feb. 2004

[83] PACMAN: http://physics.bu.edu/ youssef/pacman/

[84] UNIX Product Support (UPS): http://www.fnal.gov/docs/products/ups/

[85] S. Andreozzi, M. Sgaravatto, C. Vistoli, ”Sharing a conceptual model
of Grid resources and services”, in Proceedings of Computing in High
Energy and Nuclear Physics (CHEP03), La Jolla, California, March
2003

50

[86] A. Lyon, S. Veseli, et al., ”SAM-Grid Monitoring and Information Ser-
vice and its Integration with MonALisa”, in Proceedings of Computing
in High Energy and Nuclear Physics, Interlaken, Switzerland, Oct. 2004
(to appear)

[87] Czajkowski, K., S. Fitzgerald, I. Foster, C. Kasselman, ”Grid Informa-
tion Service for Distributed Resource Sharing”, in Proceedings of the
10th IEEE International Symposium on High Performance Distributed
Computing (HPDC-10), IEEE Press, 2001

[88] MDS: http://www.globus.org/mds/

[89] MDS References: http://www-unix.globus.org/toolkit/mds/papers.html

[90] Hawkeye: http://www.cs.wisc.edu/condor/hawkeye

[91] X. Zhang, J. Freschl, and J. Schopf, ”Performance Study of Monitor-
ing and Information Services for Distributed Systems”, in Proceedings
of the 12th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-12), Seattle, Washington, Jun. 2003

[92] MonALISA: http://monalisa.cacr.caltech.edu/

[93] Jini: http://www.jini.org/

[94] Plale, B., P. Dinda, G. Laszewski, ”Key Concepts and Services of a Grid
Information Service.” ISCA 15th International Parallel and Distributed
Computing Systems (PDCS), 2002

[95] V. Vaswani, P. Smith, ”MySQL: The Complete Reference”, published
by The McGraw-Hill Companies, Aug. 2002

[96] Plale, B., ”Whitepaper on Synthetic Workload for Grid Information
Services/Registries”, DataWorkshop 2003 held in conjunction with
GlobusWorld 2003, San Diego.

[97] A.S. Rana, ”A globally-distributed grid monitoring system to facilitate
HPC at D0/SAM-Grid (Design, development, implementation and de-
ployment of a prototype)”, Thesis of Master in Computing Science,
The University of Texas, Arlington, Nov. 2002

51

[98] I. Foster, G. von Laszewski, ”Usage of LDAP in Globus”, On line:
ftp://ftp.globus.org/pub/globus/papers/ldap in globus.pdf

[99] OpenLDAP: http://www.openldap.org/

[100] Yeong, W., T. Howes, and S. Kille, ”Lightweight Directory Access Pro-
tocol”, The Internet Engineering Task Force (IETF) RFC 1777, Mar.
1995

[101] The Network Working Group, ”The LDAP Data Interchange Format
(LDIF)”, Technical Specification, RFC 2849

[102] G. Garzoglio, I. Terekhov, A. Baranovski, S. Veseli, L. Lueking, P.
Mhashilkar, V. Murthi, ”The SAM-Grid Fabric services”, talk at the IX
International Workshop on Advanced Computing and Analysis Tech-
niques in Physics Research (ACAT-03), Tsukuba, Japan; to appear in
Nuclear Instruments and Methods in Physics Research, Section A

[103] SAM-Grid history plots: http://dbsmon.fnal.gov/samgrid/samgrid.html

[104] M. Satyanarayanan, ”The Evolution of Coda”, ACM Transactions on
Computer Systems, Vol. 20, No. 2, May 2002, Pages 85-124

[105] SAM-Grid monitoring page: http://samgrid.fnal.gov:8080/

[106] PHP: http://www.php.net

[107] Grid Job Submission Project: http://auger.jlab.org/grid/

[108] The EDG Team, ”DataGrid JDL ATTRIBUTES”, Internal Document
of Work package 1, DataGrid-01-TEN-0142-0 2, Oct. 2003

[109] Personal Communication, Todd Tannenbaum and Zach Miller, Depart-
ment of Computer Sciences, University of Wisconsin, Madison

[110] MOP http://www.uscms.org/s&c/MOP/

[111] D. Thain, T. Tannenbaum, and M. Livny, ”Condor and the Grid”,
in Grid Computing: Making the Global Infrastructure a Reality, pub-
lished by John Wiley & Sons Inc., Dec. 2002

52

[112] M.S. Neubauer, ”Computing for Run II at CDF”, in Proceedings of the
VIII International Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT-02), Jun 2002

[113] J. Novotny, S. Tuecke, V. Welch, ”An Online Credential Repository for
the Grid: MyProxy”, in Proceedings of the 10th International Sympo-
sium on High Performance Distributed Computing (HPDC-10), IEEE
Press, Aug. 2001

[114] R. Buyya, S. Chapin, and D. DiNucci, ”Architectural Models for
Resource Management in the Grid”, First IEEE/ACM International
Workshop on Grid Computing (GRID 2000), Springer Verlag LNCS
Series, Germany, Dec. 17, 2000, Bangalore, India.

[115] K. Krauter, R. Buyya, and M. Maheswaran, ”A Taxonomy and Survey
of Grid Resource Management Systems for Distributed Computing”,
International Journal of Software: Practice and Experience (SPE), Wi-
ley Press, New York, USA, May 2002.

[116] O. H. Ibarra and C. E. Kim, ”Heuristic algorithms for scheduling
independent tasks on nonidentical processors”, Journal of the ACM,
24(2):280-289, 1977.

[117] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund, ”Dy-
namic matching and scheduling of a class of independent tasks onto
heterogeneous computing systems” in Proceedings of the 8th IEEE
Heterogeneous Computing Workshop (HCW-99), pages 30-44, 1999.

[118] D. A. Menasce, D. Saha, S. C. D. S. Porto, V. A. F. Almeida, and S. K.
Tripathi, ”Static and dynamic processor scheduling disciplines in het-
erogeneous parallel architectures”, Journal of Parallel and Distributed
Computing, 28:1-18, 1995.

[119] D. Paranhos, W. Cirne, and F. Brasileiro, ”Trading cycles for informa-
tion: Using replication to schedule bag-of-tasks applications on compu-
tational grids, In International Conference on Parallel and Distributed
Computing (Euro-Par), Lecture Notes in Computer Science, volume
2790, pages 169-180, 2003.

53

[120] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, ”Heuristics
for scheduling parameter sweep applications in grid environments”, in
9th Heterogeneous Computing Workshop (HCW), pages 349-363, 2000.

[121] N. Fujimoto, K. Hagihara, ”A Comparison among Grid Scheduling
Algorithms for Independent Coarse-Grained Tasks”, in 2004 Sympo-
sium on Applications and the Internet-Workshops (SAINT 2004 Work-
shops), Jan. 2004, Tokyo, Japan, p.674

[122] R. Buyya, H. Stockinger, J. Giddy, and D. Abramson, ”Economic
Models for Management of Resources in Peer-to-Peer and Grid Com-
puting”, In Proceedings of International Conference on Commercial
Applications for High-Performance Computing, SPIE Press, August
20-24, 2001, Denver, Colorado, USA.

[123] M. Neary, A. Phipps, S. Richman, P. Cappello, ”Javelin 2.0: Java-
Based Parallel Computing on the Internet”, in Proceedings of European
Parallel Computing Conference (Euro-Par 2000), Germany, 2000.

[124] S. Chapin, J. Karpovich, and A. Grimshaw, ”The Legion Resource
Management System”, in Proceedings of the 5th Workshop on Job
Scheduling Strategies for Parallel Processing, Apr. 1999, San Juan,
Puerto Rico, Springer Verlag Press, Germany, 1999.

[125] J. Gehring and A. Streit, ”Robust Resource Management for Meta-
computers”, in Proceedings of the 9th IEEE International Symposium
on High Performance Distributed Computing, Pittsburgh, USA, 2000.

[126] H. Casanova and J. Dongarra, ”NetSolve: A Network Server for Solving
Computational Science Problems”, International Journal of Supercom-
puting Applications and High Performance Computing, Vol. 11, No. 3,
pp 212-223, Sage Publications, USA, 1997.

[127] H. Nakada, M. Sato, S. Sekiguchi, ”Design and Implementations of
Ninf: towards a Global Computing Infrastructure”, Future Generation
Computing Systems, Metacomputing Special Issue, October 1999.

[128] N. Kapadia, R. Figueiredo, and J. Fortes, ”PUNCH: Web Portal for
Running Tools”, IEEE Micro, May-June, 2000.

54

[129] R. Buyya, ”Economic-based Distributed Resource Manage-
ment and Scheduling for Grid Computing”, Ph.D. Thesis,
Monash University, Melbourne, Australia, Apr. 2002. Online at
http://www.buyya.com/thesis/thesis.pdf

[130] R. Raman and M. Livny, ”Matchmaking: Distributed Resource Man-
agement for High Throughput Computing”, in Proceedings of the Sev-
enth IEEE International Symposium on High Performance Distributed
Computing, Chicago, IL, Jul. 1998

[131] A. Baranovski, G. Garzoglio, I. Terekhov, A. Roy, T. Tannenbaum,
”Management of Grid Jobs and Data within SAM-Grid”, In Proceed-
ings of Cluster 2004, Sept. 20-23 2004, San Diego, California (to ap-
pear)

[132] R. Raman, ”Matchmaking Frameworks for Distributed Resource Man-
agement”, Ph.d Dissertation, University of Wisconsin, Madison, Oct.
2000. Online: http://www.cs.wisc.edu/condor/doc/rajesh.dissert.pdf

[133] H. Li, D. Groep, J. Templon, L. Wolters, ”Predicting Job Start Times
on Clusters”, In Proceedings of the 4th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid Chicago, Illinois, USA,
April 19-22, 2004

[134] I. Bird, B. Hess, A. Kowalski, D. Petravick, R. Wellner, J. Gu, E.
Otoo, A. Romosan, A. Sim, A. Shoshani, W. Hoschek, P. Kunszt, H.
Stockinger, K. Stockinger, B. Tierney and J. Baud, ”SRM (Storage
Resource Manager) Joint Functional Design”, Global Grid Forum Doc-
ument, GGF4, Toronto, Feb. 2002

[135] RTE project: http://www-d0.fnal.gov/~ritchie/CPBdemo.html

[136] Disk Farm project: http://www-isd.fnal.gov/dfarm

55

