1Overview

1Architecture

2Display

3Plugin framework

3Monitoring plugin context instantiation

4Plugins

4Execution control

4Deliverables

4Dcron

5samgrid_mon

5Installation steps

6NGOP adaptation, service state reports

Overview

Let’s define computing production as activity that involves repletion of similar or same tasks over extended periods of time. Such tasks may have wide range of responsibilities: from asserting system state to supplying input that triggers operations flow. (i.e. log file cleanups, disk space checks, server status checks, CPU utilization monitors, plotting tools, automatic testing / validation, computing request submission). Irrespective of the task size , a computing time needs to be dispensed in order to organize all activities into coherent workflow.
More often than not production support solutions resort to using low level UNIX tools (cron jobs) as a way to express “periodic” nature of the process. While seemingly convenient on a small scale, need to support large sets of different production activities over many computing nodes leads to hardly maintainable computing infrastructure. Specifically in case where there is no structure in the task codes and task execution control.
Thus, our goal is not only to provide monitoring and alarming infrastructure but also to organize production support code and computing activities into a well isolated, documented and supported subject. Primarily we are concerned with grouping, scheduling, referencing, and execution control of the production maintenance tasks in as seamless and as organized fashion as possible.

Architecture
One of the major goals of the program is to formalize presentation of existing deployment components as well as provide operators fine grain per-SAMgrid component state validation features. The paradigm described in the paragraph above has been used to deliver framework which is structured to support modules responsible for periodic and independent monitoring activities. The general idea of the framework is to provide driver and set of plugins as a standalone package which encapsulates operational traits of the SAMGrid workflow. Such package addresses tasks that require ambiguous handling or human involvement. Also, through preconfigured set of threshold values, each component of the package can streamline validation of the newly released software or configuration. The overview of the software and machine deployment architecture is depicted below.

[image: image1]Health and alarming deployment consists of display, monitoring plugin framework and execution control modules. All modules are related through a well defined interface that will be described at the end of this document. Each module is deployed as part of the UPD package that contains all tools necessary for its installation and self configuration.
Display

Display module interfaces operators and shifters to changes in state of the monitored resources. These changes are propagated in two ways.
· NGOP display
NGOP display offers drill down overview of all services and hardware resources involved in D0 production through SAMGrid. The display tree is built to assist system troubleshooting by providing categorized hierarchy of monitored elements each representing state of the particular component of the SAMGrid production deployment. The particular choice of the current NGOP setup has been influenced by default NGOP alarm propagation rules that can aggregate display tree element status information in a way to allow navigation of the troubleshooting effort from top of the tree to its bottom. http://samgrid.fnal.gov:8080/cgi-bin/ngop-mon.cgi
· NGOP display deployment
Apache HTTP service is required. Configured and Running NGOP server is required. User interacts with display cgi script that proxies requests to ngop web_cgi command as follows:
#!/bin/sh

. /samgrid/products/ups/etc/setups.sh

setup ngop -q server 2>/tmp/log.ng

exec ngop web_fcgi -c /data/products/apache/samgrid/cgi-bin/cfg.xml "$@"

Where configuration file is :

<?xml version='1.0'?>

<!DOCTYPE webmonitor_cfg SYSTEM "monitor.dtd">

<webmonitor_cfg>

 <WebGui Type="-fcgi"/>

 <LS Port="3111" Host="d0sammon.fnal.gov"/>

</webmonitor_cfg>

At the time of writing, the ngop web_cgi command must be modified to use –fill argument for the “convert” program to work. Also, imgpath variable must be repointed to the existing directory under HTTP server.

· Sam-oncall@fnal.gov
Beyond state change message sent to the NGOP server, state validation modules may report resource status via email directly to the list. Each notification is sent no often than once in 8 hours for any monitored instance only in case monitored resource is “down”.
Plugin framework
Each SAMGrid service deployment is been periodically monitored for one or more of its state properties. This monitoring activity is carried out by set of plugins that work within established framework. Each plugin is split in two parts: context instantiation and state validation. In addition to organizing the code, the framework takes care of common tasks such as plugin grouping, NGOP adaption, polling interval management as well as it interfaces code execution control system. The framework and plugins are packaged into samgrid_mon product.

Monitoring plugin context instantiation

Plugin context is information nessasary to contact service for which plugin is reporting some property of service state. That information is put together by a standalone code piece that analyzes user input and environment of the forwarding node. Such method of isolating context information into a separately managed object instance ensures integrity and consistency of the monitoring activity. In particular, after instantiation, established context can only change in response to inputs from the plugin itself. Such changes typically reflect the new resource property state or data which may help detailing problem troubleshooting. Hence, evolution of the configuration and environment of the forwarding node will not have an impact on state of the plugin.
For further convenience, plugin instantiation module may accept default inputs from user (i.e. resource polling interval for ex.) and program environment. For example: to instantiate fcp monitoring modules, sam_fcp and jim_job_managers products need to be set in order to produce all data nodes and corresponding fcp port number tuples needed by fcp monitoring module.
Plugins
Plugin is the code piece that contacts SAMgrid service to evaluate particular criteria of the monitored service state. For example: gridftpserver may be running but may not be configured with valid certificate. Thus, the same service needs to be evaluated by two different criteria to certify that service is in operational state. By our design, each criterion is supported by independent plugin instance with its own unique context. The end result of plugin work is statement on whether such monitored criteria does or does not match some preset expectation. That result, along with accompanying information is written back to the plugin context. By reading that context information, any external program can gain access to the state of the plugin.
Execution control
Scheduling of periodic monitoring activities is delegated to a standalone program - dcron. dCron task is to schedule the process which loads persistently stored context into memory and calls user defined function supplying with that object. The tuple (the function and the context) together defines a unit of work that is periodically scheduled by dcron using internal policies, the context itself and available CPU resources. Monitoring plugins are written using program API for the dcron “algorithm” while monitoring plugin context is defined though API of the algorithm context.
Deliverables
Dcron

dCron is the product provides functions of execution control and context management for plugin framework.
Usage: dcron <command> <requiredOptions> <otherOptions> <args>

Where <command> is one of the following, sorted by category:

 Category Miscellaneous:

 _generate _documentation

 Category dcron.Commands:

 list modules

 register module

 register shell module

 start

 stop

 unregister module

dcron provides both command line and python APIs to register , unregister and list context and algorithm tuples (modules). Along with initial context information, Python api allows setting of the desired time interval that suggests how often a given context should be updated by its algorithm. The same interval is used to avoid collision of execution requests scheduled by simultaneous registration of many modules. That is achieved by uniform randomization of time for the first update which is set values that are no earlier than now and no later than in time specified by original polling interval.
samgrid_mon

samgrid_mon product is driver and code for all monitoring pluging delivered as part of SAMGrid health and alarm solution. Samgrid_mon product is distribute tgtough FNAL upd and provides user interface though self documented samGridMon.py command. The command expands into options that deploy and configure respective service monitoring objects. Each option supports list of optional parameters that can override existing environment settings.
Usage: samGridMon <command> <requiredOptions> <otherOptions> <args>

Where <command> is one of the following, sorted by category:

 Category Miscellaneous:

 _generate _documentation

Category samGridMonLib.samGridMonCommands:

 make snapshot caches

 make snapshot durable locations

 make snapshot fcp queues

 make snapshot gridftp gsi servers

 make snapshot gridftp servers

 make snapshot station

 Category samGridMonLib.samGridMonCommandsForwardingNode:

 make snapshot fwdfcp queues

 make snapshot fwdgridftp gsi servers

 make snapshot fwdgridftp servers

 make snapshot jim advertize

 make snapshot ngop

 make snapshot sandbox

 make snapshot xmldb space
Installation steps
Upd install samgrid_mon –G-c # installs dcron and samgrid_mon packages

Setup samgrid_mon

By default, Samgrid_mon supports two deployment patterns – deployment on the primary and deployment on the secondary forwarding nodes.
Primary forwarding node is assumed responsible for monitoring of local (deployed at the node itself) and all remote resources participating in the production workflow. Because all forwarding nodes must be maintained identical we have no need in duplicate running of the monitoring plugins for resources that are common to all forwarding nodes. Hence, monitoring deployment on the secondary forwarding node is limited to resources that are local of the node itself.
Primary forwarding node: use installPrimaryMon.sh
Secondary forwarding node: use installSecondaryMon.sh
samGridMon.py command also supports manipulation of the individual plugins through options which can customize plugins individual parameters i.e. setting polling interval or versions of the monitored products.
NGOP adaptation, service state reports

NGOP alarm and email notifications are sent using program that has been developed as part of the monitoring framework. NGOP reporting agent is a special type of the plugin which periodically furnish all service status information to both NGOP and email notification systems. samGridMon.py make snapshot ngop is the command that deploys that plugin. Two main configuration options of the command are: --polling-interval and –email. The value for polling interval option should establish interval reasonably close to polling intervals of all services which are been reported by the collection of plugins deployed at node. Optional Email parameter sets the destination for notification messages if corresponding resource transitions to “down” state.

pluginN

plugin1

Samgrid_mon

DCRON

product

Persistent activities to watch/correct state of production.

Alarm rules

Display …

Display 2

Display 1

Monitored

node4

Monitored

node3

Monitored

node2

Monitored

node1

Monitor/monitored node

DCRON process

Xmldb@<node>

Durable@<node1:loc>

Cache@<node2:loc>

gridftp@<node3:port>

fcp@<node4:port>

NGOP

