
A CASE FOR APPLICATION-AWARE GRID SERVICES

Gabriele Garzoglio*, Andrew Baranovski, Parag Mhashilkar, FNAL, Batavia, IL 60510, USA

Ljubomir Perkovi�, CTI, DePaul University, Chicago, IL
Anoop Rajendra, University of Texas at Arlington , Arlington, TX 76019, USA

Abstract
In 2005, the DZero Data Reconstruction project

processed 250 tera-bytes of data on the Grid, using 1,600
CPU-years of computing cycles in 6 months. The large
computational task required a high-level of refinement of
the SAM-Grid system, the integrated data, job, and
information management infrastructure of the RunII
experiments at Fermilab. The success of the project was
in part due to the ability of the SAM-Grid to adapt to the
local configuration of the resources and services at the
participating sites. A key aspect of such adaptation was
coordinating the resource usage in order to optimize the
typical access patterns of the DZero reprocessing
application. Examples of such optimizations include
database access, data storage access, and worker nodes
allocation and utilization.

A popular approach to implement resource coordination
on the grid is developing services that understand
application requirements and preferences in terms of
abstract quantities e.g. required CPU cycles or data access
pattern characteristics. On the other hand, as of today, it is
still difficult to implement real-life resource optimizations
using such level of abstraction. First, this approach
assumes maximum knowledge of the resource/service
interfaces from the users and the applications. Second, it
requires a high level of maturity for the grid interfaces. To
overcome these difficulties, the SAM-Grid provides
resource optimization implementing application-aware
grid services. For a known application, such services can
act in concert maximizing the efficiency of the resource
usage. We describe what optimizations the SAM-Grid
framework had to provide to serve the DZero
reconstruction and Monte Carlo production. We also show
how application-aware grid services fulfil l the task.

INTRODUCTION
High energy physics applications have different

resource utilization requirements. As the LHC experiment
will start taking data in 2007, competition for computing
resources for high energy physics will skyrocket. In this
scenario, the optimization of resources becomes of crucial
importance to achieve the maximum amount of
computing possible for the field. Studying the
characteristics of the typical high energy physics
applications is the key to understand how to implement
these optimizations.

We have implemented resource optimization for the
DZero applications within the context of the SAM-Grid
system [1]. The SAM-Grid is a meta-computing
infrastructure for job, data, and information management.

In this paper we present the characteristics of three
major computing activities, data analysis, data
reconstruction, and Monte Carlo simulation, referring to
our experience with the DZero experiment. We then
present four examples where the knowledge of the
application helps the grid optimize the resource
utilization. We use these examples to show that
application-specific knowledge helps grid services
optimize resources and run grid jobs efficiently.

THE OPTIMIZATION PROBLEM
To optimize the resource usage for the DZero

experiment at Fermilab, we have considered the
characteristics of three major types of applications: data
filtering, also called data "reconstruction", the production
of simulated events, and data analysis. This third activity
broadly consists of the selection and the statistical study
of particles with certain characteristics, with the goal of
achieving physics measurements. It should be noted that
the first two activities are indispensable for the third one.
During data reconstruction, the binary format of events
from the detector is transformed into a format that more
easily maps to abstract physics concepts, such as particle
identification, energy, momentum, and direction
measurements. The original format, instead, is very
closely dependent on the hardware layout of the detector,
in order to guarantee the performance of the data
acquisition system, and is not suitable for data analysis.
The production of simulated events, also called “Monte
Carlo” production, is necessary to understand the
characteristics of the detector either related to the
hardware, such as the particle detection efficiency, or to
physics phenomena, such as signal to background
discrimination.

These three typical activities, which ultimately
correspond to software application families, differ among
themselves principally, but not uniquely, by the usage of
the computing resources. The communities that run the
software range from a handful of almost dedicated experts
in the case of reconstruction and Monte Carlo activities,
to potentially the whole physics community in the case of
data analysis. The typical duration of a single
reconstruction or Monte Carlo job is dozens of hours,
while data analysis ranges from a few minutes to days,
depending on the problem studied. All the activities are

*garzoglio@fnal.gov

CPU intensive, but while both reconstruction and analysis
are highly I/O intensive, Monte Carlo is not. In fact,
Monte Carlo almost never requires any input data, while
for reconstruction and, especially, analysis the input
ranges from a GB to hundreds of GB. In addition, while
the data access pattern of reconstruction is highly
predictable, since all the "raw" data have to be filtered a
few times throughout the lifetime of the experiment, the
data access patterns of data analysis varies widely, as a
few datasets can be accessed over and over again, while
others may be almost neglected. All three activities can be
run trivially in parallel because of the independent nature
of particle physics events. On the other hand, while
Monte Carlo and reconstruction are purely “batch”
activities, analysis is run in both interactive and “batch”
modes.

Table 1 summarizes the order of magnitudes of
different characteristics of reconstruction, Monte Carlo
and data analysis for the DZero experiment.

Table 1: Comparison of different characteristics of three
typical computation activities of the DZero experiment.
The bottom table focuses on the input/output data size.
The numbers represent the order of magnitude.

Even restricting our system to manage resources for

data reconstruction [2] and Monte Carlo generation [3]
only, it was still a challenge to run efficiently jobs with
such different characteristics. In order to let the grid
organize the usage of the resources efficiently, we
decided to expose details of the applications to the grid.

DATABASE ACCESS PROBLEM
Grid jobs submitted to an execution site are split into

multiple parallel instances of the same application by the
SAM-Grid grid-to-fabric interface [4]. This typically
results in dozens to hundreds of jobs starting
approximately at the same time and, therefore, accessing
key resources essentially concurrently.

In practice, not all the services have the same degree of
accessibility. In particular for Monte Carlo generation, the
parameters describing what type of physics to generate
were accessed from a central database, which initially
responded with a “denial of service” to 40% of the jobs.
Introducing retrial with randomized exponential back off
reduced the final job failure rate to 5%. Despite the
reduced failure rate, grid jobs and their retrials increased
the load of the database to a point where interactive
access was extremely inconvenient (minutes per query).

This problem was properly solved by informing the
grid of the database access characteristics of the Monte
Carlo application. All the hundreds of jobs submitted by
the grid, in fact, were parallel replicas of a single grid job
and, therefore, required access to the same input
parameters from the database.

The grid-to-fabric interface was enhanced to perform a
single database access per grid job, when the job entered
the site. The information was saved and redistributed to
the parallel jobs by internal cluster transport mechanisms.
This solution reduced the “denial of service” failure rate
to essentially 0% and still maintained a high availability
for interactive database accesses.

In conclusion, access to a grid resource (the
database) was optimized by instructing grid
components (the grid-to-fabric interface) of the
characteristics of the application (parallel jobs
requiring the same input parameters).

DATA STORAGE ACCESS PROBLEM
Different applications have different typical input data

access patterns. For DZero, data reconstruction
applications begin data processing when a single input
file, typically 1 Gigabyte in size, is delivered to the
worker node. Instead, data merging applications, used in
production operations to concatenate files typically 200
Megabytes in size, begin processing when multiple
“small” input files are delivered to the worker node.
Optimizing access to the storage resources with such
different regimes is a concern.

In the SAM-Grid, applications transfer files from
storage services that maintain queues of data access
requests. The storage services, in fact, control their load
by granting access to the data transfer servers a few
requests at the time. Access to a transfer server is granted
in the order in which the access request is submitted.
When reconstruction and merging applications use the
same data queue to access their input, transfer requests for
the various input files are interleaved. This leads to
inefficiencies, because in real life, on a cluster,
reconstruction jobs are one or two order of magnitude
more abundant than merging jobs. This means that
requests for each input file of a merging application are
interleaved with a dozen input files of reconstruction
applications. Therefore, before starting processing data, a
merging application often needs to wait for these multiple
reconstruction transfers to occur, thus substantially
increasing its idle time. For a cluster of 900 CPU, this idle
time is between one and two hours.

This inefficiency can be reduced by instructing the grid
of the input data access characteristics of the application.
Knowing the number of required input data files, the data
storage service can organize requests from reconstruction
applications in a queue different from the requests from
merging applications. Thus, a few merging applications
only compete amongst themselves for file access,
drastically reducing their idle time.

Figure 1: a diagram representing queues of requests for
file access. On the left, a single queue manages requests
from reprocessing jobs (straight lines), and merging jobs
(dashed and dashed-dotted lines). Reprocessing jobs are
two orders of magnitude more abundant than merging
jobs. Merging job 1 needs to access five input files before
it can start running (dashed lines, bold for clarity). On the
right, requests from merging and reprocessing jobs are
managed by two different queues. If access requests are
granted one at the time, the queue depth for merging job 1
is much shorter than in the case of the single queue (left
diagram). If the data storage server knows the typical data
access pattern of the jobs, it can optimize access to the
data. The SAM-Grid storage elements have knowledge of
the typical data access patterns of each application.

In conclusion, as in the previous example, access to
grid resources (data files) was optimized by
instructing grid components (the storage service) of
the characteristics of the application (multiple or
single input data requirement).

WORKER NODES ALLOCATION
PROBLEM

The grid-to-fabric interface of the SAM-Grid submits
multiple batch jobs for every grid job entering the site.
How many worker nodes should be allocated for a given
application? In general, to accomplish the same amount of
computation for a grid job, the fewer batch jobs are
submitted, the longer each job runs, and vice versa. There
is an acceptable range for the running time of a job. Batch
jobs should not run too long to minimize the probability
of termination before completion. Jobs are typically
terminated because they run beyond the maximum wall-
clock time allowed by the local scheduler, or because they
are evicted due to a higher-priority job entering the
scheduler, or because of hardware failures. On the other
hand, batch jobs should not run too short in order to
maximize the ratio between running time and setup time
i.e. the time needed to prepare the job environment (in the
SAM-Grid typically around half an hour).

The “suitable” expected running time is managed by
the grid controlling the number of worker nodes allocated
for running the application. It should be noted that
applications may have additional constraints on the

number of jobs. These constraints are dictated by
considerations on ease of bookkeeping and of recovery
after failures. In any case, the number of worker nodes to
allocate depends on the type of application. For
reconstruction applications, the grid-to-fabric interface
allocates a worker node for every file in the dataset
specified for the grid job. Given the computational
requirements of the reconstruction application, this
approach gives an acceptable running time of a few hours
on a modern CPU and eases bookkeeping and recovery
operations. For Monte Carlo applications, the interface
computes the number of worker nodes to be allocated by
dividing the total number of events to be produced as
specified for the grid job by the “optimal” number of
events per job. The “optimal” number of events is a
parameter configured at the site, considering the speed of
the average CPU at the site, the computational
requirements of the Monte Carlo application, and other
scheduler constraints (maximum allowed wall clock time,
etc.).

In conclusion, as in the previous examples,
allocation of grid resources (worker nodes) is
optimized by instructing grid components (the grid-to-
fabric interface) of the characteristics of the
application (computational requirements of the
application and other constraints).

MINIMAL RESOURCE IDLE TIME
PROBLEM

Grid jobs are often internally composed of
interdependent tasks. We let the grid manage the order of
execution of each internal task/job automatically. This
automation minimizes the idle time between job
submissions, thus minimizing the idle time of the
resources.

In order to decide whether to submit a job, the grid
must be able to determine whether the jobs on which it
depends were successfully executed. In general,
determining the success of a job is a difficult task. In case
of complex computational activities, success is generally
never defined only by the exit status of the job. To
determine whether a Monte Carlo generation job was
successful, for example, the grid has to check the number
of events produced by the job by querying a bookkeeping
database and compare this number with the number of
events originally requested. Success is determined by
policy: typically, if more than 90% of the events have
been produced, the job is successful. For reconstruction
applications the success policy is defined differently:
typically a job is successful only if it has reconstructed all
the input files, unless subsequent recovery jobs fail twice
on the same event with the same error, thus exposing a
corrupted input file. At any rate, having the grid
determine the success of a job is an application-specific
task.

In conclusion, as in the previous examples, the idle
time of grid resources is minimized by instructing grid
components (the job management component) of the

characteristics of the application (policy defining the
success condition).

CONCLUSIONS
Application-specific knowledge is important in the

optimization of grid resources. Two approaches are
possible:

1) Applications communicate their requirements and
preferences in terms of abstract resource/service-specific
quantities. This is difficult to achieve as it requires a very
high level of maturity of the grid interfaces and a
thorough understanding of application requirements.

2) Applications rely on Application-Aware Grid
Services for resource optimizations. This is less general
but easier to implement and extend.

The SAM-Grid uses successfully Application-Aware
Grid Services for grid resource optimization.

REFERENCES
[1] I. Terekhov et al., "Meta-Computing at D0", Nuclear

Instruments and Methods in Physics Research,
Section A, NIMA14225, vol. 502/2-3 pp 402 - 406.

[2] J. Snow, D. Wicke, M. Diesburg, G. Garzoglio, G.
Davies, “DØ Data Reprocessing with SAM-Grid” , in
Proceedings of Computing in High Energy Physics
2006 (CHEP06), Mumbai, India, Feb 2006

[3] G. Garzoglio, I. Terekhov, J. Snow, S. Jain, A.
Nishandar, "Experience producing simulated events
for the DZero experiment on the SAM-Grid", in
Proceedings of Computing in High Energy and
Nuclear Physics (CHEP04), Interlaken, Switzerland,
Sep 2004.

[4] G. Garzoglio, I. Terekhov, A. Baranovski, S. Veseli,
L. Lueking, P. Mhashilkar, V. Murthi, "The SAM-
Grid Fabric services", Nuclear Instruments and
Methods in Physics Research, Section A, 534:33-
37,2004

