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Abstract 
In 2005, the DZero Data Reconstruction project 

processed 250 tera-bytes of data on the Grid, using 1,600 
CPU-years of computing cycles in 6 months. The large 
computational task required a high-level of refinement of 
the SAM-Grid system, the integrated data, job, and 
information management infrastructure of the RunII 
experiments at Fermilab. The success of the project was 
in part due to the ability of the SAM-Grid to adapt to the 
local configuration of the resources and services at the 
participating sites. A key aspect of such adaptation was 
coordinating the resource usage in order to optimize the 
typical access patterns of the DZero reprocessing 
application. Examples of such optimizations include 
database access, data storage access, and worker nodes 
allocation and utilization. 

A popular approach to implement resource coordination 
on the grid is developing services that understand 
application requirements and preferences in terms of 
abstract quantities e.g. required CPU cycles or data access 
pattern characteristics. On the other hand, as of today, it is 
still difficult to implement real-life resource optimizations 
using such level of abstraction. First, this approach 
assumes maximum knowledge of the resource/service 
interfaces from the users and the applications. Second, it 
requires a high level of maturity for the grid interfaces. To 
overcome these difficulties, the SAM-Grid provides 
resource optimization implementing application-aware 
grid services. For a known application, such services can 
act in concert maximizing the efficiency of the resource 
usage. We describe what optimizations the SAM-Grid 
framework had to provide to serve the DZero 
reconstruction and Monte Carlo production. We also show 
how application-aware grid services fulfil l the task.  

INTRODUCTION 
High energy physics applications have different 

resource utilization requirements. As the LHC experiment 
will start taking data in 2007, competition for computing 
resources for high energy physics will skyrocket. In this 
scenario, the optimization of resources becomes of crucial 
importance to achieve the maximum amount of 
computing possible for the field. Studying the 
characteristics of the typical high energy physics 
applications is the key to understand how to implement 
these optimizations. 

We have implemented resource optimization for the 
DZero applications within the context of the SAM-Grid 
system [1]. The SAM-Grid is a meta-computing 
infrastructure for job, data, and information management. 

In this paper we present the characteristics of three 
major computing activities, data analysis, data 
reconstruction, and Monte Carlo simulation, referring to 
our experience with the DZero experiment. We then 
present four examples where the knowledge of the 
application helps the grid optimize the resource 
utilization. We use these examples to show that 
application-specific knowledge helps grid services 
optimize resources and run grid jobs efficiently. 

THE OPTIMIZATION PROBLEM 
To optimize the resource usage for the DZero 

experiment at Fermilab, we have considered the 
characteristics of three major types of applications: data 
filtering, also called data "reconstruction", the production 
of simulated events, and data analysis. This third activity 
broadly consists of the selection and the statistical study 
of particles with certain characteristics, with the goal of 
achieving physics measurements. It should be noted that 
the first two activities are indispensable for the third one. 
During data reconstruction, the binary format of events 
from the detector is transformed into a format that more 
easily maps to abstract physics concepts, such as particle 
identification, energy, momentum, and direction 
measurements. The original format, instead, is very 
closely dependent on the hardware layout of the detector, 
in order to guarantee the performance of the data 
acquisition system, and is not suitable for data analysis. 
The production of simulated events, also called “Monte 
Carlo”  production, is necessary to understand the 
characteristics of the detector either related to the 
hardware, such as the particle detection efficiency, or to 
physics phenomena, such as signal to background 
discrimination.  

These three typical activities, which ultimately 
correspond to software application families, differ among 
themselves principally, but not uniquely, by the usage of 
the computing resources. The communities that run the 
software range from a handful of almost dedicated experts 
in the case of reconstruction and Monte Carlo activities, 
to potentially the whole physics community in the case of 
data analysis. The typical duration of a single 
reconstruction or Monte Carlo job is dozens of hours, 
while data analysis ranges from a few minutes to days, 
depending on the problem studied. All the activities are 
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CPU intensive, but while both reconstruction and analysis 
are highly I/O intensive, Monte Carlo is not. In fact, 
Monte Carlo almost never requires any input data, while 
for reconstruction and, especially, analysis the input 
ranges from a GB to hundreds of GB. In addition, while 
the data access pattern of reconstruction is highly 
predictable, since all the "raw" data have to be filtered a 
few times throughout the lifetime of the experiment, the 
data access patterns of data analysis varies widely, as a 
few datasets can be accessed over and over again, while 
others may be almost neglected. All three activities can be 
run trivially in parallel because of the independent nature 
of particle physics events. On the other hand, while 
Monte Carlo and reconstruction are purely “batch”  
activities, analysis is run in both interactive and “batch”  
modes. 

Table 1 summarizes the order of magnitudes of 
different characteristics of reconstruction, Monte Carlo 
and data analysis for the DZero experiment. 
 

 
 

 
Table 1: Comparison of different characteristics of three 
typical computation activities of the DZero experiment. 
The bottom table focuses on the input/output data size. 
The numbers represent the order of magnitude. 

 
Even restricting our system to manage resources for 

data reconstruction [2] and Monte Carlo generation [3] 
only, it was still a challenge to run efficiently jobs with 
such different characteristics. In order to let the grid 
organize the usage of the resources efficiently, we 
decided to expose details of the applications to the grid. 

DATABASE ACCESS PROBLEM 
Grid jobs submitted to an execution site are split into 

multiple parallel instances of the same application by the 
SAM-Grid grid-to-fabric interface [4]. This typically 
results in dozens to hundreds of jobs starting 
approximately at the same time and, therefore, accessing 
key resources essentially concurrently. 

In practice, not all the services have the same degree of 
accessibility. In particular for Monte Carlo generation, the 
parameters describing what type of physics to generate 
were accessed from a central database, which initially 
responded with a “denial of service”  to 40% of the jobs. 
Introducing retrial with randomized exponential back off 
reduced the final job failure rate to 5%. Despite the 
reduced failure rate, grid jobs and their retrials increased 
the load of the database to a point where interactive 
access was extremely inconvenient (minutes per query). 

This problem was properly solved by informing the 
grid of the database access characteristics of the Monte 
Carlo application. All the hundreds of jobs submitted by 
the grid, in fact, were parallel replicas of a single grid job 
and, therefore, required access to the same input 
parameters from the database.  

The grid-to-fabric interface was enhanced to perform a 
single database access per grid job, when the job entered 
the site. The information was saved and redistributed to 
the parallel jobs by internal cluster transport mechanisms. 
This solution reduced the “denial of service”  failure rate 
to essentially 0% and still maintained a high availability 
for interactive database accesses.  

In conclusion, access to a grid resource (the 
database) was optimized by instructing grid 
components (the grid-to-fabric interface) of the 
characteristics of the application (parallel jobs 
requiring the same input parameters). 

DATA STORAGE ACCESS PROBLEM 
Different applications have different typical input data 

access patterns. For DZero, data reconstruction 
applications begin data processing when a single input 
file, typically 1 Gigabyte in size, is delivered to the 
worker node. Instead, data merging applications, used in 
production operations to concatenate files typically 200 
Megabytes in size, begin processing when multiple 
“small”  input files are delivered to the worker node. 
Optimizing access to the storage resources with such 
different regimes is a concern. 

In the SAM-Grid, applications transfer files from 
storage services that maintain queues of data access 
requests. The storage services, in fact, control their load 
by granting access to the data transfer servers a few 
requests at the time. Access to a transfer server is granted 
in the order in which the access request is submitted. 
When reconstruction and merging applications use the 
same data queue to access their input, transfer requests for 
the various input files are interleaved. This leads to 
inefficiencies, because in real life, on a cluster, 
reconstruction jobs are one or two order of magnitude 
more abundant than merging jobs. This means that 
requests for each input file of a merging application are 
interleaved with a dozen input files of reconstruction 
applications. Therefore, before starting processing data, a 
merging application often needs to wait for these multiple 
reconstruction transfers to occur, thus substantially 
increasing its idle time. For a cluster of 900 CPU, this idle 
time is between one and two hours. 

This inefficiency can be reduced by instructing the grid 
of the input data access characteristics of the application. 
Knowing the number of required input data files, the data 
storage service can organize requests from reconstruction 
applications in a queue different from the requests from 
merging applications. Thus, a few merging applications 
only compete amongst themselves for file access, 
drastically reducing their idle time.  



 
Figure 1: a diagram representing queues of requests for 
file access. On the left, a single queue manages requests 
from reprocessing jobs (straight lines), and merging jobs 
(dashed and dashed-dotted lines). Reprocessing jobs are 
two orders of magnitude more abundant than merging 
jobs. Merging job 1 needs to access five input files before 
it can start running (dashed lines, bold for clarity). On the 
right, requests from merging and reprocessing jobs are 
managed by two different queues. If access requests are 
granted one at the time, the queue depth for merging job 1 
is much shorter than in the case of the single queue (left 
diagram). If the data storage server knows the typical data 
access pattern of the jobs, it can optimize access to the 
data. The SAM-Grid storage elements have knowledge of 
the typical data access patterns of each application.  

In conclusion, as in the previous example, access to 
grid resources (data files) was optimized by 
instructing grid components (the storage service) of 
the characteristics of the application (multiple or 
single input data requirement). 

WORKER NODES ALLOCATION 
PROBLEM 

The grid-to-fabric interface of the SAM-Grid submits 
multiple batch jobs for every grid job entering the site. 
How many worker nodes should be allocated for a given 
application? In general, to accomplish the same amount of 
computation for a grid job, the fewer batch jobs are 
submitted, the longer each job runs, and vice versa. There 
is an acceptable range for the running time of a job. Batch 
jobs should not run too long to minimize the probability 
of termination before completion. Jobs are typically 
terminated because they run beyond the maximum wall-
clock time allowed by the local scheduler, or because they 
are evicted due to a higher-priority job entering the 
scheduler, or because of hardware failures. On the other 
hand, batch jobs should not run too short in order to 
maximize the ratio between running time and setup time 
i.e. the time needed to prepare the job environment (in the 
SAM-Grid typically around half an hour). 

The “suitable”  expected running time is managed by 
the grid controlling the number of worker nodes allocated 
for running the application. It should be noted that 
applications may have additional constraints on the 

number of jobs. These constraints are dictated by 
considerations on ease of bookkeeping and of recovery 
after failures. In any case, the number of worker nodes to 
allocate depends on the type of application. For 
reconstruction applications, the grid-to-fabric interface 
allocates a worker node for every file in the dataset 
specified for the grid job. Given the computational 
requirements of the reconstruction application, this 
approach gives an acceptable running time of a few hours 
on a modern CPU and eases bookkeeping and recovery 
operations. For Monte Carlo applications, the interface 
computes the number of worker nodes to be allocated by 
dividing the total number of events to be produced as 
specified for the grid job by the “optimal”  number of 
events per job. The “optimal”  number of events is a 
parameter configured at the site, considering the speed of 
the average CPU at the site, the computational 
requirements of the Monte Carlo application, and other 
scheduler constraints (maximum allowed wall clock time, 
etc.). 

In conclusion, as in the previous examples, 
allocation of grid resources (worker nodes) is 
optimized by instructing grid components (the grid-to-
fabric interface) of the characteristics of the 
application (computational requirements of the 
application and other constraints). 

MINIMAL RESOURCE IDLE TIME 
PROBLEM 

Grid jobs are often internally composed of 
interdependent tasks. We let the grid manage the order of 
execution of each internal task/job automatically. This 
automation minimizes the idle time between job 
submissions, thus minimizing the idle time of the 
resources. 

In order to decide whether to submit a job, the grid 
must be able to determine whether the jobs on which it 
depends were successfully executed. In general, 
determining the success of a job is a difficult task. In case 
of complex computational activities, success is generally 
never defined only by the exit status of the job. To 
determine whether a Monte Carlo generation job was 
successful, for example, the grid has to check the number 
of events produced by the job by querying a bookkeeping 
database and compare this number with the number of 
events originally requested. Success is determined by 
policy: typically, if more than 90% of the events have 
been produced, the job is successful. For reconstruction 
applications the success policy is defined differently: 
typically a job is successful only if it has reconstructed all 
the input files, unless subsequent recovery jobs fail twice 
on the same event with the same error, thus exposing a 
corrupted input file. At any rate, having the grid 
determine the success of a job is an application-specific 
task.  

In conclusion, as in the previous examples, the idle 
time of grid resources is minimized by instructing grid 
components (the job management component) of the 



characteristics of the application (policy defining the 
success condition). 

CONCLUSIONS 
Application-specific knowledge is important in the 

optimization of grid resources. Two approaches are 
possible: 

1) Applications communicate their requirements and 
preferences in terms of abstract resource/service-specific 
quantities. This is difficult to achieve as it requires a very 
high level of maturity of the grid interfaces and a 
thorough understanding of application requirements. 

2) Applications rely on Application-Aware Grid 
Services for resource optimizations. This is less general 
but easier to implement and extend. 

The SAM-Grid uses successfully Application-Aware 
Grid Services for grid resource optimization. 
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