Leptoquark search at the Tevatron

Raimund Ströhmer, LMU München, for the CDF and DØ Collaboration
Introduction

• Leptoquarks have both lepton and quark flavor
 - Connection of lepton and quark sector
 - Predicted by many extensions of the Standard Model
 ▪ GUT, extended gauge models, compositeness
 - Leptoquark-like couplings in R-parity Violation SUSY

• Description with effective couplings
 - invariant under $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$
 - Conserves lepton and baryon number separately (proton lifetime)
 - Couples only to one lepton and one quark family (FCNC)
 - Scalar and vector leptoquarks are possible
 - Only limits for scalar leptoquarks are shown
 ▪ scalar LQ have lower cross-sections (⇒ limit also valid for vector LQ)
 ▪ scalar LQ are less model dependent
The Tevatron

at Fermilab near Chicago

Run I: 1992-1996
100 pb\(^{-1}\) at \(\sqrt{s} = 1.8\) TeV

Run II: since 2001
proton antiproton collisions
at \(\sqrt{s} = 1.96\) TeV

Data sets of analyses shown
range from 72 pb\(^{-1}\) to 200 pb\(^{-1}\)
The DØ Run II Detector

- Jet
 - Calorimeter
- Electrons
 - Signal mostly in the electromag. calorimeter
 - Track
- Muon
 - Track
 - Muon system
- Missing energy
 - calorimeter corrected for muons and jet energy scale

New Solenoid, Tracking System
Si, SciFi, Preshowers

+ New Electronics, Trig, DAQ
Leptoquarks at the Tevatron

- pair produced by strong coupling
 - large cross-section
 - cross-section is model independent
- the LQ decays either into a quark and a charged lepton (with probability β) or a quark and a neutrino

Possible signature:
- 2 jets + 2 leptons (both e or both μ) no missing energy
- 2 jets + 1 lepton + missing energy
- 2 jets + missing energy

Interesting leptoquark masses are \sim 200 GeV
\Rightarrow All objects are high energetic.
2 Jets and 2 Electrons

2 jets with $E_T > 20$ GeV
2 electrons with $E_T > 25$ GeV

Main backgrounds

- 2 jets+2 real electrons from Z^0/Drell-Yan events.
 - estimated from MC

- 2 jets and 2 fake electrons from fake ("electron like") jets.
 - estimated from data with 4 jets and fake probability.

\[\Rightarrow \text{veto on } Z^0 \text{ mass region} \]
2 Jets and 2 Electrons

Exploit high energy of objects:

\[S_T = E_{T}^{Jet _1} + E_{T}^{Jet _2} + E_{T}^{e _1} + E_{T}^{e _2} \]

Extract mass limit from comparison of predicted cross-section and crosssection limit

Select cut to optimize expected limit (or expected discovery significance)

0.4 ± 0.1 background events expected
28% Signal efficiency
0 events observed.

CDF preliminary 200 pb⁻¹

\[M_{LQ}^{scalar} (1^{st} Gen.) > 230 GeV \quad (for \beta = 1) \]
2 Jets, 1 electron, and missing energy

2 jets with $E_T > 25$ GeV
1 electron with $E_T > 35$ GeV
missing $E_T > 30$ GeV

Main background
- $W +$ jets
- fake electron (from γ or jet) + 2 jets
 - Normalize at low missing E_T
2 Jets, 1 electron, and missing energy

Cut on M_T ($M_T > 130$ GeV) to veto $W+\text{Jets}$

Cut on S_T ($S_T > 330$ GeV) to exploit high energy of objects.

$$S_T = E_T^{\text{Jet}_1} + E_T^{\text{Jet}_2} + E_T^e + E_T^{\text{miss}}$$

2 events observed
4.78 ± 0.78 expected

DØ preliminary 175 pb$^{-1}$

$$M_{LQ}^{\text{scalar}} (1^{\text{st Gen.}}) > 194 \text{ GeV} \quad (\text{for } \beta = 0.5)$$

CDF preliminary 72 pb$^{-1}$

$$M_{LQ}^{\text{scalar}} (1^{\text{st Gen.}}) > 166 \text{ GeV} \quad (\text{for } \beta = 0.5)$$
2 Jets and Missing Energy

2 jets with $E_T > 20$ GeV
missing $E_T > 60$ GeV
124 events observed
118±14 expected
First-Generation LQ Limits

![Graphs showing branching ratio vs. scalar leptoquark mass](image-url)

- **DØ Run II Preliminary**
- **Search For First Generation Scalar Leptoquarks**
2 Jets and 2 Muons

2 jets with $E_T > 30$ GeV, 15 GeV
2 muons with $p_T > 25$ GeV

Main background:
Z^0/Drell-Yan events
⇒ veto on $M_{\mu\mu} < 15$GeV and
75 GeV < $M_{\mu\mu} < 105$ GeV

CDF Run II
2-dim cut on Jet E_T and muon p_T

2 events observed
3.17 ±1.17 expected
Different ways to exploit the LQ decay-kinematics have been studied

Reconstructed LQ Mass
- pick μ-jet combination for which the mass difference between the 2 pairs is smallest
- Use the average of the two masses

$D\O$ preliminary 104 pb$^{-1}$

$M_{LQ}^{scalar} (2^{\text{nd}} \text{ Gen.}) > 186 \text{ GeV} \quad (\text{for } \beta = 1)$
Conclusions and Outlook

- Hadron collider is a good place to search for leptoquark pairs
 - Leptoquark pairs can be produced in strong interactions
 - Highly energetic leptons and jets result in clean signatures

- Limits for scalar leptoquarks have surpassed Run I results
 - Publications are in preparation

- Outlook
 - Work on missing channels
 - Sensitivity will increase with integrated luminosity
 (there is a lot of separation power left to exploit.)