Review of Recent Top Quark Measurements

Ann Heinson
University of California, Riverside

Vth Rencontres du Vietnam
New Views in Particle Physics
Hanoi, Vietnam
August 5–11, 2004

- Theory
- Reconstruction
- Backgrounds
- Results
 - Top quark pairs
 - Single top quarks
 - Top properties
 - Top mass
- Future
Top Quarks

Spin 1/2 fermion, charge +2/3
- Isospin partner of the bottom quark

~40x heavier than its partner
- 178.0 ± 4.3 GeV from Tevatron Run I

Produced mostly in pairs at the Tevatron
- 85% $q\bar{q}$, 15% gg
- Cross section = 6.8 ± 0.4 pb at NNLO
Top Quark Decay

Top decays before it can hadronize

- **Lifetime** $\Gamma_{\text{top}}^{-1} = (1.5 \text{ GeV})^{-1} \ll \Lambda_{\text{QCD}}^{-1} = (200 \text{ MeV})^{-1}$

Top decays to W^+b 99.9% of the time

Classify $t\bar{t}$ events by the decays of the W's

- **Dileptons**
 - $e^+e^- + b\bar{b} + \not{E}_T$
 - $e\mu + b\bar{b} + \not{E}_T$
 - $\mu^+\mu^- + b\bar{b} + \not{E}_T$

- **Lepton+jets**
 - $e + jj + b\bar{b} + \not{E}_T$
 - $\mu + jj + b\bar{b} + \not{E}_T$

- **Alljets**
 - $jj + jj + b\bar{b}$

Need to reconstruct and identify:

- Electrons, muons, light-jets, b-jets, and missing transverse energy
Detection and Reconstruction

- Tevatron detectors have new tracking systems, many upgrades to calorimeters and muon systems
- Run II, April 2002 – July 2004
 - CDF has collected 500 pb^{-1} of data (400 pb^{-1} with SVXII)
 - DØ has collected 450 pb^{-1} of data
- Analyses shown here use 100–200 pb^{-1} → several million triggered events
- Select final samples to maximize measurement sensitivity
 - Find ~100 top quark events above background so far
Backgrounds

Events with real W or Z bosons
- W+jets
- Z+jets
- WW, WZ, ZZ

Events with misidentified leptons
- Multijet events with a jet misidentified as an electron
- $b\bar{b}$+jets with a misidentified electron or muon from a b decay

Miscellaneous sources
- Cosmic rays, multiple $p\bar{p}$ interactions, pattern recognition mistakes, etc.

For most $t\bar{t}$ decay channels, processes with a real W boson and real b jets are the most difficult to remove.
b-Jet Identification

DØ — “Silicon Microstrip Tracker”
- 792,576 channels in barrels and disks
- **b-ID algorithms**
 - Secondary vertex (SVT)
 - Jet lifetime probability (JLIP)
 - Counting signed impact parameter (CSIP)
 - Muon-in-jet (SLT)

CDF — “Silicon Vertex Detector II”
- plus an inner layer and outer layers
 - 722,432 channels, in barrels
- **b-ID algorithms**
 - Secondary vertex (SVX)
 - Muon-in-jet (SLT)

Probability to tag at least one jet in a $t\bar{t}$ event = 55%
Probability for a fake tag = 0.4%

Ann Heinson, UC Riverside
tt Overcross Section

- Compare measurements with \(\sigma_{\text{theory}}(p\bar{p} \rightarrow t\bar{t} + X) = 6.8 \text{ pb} \)
 - 0.03% of the \(W \) cross section

- The CDF collaboration has made 10 measurements
 - Dileptons = 3, Lepton+jets = 6, Alljets = 1

- The DØ collaboration has made 7 measurements
 - Dileptons = 2, Lepton+jets = 4, Alljets = 1

- Baseline samples for measurements of top quark properties
CDF Dileptons and Alljets Xsecs

Two opposite-sign leptons, $H_T > 200$ GeV

Fit all SM processes in E_T--N_{jets} plane

A lepton and an opposite-sign track

Cut on $A, C, E_T^{j1:j8}, E_T^{j3:j8},$ SVX-tag

Ann Heinson, UC Riverside
CDF Lepton+Jets Xsecs

Muon-in-jet tag

Fit to H_T distribution (no tag)

Two or more SVX-tagged jets

SVX-tag and fit to E_T(jet1) distribution

Ann Heinson, UC Riverside
CDF L+Jets Xsecs

CDF Run II Preliminary

$\sigma(p\bar{p} \rightarrow t\bar{t}) \ (pb)$

$m_t=175 \ GeV/c^2$

Lepton + Track
$7.0 \pm 2.7 \pm 1.5 \ (L=200 pb^{-1})$

Lepton + Lepton
$8.4 \pm 3.2 \pm 1.6 \ (L=193 pb^{-1})$

Dileptons: SM Fit
$8.6 \pm 2.5 \pm 1.1 \ (L=200 pb^{-1})$

Lepton + Jets: Kinematic
$4.7 \pm 1.6 \pm 1.8 \ (L=195 pb^{-1})$

Lepton + Jets: Kinematic NN
$6.7 \pm 1.1 \pm 1.8 \ (L=195 pb^{-1})$

Lepton + Jets: Vertex Tag + Kinematic
$6.0 \pm 1.5 \pm 0.8 \ (L=162 pb^{-1})$

Lepton + Jets: Soft Muon Tag
$5.4 \pm 2.4 \pm 1.1 \ (L=162 pb^{-1})$

Lepton + Jets: Vertex Tag
$5.6 \pm 2.5 \pm 1.0 \ (L=162 pb^{-1})$

Lepton + Jets: Double Vertex Tag
$4.1 \pm 2.0 \pm 0.9 \ (L=126 pb^{-1})$

All Hadronic: Vertex Tag
$7.8 \pm 2.5 \pm 4.7 \ (L=165 pb^{-1})$

28%

SVX-tag and $H_T > 200 \ GeV$

Fit to output of 7-variable NN

Ann Heinson, UC Riverside
DØ Dileptons, Alljets, L+Jets Xsecs

Two opposite-sign leptons, M_{ll} and H_T

Three NNs, 9+4 variables, SVT-tag

Electron+muon, SVT-tag

Muon-in-jet tag, loose A and H_T cuts

Ann Heinson, UC Riverside
DØ L+Jets Xsecs

DØ Results

DØ Run II Preliminary

Xsec in pb

<table>
<thead>
<tr>
<th>Energy</th>
<th>μ+jets</th>
<th>eμ</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>143 pb−1</td>
<td>eμ</td>
<td>ee</td>
<td>156 pb−1</td>
</tr>
<tr>
<td>156 pb−1</td>
<td>eμ</td>
<td>ee</td>
<td>140 pb−1</td>
</tr>
<tr>
<td>140 pb−1</td>
<td>μ+jets (no tag)</td>
<td>141 pb−1</td>
<td>144 pb−1</td>
</tr>
<tr>
<td>141 pb−1</td>
<td>μ+jets (no tag)</td>
<td>144 pb−1</td>
<td>141 pb−1</td>
</tr>
<tr>
<td>141 pb−1</td>
<td>μ+jets (SLT)</td>
<td>92 pb−1</td>
<td>94 pb−1</td>
</tr>
<tr>
<td>92 pb−1</td>
<td>μ+jets (SLT)</td>
<td>94 pb−1</td>
<td>92 pb−1</td>
</tr>
<tr>
<td>92 pb−1</td>
<td>μ+jets (SLT)</td>
<td>92 pb−1</td>
<td>158 pb−1</td>
</tr>
<tr>
<td>158 pb−1</td>
<td>μ+jets (CSIP)</td>
<td>158 pb−1</td>
<td>158 pb−1</td>
</tr>
<tr>
<td>158 pb−1</td>
<td>μ+jets (SVT)</td>
<td>158 pb−1</td>
<td>158 pb−1</td>
</tr>
<tr>
<td>158 pb−1</td>
<td>μ+jets (CSIP)</td>
<td>158 pb−1</td>
<td>162 pb−1</td>
</tr>
<tr>
<td>162 pb−1</td>
<td>μ+jets (CSIP)</td>
<td>158 pb−1</td>
<td>158 pb−1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy</th>
<th>dileptons</th>
<th>e+jets (no tag)</th>
<th>μ+jets (no tag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>143 pb−1</td>
<td>dileptons</td>
<td>e+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
<tr>
<td>156 pb−1</td>
<td>dileptons</td>
<td>e+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
<tr>
<td>140 pb−1</td>
<td>dileptons</td>
<td>e+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
<tr>
<td>141 pb−1</td>
<td>dileptons</td>
<td>e+jets (SLT)</td>
<td>μ+jets (CSIP)</td>
</tr>
<tr>
<td>144 pb−1</td>
<td>dileptons</td>
<td>e+jets (SLT)</td>
<td>μ+jets (CSIP)</td>
</tr>
<tr>
<td>141 pb−1</td>
<td>dileptons</td>
<td>e+jets (CSIP)</td>
<td>μ+jets (CSIP)</td>
</tr>
<tr>
<td>144 pb−1</td>
<td>dileptons</td>
<td>e+jets (CSIP)</td>
<td>μ+jets (CSIP)</td>
</tr>
<tr>
<td>141 pb−1</td>
<td>dileptons</td>
<td>e+jets (CSIP)</td>
<td>μ+jets (CSIP)</td>
</tr>
<tr>
<td>144 pb−1</td>
<td>dileptons</td>
<td>e+jets (CSIP)</td>
<td>μ+jets (CSIP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy</th>
<th>μ+jets (no tag)</th>
<th>μ+jets (no tag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>143 pb−1</td>
<td>μ+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
<tr>
<td>156 pb−1</td>
<td>μ+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
<tr>
<td>140 pb−1</td>
<td>μ+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
<tr>
<td>141 pb−1</td>
<td>μ+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
<tr>
<td>144 pb−1</td>
<td>μ+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
<tr>
<td>141 pb−1</td>
<td>μ+jets (no tag)</td>
<td>μ+jets (no tag)</td>
</tr>
</tbody>
</table>

\[\sigma(p\bar{p} \rightarrow t\bar{t}) \text{ [pb]} \]

Ann Heinson, UC Riverside
Cross Section Summary

- Run I results:
 - CDF $\sigma(t\bar{t}) = 6.5^{+1.7}_{-1.4}$ pb
 - DØ $\sigma(t\bar{t}) = 5.7 \pm 1.7$ pb
 - 26–30% uncertainty
 - Agree with calculation, 5.2 ± 0.3 pb

- Run II cross section is 30% higher than Run I ($\sqrt{s} = 1.8$ TeV → 1.96 TeV)
 - Theory calculation is 6.8 ± 0.4 pb

- Best Run II measurements so far are CDF lepton+jets results
 - SVX-tag and $H_T > 200$ GeV, 6.7 ± 1.9 pb with 162 pb⁻¹
 - Neural network with 7 variables, 5.6 $^{+1.4}_{-1.2}$ pb with 195 pb⁻¹
 - Consistent with theory

- Run II results from many channels not yet combined
 - Best measurement uncertainties are 28% so far
 - Aiming for 10% with 2 fb⁻¹
Single Top Quarks

- Electroweak production of top quarks not yet observed
- Two main production modes at the Tevatron

\[\sigma(p\bar{p} \to t\bar{b}, \bar{t}b + X) = 0.88 \pm 0.07 \text{ pb} \]

- About half the cross section of \(t\bar{t} \), but backgrounds are much higher
- Single top events can be used to measure \(|V_{tb}|\) without assuming three quark generations, and hence to determine top quark width
- Observation is hoped for with 1–2 fb\(^{-1}\) of data
CDF Single Top

Fit to $H_T^{\ell\nu jj\ell}$ and SVX b-tag

\[\sigma(s + t\text{-channels}) < 13.5 \text{ pb} \ (95\% \ CL) \]

Fit to $(Q \times \eta)$ and SVX b-tag

\[\sigma(t\text{-channel}) < 8.5 \text{ pb} \ (95\% \ CL) \]

DØ Single Top

New Results

Fit to $(Q \times \eta)$ and SVX b-tag

\[\sigma(s\text{-channel}) < 19 \text{ pb} \ (95\% \ CL) \]

\[\sigma(t\text{-channel}) < 25 \text{ pb} \]

\[\sigma(s + t\text{-channels}) < 23 \text{ pb} \]
Top Quark Properties

Many interesting measurements are possible – all need high statistics

- Production
 - g_{tt} and W_{tb} couplings
 - Spin correlations
 - New particles
- Decay
 - Width Γ
 - CKM matrix element $|V_{tb}|$
 - Gluon radiation
 - W boson helicities
 - Branching fractions
 - p_T spectra
 - Charge
 - Rare decays
CDF W Helicity

(Run II)

Lepton+jets

Dileptons

Fit left-handed (F_L) and longitudinally polarized (F_0) W boson fractions in lepton p_T

$F_0 = 0.88^{+0.12}_{-0.47}$ (lepton + jets)
$F_0 < 0.52$ 95% CL (dileptons)
$F_0 = 0.27^{+0.35}_{-0.24}$, < 0.88 (combined)

$F_0 = 0.70$ (Standard Model)

Low dilepton value caused by excess of events at low lepton p_T

DØ W Helicity

(Run I Data)

Matrix element method to reconstruct $t\bar{t}$ events

$F_0 = 0.56 \pm 0.31$ (lepton+jets)

Ann Heinson, UC Riverside
Ten years of measuring the top quark mass

Methods have developed significantly over this time
- First, just kinematic fitting and compare to templates in m_{top}
- Then add more variables and use likelihoods
- Best methods use all available information

Measurement uncertainty improves with both time and more data
- The first measurements (1995) had a ≥7% uncertainty
- Current Run II measurements have a 5% uncertainty each
- Run I combined measurement has a 2.4% uncertainty
- Run II goal is a 1% uncertainty on m_{top} (±1.5–2.5 GeV)
CDF Top Mass – Run II Data

Template Method, 6 Dilepton Events (1 ee, 3 eμ, 2 μμ)

\(m_{\text{top}} = 175.0 \text{ GeV} \pm 16.9 \text{ (stat)} \pm 8.4 \text{ (syst)} \)

(11% uncertainty)

Template Method, 28 Lepton+Jets Events with SVX \(b \)-tag

\(m_{\text{top}} = 174.9 \text{ GeV} \pm 7.7 \text{ (stat)} \pm 6.5 \text{ (syst)} \)

(5.8% uncertainty)

Ann Heinson, UC Riverside
CDF Top Mass – Run II Data

Multivariate Template Method, 33 Lepton+Jets Events with SVX b-tag

- $m_{\text{top}} = 179.6 \ GeV$
- $+6.4 \ (\text{stat}) \pm 6.8 (\text{syst})$
- (5.2% uncertainty)

Dynamical Likelihood Method, 22 Lepton+Jets Events with SVX b-tag

- $m_{\text{top}} = 177.8 \ GeV$
- $+4.5 \ (\text{stat}) \pm 6.2 (\text{syst})$
- (4.5% uncertainty)
DØ Top Mass – Run I Data

Matrix Element Method

- All features of individual events are included
- Well-measured events contribute more information than poorly-measured ones
- 22 Run I lepton+jets events re-analyzed

$$m_{\text{top}} = 180.1 \text{ GeV} \pm 3.6(\text{stat}) \pm 4.0(\text{syst})$$
(3.0% uncertainty)

- Result published in Nature, June 2004
- First experimental HEP paper published in that journal

Run II Data

Three measurements in progress
- Template Method
- Ideogram Method
- Matrix Element Method

Results available soon

Ann Heinson, UC Riverside
Top Quark Mass Summary

Best result
Average of DØ and CDF measurements using Run I data

(Run II results not yet combined)

Top and the Higgs boson
Top quark mass gives us information about the Higgs boson
- Top couples strongly to the Higgs
- Top plays a critical role in loop corrections

Most likely Higgs boson mass is 117 GeV
95% CL upper limit is 251 GeV

\[m_{\text{top}} = 178.0 \pm 4.3 \text{ GeV} \]
Future Top Quark Physics

- Large Hadron Collider, \(pp \) at \(\sqrt{s} = 14 \) TeV, start-up April 2007
 - \(tt \) will be 90\% from \(gg \), 10\% from \(q\bar{q} \) (opposite to the Tevatron)
 - 10\(^7\) \(tt \) pairs per year for first three years, then 10\(^8\) per year
 - (Compare with Tevatron, 10\(^4\) produced per year)

- Linear Collider, \(e^+e^- \) at \(\sim \sqrt{s} = 360 \) GeV \((m_{tt}) \) for top measurements
 - \(tt \) cross section lower than Tevatron, but luminosity much higher
 - 10\(^6\) \(tt \) pairs per year and much smaller backgrounds
Expected Future Sensitivities

All top quark properties, SM and non-SM couplings, rare production and decay modes will be studied in detail
(except rare SM decay $t \rightarrow WbZ$, which cannot be reached at the LHC)

Top quark mass

- Similar precision expected at LHC and Tevatron, ~ 1 GeV
 - Limited by final state radiation

- At LC, scan $t\bar{t}$ threshold,
 fit $m_{\text{top}}(1S), \alpha_s(M_Z), \Gamma_{\text{top}}, g_{tH}$
 to measurements of
 $\sigma_{t\bar{t}}, p_{\text{top}}, A_{FB}^{\text{top}}$,
 measure $m_{\text{top}}(1S)$ to 20 MeV

- Converting $m_{\text{top}}(1S)$ to $m_{\text{top}}(\overline{\text{MS}})$
 limits $m_{\text{top}}(\overline{\text{MS}})$ uncertainty to ~ 100 MeV
Summary

- The Tevatron is the only top quark factory until LHC turn-on in 2007
 - The collider is meeting performance expectations
 - DØ and CDF are collecting data at high efficiency

- Expect about 80x more data in Run II than Run I (100 pb \rightarrow 8 fb$^{-1}$)

- Many first measurements now available
 - All consistent with the Standard Model
 - Need more data to reduce statistical and systematic uncertainties
 - Need more time to apply more sophisticated analysis methods

- Precision top quark physics program is just around the corner

- The top quark will provide a unique window into hidden parts of the Standard Model and many regions beyond