Diboson Production at the Tevatron

Yurii Maravin

FNAL

For the CDF and DØ Collaborations

Yurii Maravin 08-26-2004
Diboson Production

• SU(2)_L x U(1)_Y electroweak sector
 – Non-Abelian theory with self-interacting gauge bosons

 \[
 \begin{array}{ccc}
 W & W & Z \\
 \gamma & & W \\
 \end{array}
 \]

 – We can study trilinear boson couplings by analyzing events with two (or more) bosons in the final state

• Most of new physics models predict multiple weak bosons in the final state

• Diboson events are a background for other important physics (H→WW, tt→dileptons etc.)
Boson Reconstruction in CDF and DØ

- **W** reconstruction
 - High-p_T lepton candidates, missing E_T
- **Z** reconstruction
 - A pair of two high-p_T lepton candidates
- **γ** reconstruction
 - Electro-magnetic object reconstructed with a transverse energy of at least 7(CDF) or 8(DØ) GeV; object must be isolated and pass shower shape quality requirements
 - Photon candidate is reconstructed in the central region of the calorimeter ($|\eta| < 1.1$)
Photon Reconstruction

• Photon identification is quite challenging
 – Big background from jets with high energy π^0
 • Use as much information on track isolation and energy deposition as possible
 – No clean photon samples available (sample of $H\rightarrow\gamma\gamma$ events would be very useful!)
 • Have to use both data and Monte Carlo simulation to measure photon efficiency
 • Photon identification systematic error is one of the dominant in $W\gamma$ and $Z\gamma$ analyses
W_γ Production

- Require g to be isolated from leptons by at least

$$\Delta R(\gamma, \ell) = \sqrt{\Delta \eta^2 + \Delta \phi^2} > 0.7$$

- reduce FSR processes

- Sensitive to WW_γ trilinear coupling

- Anomalous coupling would
 - Change the shape of γE_T distribution (more high-E_T photons)
 - Enhance the cross-section

Yurii Maravin 08-26-2004
Photon E_T Spectrum

Sensitive region to anomalous couplings
Wγ Cross-section Results

<table>
<thead>
<tr>
<th></th>
<th>Electron(Muon)</th>
<th>Electron(Muon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity, pb⁻¹</td>
<td>202(192)</td>
<td>162(82)</td>
</tr>
<tr>
<td>E_Tγ</td>
<td>> 7 GeV</td>
<td>> 8 GeV</td>
</tr>
<tr>
<td>Total background</td>
<td>94.7 ± 23.6</td>
<td>124.1 ± 12.5</td>
</tr>
<tr>
<td>Candidates</td>
<td>323</td>
<td>223</td>
</tr>
<tr>
<td>σ, pb</td>
<td>19.7 ± 2.8^{stat+syst ± 1.1}_{lumi}</td>
<td>19.3 ± 6.7^{stat+syst ± 1.2}_{lumi}</td>
</tr>
<tr>
<td>NLO Theory, pb</td>
<td>19.3 ± 1.4</td>
<td>16.4 ± 0.4</td>
</tr>
</tbody>
</table>

U. Baur et al.

Yurii Maravin 08-26-2004
Any indication of non-zero trilinear couplings indicates new physics.
Photon \(E_T \) Spectrum

CDF Preliminary

- CDF Run II Data
- \(Z\gamma \rightarrow \gamma \gamma \)
- \(Z + \text{jet} \)

D0 RunII Preliminary

- \(\mu\mu \) Data
- QCD
- QCD + \(\mu\mu \) MC

Yurii Maravin 08-26-2004
$Z\gamma$ Cross-section Results

<table>
<thead>
<tr>
<th></th>
<th>Electron (Muon)</th>
<th>Electron (Muon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity, pb$^{-1}$</td>
<td>202 (192)</td>
<td>177 (144)</td>
</tr>
<tr>
<td>$E_T\gamma$</td>
<td>> 7 GeV</td>
<td>> 8 GeV</td>
</tr>
<tr>
<td>Background</td>
<td>4.5 ± 0.8</td>
<td>14.8 ± 1.5</td>
</tr>
<tr>
<td>Candidates</td>
<td>70</td>
<td>101</td>
</tr>
<tr>
<td>σ, pb</td>
<td>$5.3 \pm 0.7_{\text{stat+syst}} \pm 0.3_{\text{lumi}}$</td>
<td>$3.9 \pm 0.5_{\text{stat+syst}} \pm 0.3_{\text{lumi}}$</td>
</tr>
<tr>
<td>NLO Theory, pb</td>
<td>5.4 ± 0.4</td>
<td>4.3 ± 0.4</td>
</tr>
</tbody>
</table>

U. Baur et al.
WW Production

- Sensitive to ZWW and γWW couplings
- Select events with two high-p_T leptons, large missing E_T
 - (ee) and $(\mu\mu)$ channels have large background from Z decays;
 $(e\mu)$ is much cleaner, major background from $W\gamma$ process.
- CDF: “lepton+track” – require only one reconstructed high -p_T lepton and a charged track
 - increases efficiency,
 - includes $W\rightarrow\tau\nu$ decays
WW Production

<table>
<thead>
<tr>
<th></th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF Expected signal</td>
<td>2.90 ± 0.34</td>
<td>2.75 ± 0.32</td>
<td>5.69 ± 0.66</td>
<td>11.3 ± 1.3</td>
</tr>
<tr>
<td>CDF Background</td>
<td>1.97 ± 0.40</td>
<td>1.14 ± 0.28</td>
<td>1.66 ± 0.31</td>
<td>4.77 ± 0.7</td>
</tr>
<tr>
<td>CDF Candidates</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 Expected signal</td>
<td>3.26 ± 0.05</td>
<td>2.01 ± 0.05</td>
<td>10.8 ± 0.1</td>
<td>16.1 ± 0.1</td>
</tr>
<tr>
<td>D0 Background</td>
<td>2.30 ± 0.26</td>
<td>1.94 ± 0.43</td>
<td>3.81 ± 0.30</td>
<td>8.05 ± 0.7</td>
</tr>
<tr>
<td>D0 Candidates</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>
WW Cross-section Results

- **Dilepton final state**
 - CDF: \(\sigma(pp \rightarrow WW) = 14.3^{+5.6}_{-4.9} \text{(stat)} \pm 1.6 \text{(syst)} \pm 0.9 \text{(lumi)} \)
 - DØ: \(\sigma(pp \rightarrow WW) = 13.8^{+4.3}_{-3.8} \text{(stat)} \pm 1.0 \text{(syst)} \pm 0.9 \text{(lumi)} \)

- **Lepton+track**
 - CDF: \(\sigma(pp \rightarrow WW) = 19.4 \pm 5.1 \text{(stat)} \pm 3.5 \text{(syst)} \pm 1.2 \text{(lumi)} \)

- Cross-sections are consistent with SM prediction
- Work on extracting \(ZWW \) and \(\gamma WW \) trilinear couplings is in progress.

NLO Theory: 13.5 pb (CTEQ5L)

J.M. Campbell and R.K. Ellis
• Select events with three high-p_T lepton (electron or muon) candidates and missing E_T

• We expect 1.02 ± 0.07 signal events with estimated background of 0.39 ± 0.02 events

• Observe one event with three muon candidates
 – Set an upper-limit on WZ cross-section of 15.1 pb at 95% C.L.
 – NLO Theory predicts $3.7 \pm 0.1 \text{ pb}$

J.M. Campbell and R.K. Ellis
WZ and ZZ Production

- Statistics is not sufficient, try to set limit on combined WZ and ZZ production

- Require a Z candidate decaying in either electrons or in muons in the event and
 - large missing transverse energy (Z→νν) or
 - a third lepton (e or μ) and missing E_T or
 - two leptons

- Expect 2.72 ± 0.33 signal events with estimated background of 2.29 ± 0.42 events

- Observe 4 candidate events in data (all in Z+missing E_T)
- Set an upper limit on WZ+ZZ production of 13.9 pb
 - NLO Theory prediction is 5.2 ± 0.4 pb.

J.M. Campbell and R.K. Ellis
Conclusions

- We report measurements of $W\gamma$, $Z\gamma$, and WW cross-sections.
 - First observation of WW production
- Results are consistent with the Standard Model predictions
- Limits are set on WZ and ZZ processes
- Measurements are being interpreted in the framework of anomalous coupling
- Expect final results and publications soon…