DØ RunII
Top Mass Measurement
with the
Matrix Element Method

for the DØ collaboration

Philipp Schieferdecker, LMU Munich

Rolf Barie, Uni Freiburg
Jochen Camin, University of Rochester
Frank Fiedler, LMU Munich
Ivor Fleck, Uni Freiburg
Rob Harrington, Northeastern University
Kevin Kröninger, Bonn University
Alan Magerkurth, Michigan University
Arnulf Quadt, Bonn University
Chris Tully, Princeton
Tevatron: Run II

Fermilab
Chicago

$p \rightarrow \bar{p}$

$\sqrt{s} = 1.96\text{TeV}$

Tevatron

Main Injector & Recycler
Top Quark Physics

Production:
- pair production
- 85% Annihilation
- 15% Gluon-Fusion

Decay:
- top decays exclusively to $W+b$
- W decays to qq' or lv

Channels:
- di-lepton
- **lepton+jets**
- all-jets

Signatures:
- 1 isolated lepton (e or μ)
- Missing Transverse Energy
- 4 Calorimeter Jets

Backgrounds:
- $W+$jets
- Multijet (QCD)
Top Quark Mass

• Top-quark mass not predicted by SM (free parameter)

• Best known relative quark mass ($\Delta m/m \approx 0.03$)

• m_{top} input to EW fits $\rightarrow m_{\text{Higgs}}$

• Run I Tevatron Result:

 $m_{\text{top}} = 178.0 \pm 4.3 \text{ GeV/c}^2$

 TevEW/Top working group hep-ex/0404010
 \rightarrow Matrix Element Method!

• Run II Goal:
 reduce uncertainty to $\sim 3 \text{ GeV}$
Matrix Element Method I

• Use full kin. information to calculate probability for each event being a top event as a function of the top mass

• Probability is proportional to differential cross section

• Calculate background probability in a similar way and build event probability

\[P(x; M_{\text{top}}) = c P_{t\bar{t}}(x; M_{\text{top}}) + (1 - c) P_{\text{bkg}}(x) \]

\[x: \text{kin. variables} \]

• Combine all event probabilities to likelihood

• Extract top mass by minimizing the negative likelihood w.r.t. the top mass hypothesis
Matrix Element Method II

Signal Probability:

\[
P_{t\bar{t}}(x; M_{\text{top}}) = \sum_{\text{comb}+\nu} \int d\rho_1 d\rho_2 \, dm_q^2 \, dM_{bq}^2 \, dM_{blv}^2 \, |M|^2 \, \frac{f(q_1)}{|q_1|} \frac{f(q_2)}{|q_2|} \Phi_6 \prod_{i=1}^{4} W_{\text{jet}}(E_i^{\text{parton}}, E_i^{\text{jet}})
\]

- **LO Matrix Element** \(|M|^2 \) x Flux Factor
- **Phase space** \(\Phi_6 \) x PDFs \(f(q_i) \)
- **Transfer Functions** \(W_{\text{jet}}(x,y) \) (energy resolution):
 - Prob. to measure \(E' = y \) (jet) if \(E = x \) (parton) was produced
 - Derived from Monte Carlo
 - All jet angles assumed to be perfectly measured

- **Acceptance Corrections**
- **5 integrations** -> very CPU intensive analysis
Event Selection

Topological Selection

• 1 isolated lepton, $p_T > 20$ GeV/c
• Missing Transverse Energy
• Exactly 4 calorimeter jets, $p_T > 15$ GeV/c, $|\eta| < 2.5$
• Three leading jets: $p_T > 20$ GeV/c

$log_{10} P_{bkg} < -13$

- increase purity of sample

8/26/04
Philipp Schieferdecker, LMU Munich
Topological likelihood template

P_{bkg} efficiencies (MC)

<table>
<thead>
<tr>
<th></th>
<th>e+jets</th>
<th>μ+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>0.889</td>
<td>0.915</td>
</tr>
<tr>
<td>W_{jjjj}</td>
<td>0.416</td>
<td>0.525</td>
</tr>
<tr>
<td>QCD</td>
<td>0.393</td>
<td>0.549</td>
</tr>
</tbody>
</table>

Sample composition

<table>
<thead>
<tr>
<th></th>
<th>e+jets</th>
<th>μ+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{events}</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>f_{top}</td>
<td>0.430</td>
<td>0.450</td>
</tr>
<tr>
<td>f_{QCD}</td>
<td>0.062</td>
<td>0.065</td>
</tr>
<tr>
<td>Lumi</td>
<td>159pb^{-1}</td>
<td>148pb^{-1}</td>
</tr>
</tbody>
</table>
$\frac{P_{\text{sgn}}}{P_{\text{bkg}}}$: Data vs MC

e+jets

- **Data**
- $t\bar{t}$
- $W+$jjj
- QCD

P_{sgn}

P_{bkg}

µ+jets

- **Data**
- $t\bar{t}$
- $W+$jjj
- QCD

8/26/04

Philipp Schieferdecker, LMU Munich
Mass Calibration I

- Ensemble Tests
- 1000 ensembles
- 5 mass points (160 GeV/c^2 - 190 GeV/c^2)
- Events drawn from pool multiple times in different ensembles

Mass Bias: ~ 3.5 GeV/c^2
Exp. Stat. Err.: ~ 5.0 GeV/c^2
Pull (RMS): ~ 1.0 (e+jets/μ+jets combined)

Calibration
Mass Calibration II

Mass Calibration (combined)

\[m_{\text{meas}} - 175.0 \text{[GeV/c}^2\text{]} \]

Offset: 3.732 ± 0.369 GeV/c\(^2\)
Slope: 1.038 ± 0.035

Note:
The simulation of the underlaying event was found not optimal in the MC samples generated for this study.
This is currently treated as a systematic uncertainty by comparison to an optimized MC sample for \(m_{\text{top}}=175\) GeV/c\(^2\).

Offset: 3.7 +/- 0.4 GeV/c\(^2\)
Slope: 1.04 +/- 0.04 GeV/c\(^2\)
Systematic Uncertainties

- Systematic uncertainties derived from Monte Carlo
- Dominated by systematic uncertainty from Jet Energy Scale
- Improvement of DØ JES measurement highest priority for top group!

<table>
<thead>
<tr>
<th>Syst. Uncertainty</th>
<th>Combined [GeV/c²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Energy Scale</td>
<td>+5.0</td>
</tr>
<tr>
<td>Calibration</td>
<td>+0.5</td>
</tr>
<tr>
<td>Signal Modelling</td>
<td>+2.2</td>
</tr>
<tr>
<td>Background Modelling</td>
<td>+2.0</td>
</tr>
<tr>
<td>Jet Energy Resolution</td>
<td>+2.0</td>
</tr>
<tr>
<td>$p_{_{	ext{bkg}}} \text{ cut variation}$</td>
<td>+1.0</td>
</tr>
<tr>
<td>Multi Parton Interactions</td>
<td>+1.2</td>
</tr>
<tr>
<td>Transfer Functions</td>
<td>+1.0</td>
</tr>
<tr>
<td>top fraction c_1</td>
<td>+0.5</td>
</tr>
<tr>
<td>trigger turn on</td>
<td>+0.5</td>
</tr>
<tr>
<td>likelihood fit procedure</td>
<td>+0.5</td>
</tr>
<tr>
<td>acceptance corrections</td>
<td>+0.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>+6.5</td>
</tr>
</tbody>
</table>

preliminary
Summary:

- Matrix Element Method established for RunII
- Extensively studied and fully calibrated on Monte Carlo
- Application to Data currently under collaboration review

Outlook:

- Fix mass bias caused by signal probability calculation
- Improve Jet Energy Scale measurement
- Include b-tagging to
 - improve signal-to-background ratio
 - reduce combinatoric background (jet-parton permutations)