Measurement of $R = \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)}$

using b-tagging in the $1+\text{jets}$ channel

on behalf of the DØ collaboration

Introduction
b-tagging algorithms
Preselection
Background calculation
Observed events
Results
Introduction

- In the SM, the ratio $R = B(t \to Wb)/B(t \to Wq)$, can be expressed in terms of the CKM matrix elements:

$$R = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} = |V_{tb}|^2$$

- Under two assumptions:
 - Exactly three generations of coupling quarks.
 - The CKM matrix is unitary.

 The value of $|V_{tb}|$ is restricted to $0.9990 < |V_{tb}| < 0.9992$.

- Since $|V_{tb}| \sim 1$ in the SM, it is usually assumed that the branching fraction $B(t \to Wb)$ is 100%.

- The measurement of the single top production cross-section will provide a powerful constraint on $|V_{tb}|$.
• This analysis is an extension of the cross-section analysis with b-tagging in the $l+$jets channel.

• The exact same dataset was used, corresponding to an integrated luminosity of:
 - 160 pb^{-1} in the $\mu+$jets channel.
 - 170 pb^{-1} in the $e+$jets channel.

• The number of $t\bar{t}$ events with one and two b-tags is determined by the probability to b-tag a jet from a top decay and the fraction of events with 0, 1 and 2 b-quarks.

• The most likely value of R is deduced from the number of double tagged and single tagged events.

• The capability to distinguish between light jets and b-jets is crucial for this measurement.
b-tagging algorithms

- This analysis was done using two separate algorithms:
 - SVT (explicit reconstruction of secondary vertices).
 - CSIP (impact parameter significance based).

- Algorithms perform well:
 - Probability for tagging a b-jet $\sim 35\%$.
 - Probability for tagging a ℓ-jet $< 0.5\%$.

- Performance measured in data and parametrized vs E_T and η of the jets.
Tagging efficiency for $t\bar{t}$

- When not requiring $B(t \rightarrow Wb)$ to be 100%, the probability to single tag a top event becomes:

 \[
P(tt) = R^2 P(tt \rightarrow bb) + 2R(1-R)P(tt \rightarrow bql) + (1-R)^2 P(tt \rightarrow qql)
 \]

 where P denotes the tagging probability and $q_l = (s, d)$.

<table>
<thead>
<tr>
<th>Single Tags</th>
<th>μ+jets</th>
<th>μ+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϵ+jets</td>
<td>ϵ+jets</td>
</tr>
<tr>
<td>$t\bar{t} \rightarrow WbWb$ (SVT)</td>
<td>3 jets</td>
<td>$\geq 4 \text{ jets}$</td>
</tr>
<tr>
<td></td>
<td>3 jets</td>
<td>$\geq 4 \text{ jets}$</td>
</tr>
<tr>
<td>$t\bar{t} \rightarrow WbWq_l$ (SVT)</td>
<td>3 jets</td>
<td>$\geq 4 \text{ jets}$</td>
</tr>
<tr>
<td></td>
<td>3 jets</td>
<td>$\geq 4 \text{ jets}$</td>
</tr>
<tr>
<td>$t\bar{t} \rightarrow Wq_lWq_l$ (SVT)</td>
<td>5 jets</td>
<td>7 jets</td>
</tr>
<tr>
<td></td>
<td>5 jets</td>
<td>7 jets</td>
</tr>
<tr>
<td>$t\bar{t} \rightarrow WbWb$ (CSIP)</td>
<td>3 jets</td>
<td>$\geq 4 \text{ jets}$</td>
</tr>
<tr>
<td></td>
<td>3 jets</td>
<td>$\geq 4 \text{ jets}$</td>
</tr>
<tr>
<td>$t\bar{t} \rightarrow WbWq_l$ (CSIP)</td>
<td>3 jets</td>
<td>$\geq 4 \text{ jets}$</td>
</tr>
<tr>
<td></td>
<td>3 jets</td>
<td>$\geq 4 \text{ jets}$</td>
</tr>
</tbody>
</table>
Preselection

All events are required to have:

- passed the signal trigger.
- a tight isolated 20 GeV electron or muon.
- large E_T, at least 20 (17) GeV in the e (μ) channel.
- no second high p_T isolated lepton.
- a reconstructed PV with at least 3 tracks, within $|z| < 60$ cm.
Background calculation

- The expected number of tagged background events is calculated exactly like in the cross-section analysis.

- The preselected sample is first split into:
 - Physics backgrounds: Events with a real lepton.
 - Multijet QCD events with a fake lepton.

- The dominant background is $W+\text{jets}$.

- The event tagging probability, P_{QCD}^{tag}, for multijet QCD events is obtained in an independent data sample.

$$N_{QCD}^{\text{tag}} = P_{QCD}^{\text{tag}} \times N_{QCD}^{\text{presel}}$$
Other physics backgrounds include single top production and diboson (WW, WZ and ZZ) production.
Observed events (SVT)

- The boxes represent the predicted number of tagged events including all statistical and systematic errors.

In these plots a 7 pb cross-section is assumed for tt.
Observed events (CSIP)

- The boxes represent the predicted number of tagged events including all statistical and systematic errors.

- In these plots a 7 pb cross-section is assumed for $t \bar{t}$.

Single tagged events

Double tagged events
Result

- The cross-section, $\sigma_{t\bar{t}}$, and the ratio R are fitted together using a maximum likelihood function.

\[
\begin{align*}
SVT : & \quad R = 0.70^{+0.27}_{-0.24} (stat) ^{+0.11}_{-0.10} (syst) \\
CSIP : & \quad R = 0.65^{+0.34}_{-0.30} (stat) ^{+0.17}_{-0.12} (syst)
\end{align*}
\]

\[
\sigma_{t\bar{t}} = 11.6^{+5.6}_{-3.2} (stat) pb \\
\sigma_{t\bar{t}} = 10.7^{+8.2}_{-3.7} (stat) pb
\]
The fitted $\sigma_{t\bar{t}}$ for a given value of R, when R is known with infinite precision. Also shown is $\sigma_{t\bar{t}}$ for the value $R = 1$.
Conclusion

- New physics, like a fourth quark generation, could lead to a deviation from the predicted value for R.

- The most likely value of R is found to be:

 \[
 SVT : \quad R = 0.70^{+0.27}_{-0.24}(\text{stat})^{+0.11}_{-0.10}(\text{syst})
 \]

 \[
 CSIP : \quad R = 0.65^{+0.34}_{-0.30}(\text{stat})^{+0.17}_{-0.12}(\text{syst})
 \]

- The dominant systematic errors are b-tagging efficiency measurements in data, and the uncertainty on the JES.

- The result presented above is in good agreement with the Standard Model expectation of $R \sim 1$.