Direct Measurement of the W Total Decay Width at DØ

Junjie Zhu
University of Maryland
On behalf of the DØ Collaboration

Outline

- Introduction
- Monte Carlo Simulation
- Event Selection
- Determination of the W Width
- Conclusions
Introduction

- $\Gamma(W)$ is an important parameter in the Standard Model
- The Standard Model Prediction: 2.090 ± 0.008 GeV
- SM Prediction depends on:
 - Number of available decay modes
 - The coupling of W to SU(2) doublets
 - QCD corrections
 - Electroweak radiative corrections
 - W mass
- Measurement of $\Gamma(W)$:
 - A test of SM calculation
 - A probe for possible new physics
Direct Measurement

- $\Gamma(W)$ can be measured directly from the transverse mass distribution of $W \rightarrow e\nu$

 $$M_T = \sqrt{2 p_T(e) p_T(\nu)[1 - \cos(\phi(e) - \phi(\nu))]}$$

- Away from the Jacobian edge, the Breit-Wigner (width) component falls much more slowly than the Gaussian (detector resolution) component.

- The high tail region of M_T spectrum is very sensitive to the W decay width.

Measurement Strategy: Generate MC M_T templates with different W width, compare with data and use a binned maximum likelihood method to extract the W width.

- Same method used for W mass measurement.

M_T Spectra from MC Simulation
Monte Carlo Simulation

- Parameterizations of the detector response of the electron and recoil system
 - Electron simulation: electron energy scale and energy resolution
 - Recoil system simulation:
 - “Hard” component that models the P_T of the W/Z boson
 - “Soft” component that models the underlying events and detector noise
- Detection efficiencies measured from data, applied in Monte Carlo
- Smearing parameters determined mostly from $Z \rightarrow ee$ data
- Main systematic uncertainties dominated by the size of $Z \rightarrow ee$ events
Event Selection

- Integrated Luminosity: 177 pb$^{-1}$

Z → ee Selection
- At least two isolated EM clusters in the calorimeter fiducial region with $|\eta| < 1.05$ and $p_T(e) > 25$ GeV;
- Each EM cluster has a matched track;
- $70 < M(\text{ee}) < 110$ GeV;
- 3,169 $Z \rightarrow \text{ee}$ candidates.

W → ev Selection
- At least one isolated EM cluster in the calorimeter fiducial region with $|\eta| < 1.05$ and $p_T(e) > 25$ GeV;
- EM cluster has a matched track;
- Missing Transverse Momentum > 25 GeV;
- $p_T(W) < 20$ GeV;
- 75,910 $W \rightarrow \text{ev}$ candidates;
- 625 candidates with M_T between $[100, 200]$ GeV ($\sim 0.8\%$).
Electron Simulation

- Electron Energy Scale: determined by varying energy scale in MC until it reproduces the peak position of \(Z \rightarrow ee \) data
- Electron Energy Resolution: Determined by varying electron energy resolution in MC until it reproduces the width of \(Z \rightarrow ee \) data
Recoil System Simulation ("Hard" component)

- $P_T(\text{recoil}) = P_T$ of everything in the event except electron(s)

- Recoil response: comparing $P_T(ee)$ with $P_T(\text{recoil})$ for $Z \rightarrow ee$ events

- Recoil resolution: determined from di-jet events and photon+jet events

D0 Run II Preliminary

$P_T(\text{recoil})$ vs $P_T(\text{ee})$

$Z \rightarrow ee$

D0 Run II Preliminary

Missing Et

$Z \rightarrow ee$
Recoil System Simulation ("Soft" component)

- "Soft" component: use the transverse momentum balance measured from a minimum bias event recorded in the detector, then scale it to reflect the difference between the W underlying event with a real minimum bias event.

- Scale factor adjusted until u_\parallel distribution from MC simulation agrees with data.

- U_\parallel = the projection of the momentum of the recoil system along the electron.

![Diagram of recoil system simulation](image)
Data MC Comparison for $W \rightarrow ev$ Events

χ^2/ d.o.f = 83.1 / 75

χ^2/ d.o.f = 82.5 / 75
Determination of the W Width

- MC Templates are prepared for the W transverse mass using the detector simulation described above: W width from 1.6 to 3.6 GeV in step of 50 MeV
- Normalize data and MC+Background M_T spectra in [50, 100] GeV region
- Calculate a binned log-likelihood for [100, 200] GeV region

\[\Gamma(W) = 2.011 \pm 0.093 \text{ GeV} \]

\[\chi^2 / \text{d.o.f} = 122.6 / 75 \]
Systematic Uncertainties

- The systematic uncertainties are due to effects that could alter the transverse mass spectrum
- Vary each input parameter in the MC Simulation by one standard deviation

<table>
<thead>
<tr>
<th>Source</th>
<th>ΔΓ(W) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM Energy Resolution</td>
<td>51</td>
</tr>
<tr>
<td>HAD Energy Resolution</td>
<td>50</td>
</tr>
<tr>
<td>W Underlying Event vs MB events</td>
<td>47</td>
</tr>
<tr>
<td>HAD Momentum Response</td>
<td>40</td>
</tr>
<tr>
<td>EM Energy Scale</td>
<td>23</td>
</tr>
<tr>
<td>pT(W)</td>
<td>29</td>
</tr>
<tr>
<td>PDF</td>
<td>27</td>
</tr>
<tr>
<td>W Boson Mass</td>
<td>15</td>
</tr>
<tr>
<td>Primary Vertex</td>
<td>10</td>
</tr>
<tr>
<td>Selection Bias</td>
<td>10</td>
</tr>
<tr>
<td>Position Resolution</td>
<td>7</td>
</tr>
<tr>
<td>Underlying Event Correction</td>
<td>4</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>3</td>
</tr>
<tr>
<td>Radiactive Decays</td>
<td>3</td>
</tr>
<tr>
<td>Total Systematic Uncertainty</td>
<td>107</td>
</tr>
<tr>
<td>Total Statistical Uncertainty</td>
<td>93</td>
</tr>
<tr>
<td>Total Uncertainty</td>
<td>142</td>
</tr>
</tbody>
</table>
Conclusions

- First Direct Measurement of the W Width from DØ Run II

\[\Gamma(W) = 2.011 \pm 0.093 \text{ (stat.)} \pm 0.107 \text{ (syst.)} = 2.011 \pm 0.142 \text{ (GeV)} \]

- Consistent with SM prediction

\[\Gamma(W) = 2.090 \pm 0.008 \text{ (GeV)} \]

- Consistent with the result from indirect measurement (W width extracted from the ratio of \(W \to l\nu \) and \(Z \to ll \) cross sections)

\[\Gamma(W) = 2.079 \pm 0.041 \text{ (GeV)} \text{ (CDF)} \]

\[\Gamma(W) = 2.101 \pm 0.064 \text{ (GeV)} \text{ (DØ)} \]