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Limits on Anomalous WWγ
and WWZ Couplings from DØ

● Discuss triple gauge couplings (TGC)
– Diboson production
– Anomalous couplings (AC)
– Setting coupling limits

● Review recent DØ TGC publications
– Wγ
– WZ
– WW

● Future plans for anomalous coupling study
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Diboson Production

● Leading order diagrams for diboson production:

● Each final state (Wγ, WW, WZ) has contributions 
from a triple gauge boson coupling 

● Anomalous values of the triple gauge coupling 
disrupt the interference between these diagrams
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WW eμ Channel pT Spectra

● Dashed lines
demonstrate
kinematic effects
of introducing
anomalous couplings
– Overall cross

section increases
– pT distribution skews

to higher values
● Excess events could

indicate new physics!
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Anomalous Couplings

● Assuming EM gauge invariance and C and P 
conservation, the most general Lorentz invariant 
effective Lagrangian for triple gauge couplings is:

(where V=γ or Z, Wμ is the W− field, Xμν=∂μXν−∂νXμ, gWWγ= −e, gWWZ= −e cot θW, and g1
γ = 1)

● In the Standard Model, these triple gauge coupling 
parameters are fully constrained
– In SM:  g1

Z = κZ = κγ = 1 (Δκγ ≡ κγ−1 = 0), λZ = λγ = 0

● Can be considered corrections to W's EM(γ) or 
Weak(Z) charge and dipole/quadrupole moments

LWWV

gWWV
=i g1

V W 
† W V −W 

† V  WiV W 
† W V i

V

M W
2 W 

† W 
 V 
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Form Factor

● Anomalous couplings will increase the cross section 
and change the kinematics of diboson production, 
particularly at higher parton center of mass energies

● A form factor, with scale Λ, is introduced to force the 
coupling to vanish as s→∞

● For a given value of Λ, there is an upper limit on the 
coupling size, beyond which unitarity is exceeded

● Anomalous coupling limits get tighter as Λ increases, 
but not as quickly as unitarity limit tightens

a  s=
a0

1s /22
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Setting Coupling Limits

● Anomalous coupling limits must be set for a given 
coupling relationship and form factor combination
– Raise Λ value in ½ TeV steps until limits violate unitarity

● Various coupling relationships can be considered:
– WWZ couplings = WWγ couplings (Δκγ = ΔκZ , λZ = λγ)
– The Hagiwara, Ishihara, Szalapski, Zeppenfeld (HISZ) 

parameterization forces SU(2)  U(1) gauge symmetry
● ΔκZ = Δκγ (1 − tan2 θW), Δg1

Z = Δκγ / (2 cos2 θW), λZ = λγ

– LEP TGC Working Group constraints
● κZ = g1

Z − (κγ −1) tan2 θW, λZ = λγ

– Standard Model WWZ, anomalous WWγ (& vice versa)
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AC Study at the Tevatron

● There are unique advantages to studying triple gauge 
couplings at a hadron collider

● Charged final states are available, which can probe 
WWγ and WWZ vertices independently

● Tevatron collisions explore a range of center of mass 
energies, including highest available in the world
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● Central and forward 
preshower system

● Liquid argon and 
uranium calorimeter

● Muon system with 
1.8 T toroidal magnet

The DØ Detector

● Multipurpose particle detector
● Silicon microstrip tracker
● Scintillating fiber tracker
● 2 T superconducting solenoid
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● Wγ anomalous coupling limits set during cross 
section analysis
– Published in Phys. Rev. D 71, 091108 (2005)

● The cross section analysis used the leptonic channels
pp→W(γ) + X→ℓνγ + X (ℓ=e,μ)
– eνγ: ∫ℒdt=162 pb−1, 112 candidates (51.2±11.5, 60.8±4.5)
– μνγ: ∫ℒdt=134 pb−1, 161 candidates (89.7±13.7, 71.3±5.2)

● The total measured cross sections for each channel, 
with ET

γ > 8 GeV and ΔRℓγ > 0.7:  (SM predicts 16.0±0.4 pb)

– eνγ: 13.9 ± 2.9 (stat) ± 1.6 (syst) ± 0.9 (lum) pb
– μνγ: 15.2 ± 2.0 (stat) ± 1.1 (syst) ± 1.0 (lum) pb

Wγ Analysis

‾ (signal, background)
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● Photon ET spectrum used to set AC limits
● No coupling relationships required to set limits
● Λ = 2 TeV 95% C.L. limits: 

−0.88 < Δκγ < 0.96, −0.20 < λγ < 0.20

Wγ TGC Limits

2-D 95% C.L Contour

1-D 95% C.L. Limits
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WZ Analysis

● WZ anomalous coupling limits set during ~300 pb-1 
cross section analysis
– Published in Phys. Rev. Lett. 95, 141802 (2005)

● The cross section analysis used the leptonic channels
WZ→ℓνℓ'ℓ' (ℓ = e,μ; ℓ' = e,μ)
– 1 eνee, 2 μνμμ candidates
– Expected 2.04±0.13 signal, 

0.71±0.08 background
– Yields σWZ < 13.3 pb (@ 95% C.L.)

– 3.6% chance of bkg fluctuation;
if interpreted as a cross section: 

                         (SM: 3.7±0.1 pb)
    
WZ=4.5−2.6

3.8 pb

‾
WZ signal

Z+j background

μνμμ 
candidates
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WZ TGC 95% C.L. Limits
Coupling (constraint) Λ = 1 TeV Λ = 1.5 TeV

−0.53, 0.56 −0.48, 0.48
−0.49, 0.66 −0.43, 0.57
−0.57, 0.76 −0.49, 0.66

−2.0, 2.4 −

λZ (Δg1
Z=ΔκZ=0)

Δg1
Z=ΔκZ (λZ=0)

Δg1
Z (λZ=ΔκZ=0)

ΔκZ (λZ=Δg1
Z=0)

● Total number of
events used 
to set AC limits
– More events are

required to use
kinematic dist.

● In WZ final state, 
with Δκγ = 0, LEP 
constraints become:  
     Δg1

Z = ΔκZ

         λγ = λZ

Unitarity Limit 

2-D 95% C.L. Contour

Λ = 1.5 TeV
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WW Analysis

● The WW anomalous coupling analysis used data from 
the most recent WW cross section result from DØ
– WW cross section:  Phys. Rev. Lett. 94, 151801 (2005)
– WW TGC Limits:  Phys. Rev. D 74, 057101 (2006)

● The cross section analysis used the leptonic channels 
WW→ℓ−νℓ+ν (ℓ=e,μ)
– ee: ∫ℒdt=252 pb−1, 6 candidates (3.26±0.05, 2.30±0.21)
– eμ: ∫ℒdt=235 pb−1, 15 candidates   (10.8±0.1, 3.81±0.17)
– μμ: ∫ℒdt=224 pb−1, 4 candidates (2.01±0.05, 1.94±0.41)

● The total measured cross section was:  (SM: 13.0-13.5 pb)
13.8−3.8

4.3 stat−0.9
1.2syst±0.9 lumpb

‾ (signal, background)



Michael Cooke   (mpc@fnal.gov) October 31, 2006 16

WW 2-D TGC 95% C.L. Limits

● Leading and trailing 
lepton pT distributions 
used to set limits

● Λ = 2 TeV contour 
assuming Δκγ = ΔκZ  

and λZ = λγ shown
– The bold outer curve

is the unitarity limit,
the inner curve is the 
2-D 95% C.L. contour, 
and the cross denotes 
the 1-D limits
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WW 1-D TGC 95% C.L. Limits

Coupling (constraint) Λ (TeV) 95% C.L. Limits
1.5 −0.31, 0.33
1.5 −0.36, 0.47
2.0 −0.29, 0.30
2.0 −0.32, 0.45
1.5 −0.34, 0.35
1.5 −0.57, 0.75
2.0 −0.39, 0.39
2.0 −0.45, 0.55
1.0 −0.97, 1.04
1.0 −1.05, 1.29

λγ=λZ (Δκγ=ΔκZ=0)
Δκγ=ΔκZ (λγ=λZ=0)
λ

γ
=λZ (Δκγ=ΔκZ=0)

Δκγ=ΔκZ (λγ=λZ=0)
λ

γ
=λZ (HISZ)

Δκγ (HISZ)
λZ (SM WWγ, ΔκZ=0)
ΔκZ (SM WWγ, λZ=0)
λγ (SM WWZ, Δκγ=0)
Δκγ (SM WWZ, λγ=0)
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Future Outlook

● In the coming months, the Wγ, WZ and WW cross 
section and associated anomalous coupling limit 
analyses will be completed using 1 fb−1 of data
– While the anomalous coupling limit sensitivity scales as 

the fourth root of luminosity, the larger data set will allow 
better use of event kinematics to tighten TGC limits

● Each of these processes gives a unique handle on 
triple gauge couplings

● In the future, we plan on combining the results from 
all three diboson processes to improve the sensitivity 
of our anomalous triple gauge coupling studies
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Summary of Results

● Tightest published limits from DØ for each coupling, 
when the other four couplings are at their SM values:

● Next round of results using 1 fb-1 are coming soon
● Combining results across diboson channels will 

further increase DØ sensitivity to these couplings

95% C.L. Limit Λ (TeV) Channel
−0.49 < < 0.66 1.5 WZ
−0.45 < < 0.55 2.0 WW
−0.39 < < 0.39 2.0 WW
−0.88 < < 0.96 2.0
−0.20 < < 0.20 2.0

Δg1
Z

ΔκZ

λZ

Δκγ Wγ
λγ Wγ
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Comparison to LEP Results

● The LEP collaborations produced combined results
– Final combined results, errors quoted at 68% C.L.:

 
● Comparable 95% C.L. limits from DØ:

– −0.43 < Δg1
Z < 0.57; −0.62 < Δκγ < 0.82; −0.2 < λγ < 0.2 

(WZ LEP @ Λ=1.5)          (WW HISZ @ Λ=1.5)      (Wγ @ Λ=2)
● There may be an order of magnitude difference, but...

– Tevatron can produced charged final states
– Center of mass energy varies at Tevatron (& goes higher!)
– These results are from individual diboson channels, from 

only one detector at Fermilab...wait for combined results!

g1
Z=0.984−0.019

0.022 =0.973−0.045
0.044 =−0.028−0.021

0.020
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WW 2-D TGC 95% C.L. Limits
● More 2-D limits:

– a) WWZ=WWγ
@ Λ = 1.5 TeV

– b) HISZ
@ Λ = 1.5 TeV

– c) SM WWγ
@ Λ = 2.0 TeV

– d) SM WWZ
@ Λ = 1.0 TeV

● Bold line is the
unitarity limit,
when applicable
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WW Monte Carlo Grid

● For a given Λ and coupling parameterization, a set of 
Monte Carlo data is generated at each point of a grid 
in (Δκ, λ) space

● Process the MC, accounting
for most of the cuts used in 
the WW x-section analysis

● Scale the MC to match eff.
of each channel, to account
for cuts not possible in MC

● Bin the results for leading
and trailing leptons by pT
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WW Likelihood Comparison

● MC pT distributions are compared to the real data 
events by calculating a bin-by-bin likelihood
– Each bin assumed to have Poisson distribution with mean 

equal to the sum of signal and background MC bins
– Errors on signal and background distributions accounted 

for by weighting with Gaussian distributions
– Correlations between signal and background across 

channels are small and handled separately
– Assume luminosity uncertainty 100% correlated across 

channels
● All three channels together included in calculation of 

negative log likelihood for each grid point
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Determining Coupling Limits

● Limits are extracted
by fitting a 6th order
polynomial to the
negative log likelihood

● 1-D limits:
– Fit curve to Δκ or λ axis
– Integrate curve to find

95% confidence level
● 2-D limits:

– Fit a surface to entire grid
– Integrate surface to find 95% confidence level contour line
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Setting 1-D Limits

● First, create likelihood:
– f(x) is fit to -ln(L)
– Create “L” = exp(-f(x))

● Integrate total area within
the MC grid boundaries,
out to cutoff at grid edge

● Test integration limit pairs
of equal likelihood, starting
from max. likelihood

● Stop when ratio of sample
area to “total” area > 0.95

f(x) is fit to ln(-L) points

Find 95% of total area between cutoff points

“L” = e-f(x)
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Setting 2-D Limits

● Similar to 1-D case, except λ-axis divided into 100 
slices for performing numerical integration
– Determine & integrate a new 1-D function for each λ slice
– Searching for contour line of equal likelihood containing

95% of total volume within cutoff at MC grid edge
...100 slices...


