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Abstract

This note describes the neural network (NN) algorithms developed to identify tau leptons
in pass 2 data. We compare the performance of two NN algorithms, which use slightly
different input variables on various Monte Carlo and selected data samples.
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1 Introduction

Good identification of τ leptons is essential for many measurements and searches in the DØ physics
program. As already shown in DØ notes 4210 and 4453, it is possible to develop a universal ID
algorithm for tau leptons for many physics processes. The efficiency of the algorithm is different
for different cases but the algorithm itself remain close to optimum. This ID algorithm is based
on neural network (NN) techniques.

A first set of networks was developped and described in DØ note 4210. Later, some improve-
ment was observed training the networks with more variables. This algorithm is described in
DØ note 4622.

Since then modifications have been made to the reconstruction program (d0reco) that affect
the performance of NN trained with events reconstructed with the earlier versions of d0reco.
We refer to pass 2 data as the data reconstructed with p14 (p14.05 or higher) versions of d0reco
and reprocessed with the pass 2 version of the TMBfixer. The main difference with pass 1 data
(affecting τ ’s) is the use of T42 algorithm for clustering calorimeter information. Thus, the
training of both sets of neural networks had to be repeated with the new data. The results of
the training and comparison between MC and data are described in this note.

2 Reconstruction algorithm

This section summarises the reconstruction algorithm. More details can be found in DØ notes
4210 and 4453.

The reconstruction program finds τ using two algorithms, one seeded using calorimeter energy
clusters and the other using high pT track(s). A reconstructed τ consists of the following
elements:

• Calorimeter Cluster, found by simple cone algorithm, cone size R = 0.3, isolation cone
size Riso = 0.5,

• EM Sub-clusters, i.e. individual π0’s from τ decays; these subclusters are found by
a nearest neighbour algorithm in the EM3 layer of the calorimeter. If such clusters are
found, then EM cells in other layers and preshower hits are attached to them,

• Tracks, which are likely to have been produced in the τ decay.

In the reconstruction and further analysis we distinguish three final states, which we refer to
as τ -types:

1. τ → π−ντ - one track with calorimeter cluster and no associated EM sub-cluster,

2. τ → ρ−ντ → π0π−ντ
1 - one track with calorimeter cluster and at least one associated EM

sub-cluster,

3. τ → h−h+h−(π0)ντ - more than one track, with calorimeter cluster and with or without
associated EM sub-clusters.

The first two types belong to the ”1-prong” category while type 3 is ”3-prong”.
No attempt is made at the reconstruction stage to separate electrons from τs. Indeed,

electrons will be reconstructed with very high efficiency as τ -type 2 taus, except in the ICD
region (1.1 < |ηd| < 1.4) where they will pass as τ -type 1.

Figures 1 and 2 show the ratio of jets to τ for each τ -type as function of ET and η. A sample
of 150,000 events statisfying a single µ trigger and only one reconstructed µ (pT > 7 GeV) and

1There can be more than one π
0 in the final state
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at least one 0.5 cone jet (ET > 8 GeV) was used for those plots (only jets with ∆R > 0.5 respect
to the µ are counted).
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Figure 1: Efficiencies as function of ET for jets reconstructed as τ candidates: (a) τ -type 1, (b)
τ -type 2, (c) τ -type 3, (d) sum over τ -types.
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Figure 2: Efficiencies as function of η for jets reconstructed as τ candidates: (a) τ -type 1, (b)
τ -type 2, (c) τ -type 3, (d) sum over τ -types.
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3 Datasets

For the training and the testing of the neural networks, we used τ candidates defined by the
algorithm described in the previous section.

The signal sample consists of 100 000 single τ events generated with pythia without con-
straints on the decay of the τ and reconstructed using reco version p14.05.02. Out of this
sample we made 3 sub-samples of hadronically decaying τs, each with only τs of the same type.
Each of these sub-samples is in fact doubled: in the first case we restrict the decay of the tau
to hadronic modes only (using MC information), in the second case we also allow τ → e decay.
The training of the neural networks will be repeated for these two cases.

The background was modeled from the NP 1mutrk skim (p14.06.01). Events with tight
muons within a jet (∆(R)τ,µ <0.5) and a τ candidate with same sign as the muon have been
selected to form a data QCD sample. A further requirement ∆(φ)τ,µ > 0.7 was applied. This
sample has been also split into 3 sub-samples, one for each τ -type.

4 Discriminating Variables

In this section are described the sets of discriminating variables used for the two NN trainings.
We will refer to each NN as NNI and NNII respectively.

• Variables used for both NN’s:

1. profile = (ET1
+ ET2

)/Eτ
T , where ET1

and ET2
are the ET of the two most energetic

calorimeter towers. Used for all τ -types and both NN’s.

2. caliso = (Eτ
T − Ecore

T )/Ecore
T . A calorimeter isolation parameter used for all τ -types

and both NN’s.

3. trkiso = Σptrk
T /Σpτtrk

T , where ptrk
T (pτtrk

T ) is the pT of a track within a R < 0.5 cone
not associated (associated) with the τ candidate. A track isolation parameter used
for all τ -types.

4. em12isof = (EEM1 + EEM2)/Eτ in a R < 0.5 cone, where EEM1 and EEM2 are the
energies deposited in the first two layers of the EM calorimeter. A parameter used
for τ -type 1 to reject jets with one energetic charged track and soft π0 mesons.

5. δα =
√

(∆φ/ sin θ)2 + (∆η)2/3.1416, where the differences are between Στ -tracks
and ΣEM-clusters. In the small angle approximation the observed τ mass is given by
e12 · E

τ
T · δα. Used for τ -types 2 and 3.

• Variables used for NNI only:

6. e12 =
√

Σpτtrk

T · EEM
T /Eτ

T , where EEM
T is the transverse energy deposited in the EM

layers of the calorimeter. Used for τ -types 2 and 3.

7. pτtrk1

T /Eτ
T , where pτtrk1

T is pT of the highest pT track associated with the τ . Used for
τ -type 1.

8. pτtrk1

T /(Eτ
T ·caliso). A parameter used for τ -type 2 that measures the correlation be-

tween track and energy deposition in isolation annulus.

• Variables used for NNII only:

6. rmsτ =
√

∑n
i=1

[(∆φi)2 + (∆ηi)2]ETi
/ET . A measure of τ -cluster width. Used for all

τ -types.

7. fhf is the fraction of Eτ
T fine hadronic section of the calorimeter. Used for τ -types 1

and 2.
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8. Eem
T /Eτ

T , where Eem
T is the transverse energy of the EM subclusters. Use for τ -types

2 and 3.

9. prf3 is the transverse energy of the leading EM subcluster divided by the transverse
energy in the layer 3 of the calorimeter in a R < 0.5 cone.

10. Eτ
T /(Eτ

T + Σpτtrk

T ) used for τ -types 2 and 3.

The figures 3 to 8 show the input variables distributions for the single tau MC sample and the
background.

em12isof
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

210

310

(a)

caliso
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

200

300

400

500

600

700

800

900

(b)

profile
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

120

140

(c)

trkiso
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

10

210

310

(d)

Figure 3: NN input variables for τ -type 1. The signal (background) is represented by the green
(red) line: (a) em12isof , (b) caliso, (c) profile, (d) trkiso
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Figure 4: Additional NN input variables for τ -type 1 . The signal (background) is represented
by the green (red) line: (a) pτtrk1

T /Eτ
T , (b) rmsτ , (c) Eτ

T /(Eτ
T + Σpτtrk

T , (d) fhf
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Figure 5: NN input variables for τ -type 2 . The signal (background) is represented by the green
(red) line: (a) caliso, (b) pτtrk1

T /(Eτ
T ·caliso, ) (c) e12, (d) profile, (e) prf3, (f) δα
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Figure 6: Additional NN variables for τ -type 2 . The signal (background) is represented by the
green (red) line: (a) trkiso, (b) rmsτ , (c) Eτ
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T + Σpτtrk

T ), (d) Eem
T /Eτ
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Figure 7: NN input variables for τ -type 3 . The signal (background) is represented by the green
(red) line: (a) profile, (b) caliso, (c) e12 (d) δα
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Figure 8: Additional NN input variables for τ -type 3. The signal (background) is represented by
the green (red) line: (a) Eem

T /Eτ
T , (b) pτtrk1

T /(Eτ
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5 Neural network to reduce the electron contamination

In addition to the neural network developped to disentangle QCD jets from hadronic taus, a
neural network dedicated to separate electrons from type 2 taus was developped (NNe). Indeed,
most of the electrons are recognized as type 2 taus.

For the signal, the training sample is the same as the one used to train the previous networks.
The background sample is made out of Monte Carlo Z → ee events generated with pythia and
reconstructed with D0reco version p14.05.01 and keeping only electrons identified as τ -type 2.

The variables used for the training of NNe are:

1. profile

5. δα

6. rmsτ

7. Eem
T /Eτ

T

9. Eτ
T /(Eτ

T + Σpτtrk

T )

Figure 9 shows the NNe performance. These variables are defined in previous section and
are shown on the figure 10. Figure 11 compares NN for data and MC. It shows that the NN
obtained with data is very close to that obtained with MC events for NNe trained with MC
events.
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Figure 9: Background rejection vs signal efficiency for the NN dedicated to separate electrons
from type 2 taus.

12



profile
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

(a)

α δ
0 0.02 0.04 0.06 0.08 0.1 0.12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

(b)

τrms
0 0.05 0.1 0.15 0.2 0.25 0.3

0

100

200

300

400

500

600

700

800

900

1000

(c)

)trk
 τ

T pΣ+τ
T/(Eτ

TE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

(d)

τ
T/Eem

TE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

(e)
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Figure 11: Comparison of NN from NNe between Z− > ee MC (points) and Z− > ee data
(histogram)

6 Neural Net

Three separate NN were built, one for each tau-type. The input samples for each NN uses only
the sub-samples selected with the τ -type one wants to identify.

We have chosen the neural network package from the ROOT example applications 2 which
uses a vanilla back-propagation method especially suited for particle physics classification tasks.
It also has a clean and easy interface and offers remarkable flexibility in choices of network
parameters. So far we used only the simplest configuration of a network, i.e., one which has a
single input layer consisting of several nodes (one for each measured variable), a single hidden
layer consisting of several nodes, and a single output. There is no connection between any two
nodes of a given layer, nor is there any direct connection between the input nodes and the
output.

2Jean-Pierre Ernenwein http://e.home.cern.ch/e/ernen/www/NN/index.html
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Each hidden node hj represents a neuron that performs a linear combination of input signals,

hj =

ni
∑

i=1

Wijxi

where xi is i-th input and generates an output in a normalized sigmoid form

s(hj + Bj) =
1

1 + exp(−(hj + Bj))

(the bias Bj is added in order to improve the response of the sigmoid function)

The output is simply a linear combination of the hidden node outputs, on which a sigmoid
function is also applied. For ni inputs and nh hidden nodes, there are all together nh(ni +1)
free parameters for the weights and nh +1 free parameters for the biases. Given a set of signal
and a set of background events for training, the program determines the weights and biases by
iterative function minimization for optimal signal selection. The weights and biases are corrected
in proportion to the error (desired output value - computed value) they have generated and to
the derivative of the sigmoid function s(s-1). This leads to a more important correction if the
output of a given neuron doesn’t peak near to 0 or 1. According to the convention, the NN
output (NN) is chosen to be 1 (0) for the desired signal (background). Each neural network
has been trained with a reasonably high number of epochs (500 - 1000). The events used have
been selected with a visible calorimetric pT above 10 GeV and a physics eta within -3 and 3.
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7 Performances of the two NN’s

Figures 12 and 13 show the background rejection vs signal efficiency and the background effi-
ciency vs signal efficiency for NNI and NNII for similar background and signal samples as used
in the training. Figure 14 show the NN distribution for the two NN’s. Figures 15 to 18 show the
signal and background efficiency vs pt and η. On these samples NNII significantly outperforms
NNI .
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Figure 12: Background rejection vs signal efficiency for NNI (red) and NNII (green).
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Figure 13: Background efficiency vs signal efficiency for NNI (red) and for NNII (green).
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Figure 14: NN distribution for signal (green) and background (red) for NNI (dashed line) and
for NNII (solid line). Left: linear scale; right: logarithmic scale.
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Figure 15: Background efficiencies as function of η for NN > 0.9, NNII (yellow) NNI (magenta)

Figure 16: Single τ efficiencies as function of η for NN > 0.9, NNII (yellow) NNI (magenta)
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Figure 17: Background efficiencies as function of pt for NN > 0.9, new (yellow) old(magenta)

Figure 18: Single τ efficiencies as function of pt for NN > 0.9, NNII (yellow) NNI(magenta)
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8 Performance on µτ final state

In this section we study the performance of the pass 2 NN’s on selected events with µ and τ
candidates. The pass2 data includes all good events in run range 162000-196580. The luminosity
of the sample is on the order of 300 pb−1. Root tmb tree files were made from the 1MUloose
skim with the requirements:

• Eτ
T >10(5) GeV, Σptrk

T >7(5) GeV, (tau-type 2).

• semi-isolated µ, pT >12 GeV

– cal isolation=[E(R < 0.4) − E(R < 0.1)] < 6.0 GeV

– trk isolation=ΣpT < 6.0 GeV

Those files can be found in

/rooms/outhouse/projects/pass2_1MUloose_MuTauFilter_p1406

/work/olemiss-clued0/arov/TAUMERGE/

From these events two subsets were made: (1) isolated µ sample (191,934 events)

• only one loose µ

• cal isolation=[E(R < 0.4) − E(R < 0.1)] < 4.0 GeV

• cal energy along µ=E(R < 0.1) < 4.0 GeV

• trk isolation=ΣpT < 2.5 GeV

files stored in

/work/patchogue-clued0/serban/mutau

(2) anti-isolated µ sample (291725 events):

• only one loose µ

• cal isolation=[E(R < 0.4) − E(R < 01)] > 4.0 GeV

• cal energy along µ=E(R < 0.1) > 4.0 GeV

• trk isolation=ΣpT > 2.5 GeV

files stored in

/work/patchogue-clued0/serban/nomuiso

In addition there is a sample of 403,000 MC Z/γ∗ → ττ (mass 60-130 Gev) events in

/rooms/bordello/TMBTree_pythia_gam-z-tautau_recop14.05.xx_p14.fixtmb2.03

/kinmass_60-130
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Made file with the same requirements as the isolated µ sample (20,207 events):

/work/patchogue-clued0/serban/test_pass2/zmutau_sel.root

In same directory, files are available with events statisfying the selection cuts used in the
Z → ττ cross section measurement (except for the different µ isolation criteria).

bos*.root OS with non-isolated muons

bss*.root SS ‘‘

os*.root OS with isolated muons

ss*.root SS ‘‘

No trigger requirements were imposed. The main effect of asking for events firing the triggers
used in the Z → ττ measurement is to reduce the number of events by 30%.

The dominant contributor to isolated µ with real τ ’s is Drell-Yan τ pair production (Z/γ ∗ →
τ+τ−). There are significant backgrounds from fake τ ’s, mainly from three channels: (1) QCD
jets (mainly bb̄) with one jet faking a τ and the other giving an isolated µ, (2) W → µν+jet with
one jet faking a τ , and (3) Z → µ+µ− with one µ faking a τ . Since (1) is by far the largest when
the requirement is made that µ and τ be back-to-back (|φµ − φτ | > 2.5) we will concentrate on
comparing the behaviour of the NN with old and new set of variables on the MC Z/γ ∗ → ττ
sample, the non-isolated µ sample and compare that to the isolated µ sample. Samples are split
into OS (µ and τ opposite sign charge) and SS (µ and τ same sign charge)

Figure 19 shows the NN distributions of each τ -type for the MC Z/γ∗ → ττ OS sample
(green points for NNII , red for NNI). NNII clearly gives more events for NN close to 1 for
τ -types 1 and 2 but slightly less for τ -type 2. The number of events for each τ -type are given in
table 1, before and after an NN > 0.9 cut. Figure 20 show the corresponding NN distributions
for the SS sample of non-isolated µ’s. This sample is completely dominated by QCD background.
The number of events are given in table 2. For these events the NN distributions for OS and
SS are very similar, with a small excess of OS over SS (see figs 21 and 22).

Table 1: Number of MC Z/γ∗ → ττ events

τ -type 1 τ -type 2 τ -type 3 sum
NN > 0.0

# OS events 1951 10208 4486 16645

NNII (NNI) NN > 0.9

# OS events 503 (342) 7029 (7316) 3247 (2732) 11704 (11177)
εZ
OS 73.2% (57.9%) 68.9% (71.7%) 72.4% (60.9%) 70.3% (67.1%)
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Figure 19: NN distributions of τ candidates OS Z/γ∗ → ττ Monte Carlo events. Green points
for NNII , red histogram NNI . (a) τ -type 1, (b) τ -type 2, (c) τ -type 3, (d) sum over τ -types
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Figure 20: NN distributions of τ candidates in anti-isolated µ events events. Green points for
NNII , blue histogram for NNI . (a) τ -type 1, (b) τ -type 2, (c) τ -type 3, (d) sum over τ -types.

24



The NN distributions and number of events for the isolated µ sample are given in figures 24
and 25, and table 3. Figure 20 There is no obvious gain from using new vs old NN in the pass
2 µτ data. At the fixed value of NN > 0.9 cut whenever signal acceptance is higher for one so
is the background acceptance.

Table 2: Number of anti-isolated µ events

τ -type 1 τ -type 2 τ -type 3 sum
NN > 0.0

# OS events 1436 3912 5033 10381
# SS events 1365 3729 4834 9928

NNII (NNI) NN > 0.9

# OS events 163 (127) 186 (260) 369 (268) 718 (655)
εn
OS 11.3% (8.8%) 4.7% (6.6%) 7.3% (5.3%) 6.9% (6.3%)

# SS events 180 (123) 220 (259) 330 (238) 730 (620)
εn
SS 13.2% (9.0%) 5.9% (6.9%) 6.8% (4.9%) 7.3% (6.2%)
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The jets from QCD background are mostly b jets while those from the W background are
mostly light quark jets. An interesting question is whether the efficiency of a NN cut is different
for the different types of jets. To greatly enrich the proportion of W+jet events in the sample
we can cut on transverse mass (MT ) and require pµ

T > 25 GeV. Figure 26 shows the MT

distributions for: (i) anti-isolated µ events, (ii) 2 OS µ’s with one isolated µ and a µτ overlap,
(iii) MC Z → τ+τ−, and (iv) isolated µ with standard cuts except |φµ − φtau| for OS and SS
separately. The /ET for calculating MT is obtained by subtracting from the standard calorimeter
/ET the µ momenta. The MT distributions show clearly the Jacobian peak expected from W ’s
for both SS and OS. By selecting events with 50 < MT < 90 GeV we get a W dominated
sample. The estimated contribution from Z → τ +τ− + Z → µ+µ− to the OS sample in that
region is of order 0.5% (before a NN cut). Table 4 gives the number of OS and SS events
with 50 < MT < 90 GeV, pµ

T > 25 GeV and |φµ − φτ | < 2.5 cut. One can immediately see
that SS has 30% fewer events than OS. After NN > 0.9 cut (we use NNII for this study), and
after correcting for the expected contributions from Z events, roughly the same excess remains.
The efficiencies for both OS and SS are similar and comparable to that of QCD events. We
can conclude that within our somewhat limited statistics there is no significant difference in the
NN efficiencies for jets from W ’s and b jets. The only significant difference is that the charge
correlations between µ from b jets and τ candidates is or order 5% while it is quite large (about
30%) in W events.

Table 3: Number of isolated µ events

τ -type 1 τ -type 2 τ -type 3 sum
NN > 0.0

# OS events 2977 11695 14151 28817
# SS events 2274 10271 12070 24617

NNII (NNI) NN > 0.9

# OS events 588 (448) 1782 (1950) 1537 (1089) 3907 (3487)
εi
OS 19.7% (15.0%) 15.2% (16.7%) 10.9% (7.7%) 13.6% (12.1%)

# SS events 243 (172) 565 (681) 908 (570) 1716 (1429)
εi
SS 10.7% (7.6%) 5.5% (6.6%) 7.5% (4.7%) 7.0% (5.8%)
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Table 4: Number of isolated µ events, pµ
T > 25 GeV, 50 < MT < 90 GeV, |φµ − φτ | < 2.5

τ -type 1 τ -type 2 τ -type 3 sum
NN > 0.0

# OS events 457 1807 2868 5132
Estimated from Z 8 20 4 32
# SS events 321 1350 2188 3859

new NN > 0.9

# OS events 49 174 241 464
Estimated from Z 5 10 2 17
εW
OS 9.6 ± 1.6% 9.1 ± 0.8% 8.3 ± 0.6% 8.7 ± 0.4%

# SS events 37 93 138 268
εW
SS 11.5 ± 1.8% 6.9 ± 0.7% 6.3 ± 0.7% 6.9 ± 0.6%
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Figure 21: NNII distributions for τ candidates in OS(red) SS(blue) anti-isolated µ events events.
(a) τ -type 1, (b) τ -type 2, (c) τ -type 3, (d) sum over τ -types.
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Figure 22: Ratio OS-SS/SS as function of NNII for anti-isolated µ’s. (a) τ -type 1, (b) τ -type
2, (c) τ -type 3, (d) sum over τ -types
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Figure 23: NN distributions of τ candidates in SS isolated µ events. Green points for NNII ,
blue histogram for NNI . (a) τ -type 1, (b) τ -type 2, (c) τ -type 3, (d) sum over τ -types.
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Figure 24: NNII distributions of τ candidates in OS(red) SS(blue) isolated µ events. (a) τ -type
1, (b) τ -type 2, (c) τ -type 3, (d) sum over τ -types.
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Figure 25: Ratio OS-SS/SS as function of NNII for isolated µ’s
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Figure 26: Transverse mass distributions for: (a) anti-isolated µ, (b) two OS µ’s with one isolated
µ and a µτ overlap, (c) MC Z → τ+τ−, (d) OS (red) SS (blue) isolated µ events. Events require
pµ

T > 25 GeV, no NN cut, no |φµ − φtau| cut.
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Another instrumental background to consider comes from µ’s misidentified as τ ’s. We can
study that background using events with µ+µ− pairs with one of the µ’s reconstructed as a τ
candidate. This background contributes only to τ -type 1 and τ -type 2. The background can be
reduced by cutting on the variable Rτ

trk = (Eτ −Etrk
CH)/ptrk

T , where Etrk
CH is the energy deposited

in a window of 5× 5 towers (each tower of size φ× η=0.1×0.1) around the τ -track in the coarse
hadronic (CH) section of calorimeter. This variable turns out to be less effective in pass 2 data
than in pass 1. The reason is that the T42 algorithm tends to remove energy from the coarse
hadronic section of the calorimeter, where on average a µ will deposit most of the energy it
loses. Figure 27 (a) show the distribution for that variable in pass 1 and pass 2 data. A cut of
Rτ

trk > 0.7 removes only 50% of this background in pass 2 as opposed to 70% in pass 1. Note
that the τ ’s from misidentified µ tend to have lower Eτ

T in pass 2 then in pass 1 data, see figure
27 (b). The NN distributions (NNII) for these events are given in figure 28. Table 5 gives
the number of events before and after NN > 0.9 cut. There are more events of τ -type 2 than
τ -type 1. Figure 27 (c) gives the mass calculated using the µ and the τ track. The distribution
peaks around 60 GeV, although there are also more events than in pass 1 near the Z mass.
Most of τ -type 2 events are muons with a hard brehmstrahlung. We can recalculate the mass
adding to the τ track the energy in the EM calorimeter. The resulting distribution in 27 (d)
shows a clear Z peak. One can remove close to 50% of this remaining background by requiring
80 < Mµ, τ) < 100 GeV.

Table 5: Number of µ+µ− events

τ -type 1 τ -type 2 sum

NN > 0.0 812 1947 2759
NN > 0.9 407 605 1012
NN > 0.9 & 80 < M(µ, τ) < 100 GeV 258 296 554
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Figure 27: Distributions from events with misidentified µ’s for pass 2 (red points) and pass 1
(green histogram) (a) Rτ

trk with no NN cut, (b) Eτ
T after NN > 0.9 cut, (c) M(µ, τtrk) after

NN > 0.9 cut, (d) M(µ, τ) after NN > 0.9 cut.

9 Appendix

A set of utility functions for τ root tree objects are provided in the tau cand cvs module.
Version p16-br-03 is the most up-to-date version at this time. All general utility functions are
in tau utils.C (.h). NN data files for all versions are also available (*.dat). Instructions on how
to use the utilities are in tau cand/README.txt. and tau utils.h

9.1 NN calculation

To calculate NN one needs to create an instance of TauNNoutput for each tau type supplying
the wished for data file as argument. Below is an example of how to calculate NN for the new
NN trained including electrons:

• Before event loop:

TauNNoutput NN1(‘‘NN_type1_mcm_pass2_with_e.dat’’);

TauNNoutput NN2(‘‘NN_type2_mcm_pass2_with_e.dat’’);

TauNNoutput NN3(‘‘NN_type3_mcm_pass2_with_e.dat’’);

• In event loop (prepare input variables and get output):
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Figure 28: NN distributions from events with misidentified µ’s for pass 2 events.

float nn;

if(tau->type()==i){

NNi.setInputTypei(tau);

nn=NNi.output();

}

where tau is a TMBTaus pointer and i=1,2,3.

9.2 Calculating NN variables

In this section we give explicit instructions on how to calculate the NN input variables defined in
section III using TMBTaus methods. Given pointer const TMBTaus* tau each input variable
is given by

• Variables used for both NN’s:

1. profile=tau->profile();

2. caliso=tau->iso();

3. trkiso=tau->ettr()

/(tau->ettr()+tau->ett1()+tau->ett2()+tau->ett3());

4. em12isof=tau->EM12isof();

5. δα = tau->dalpha()/3.1416;

• Variables used for NNI only:

6. e12= tau->ett1()/tau->pT();

7. pτtrk1

T /Eτ
T = tau->ett1()/tau->pT();
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8. pτtrk1

T /(Eτ
T ·caliso)= tau->ett1()/tau->Et_iso();

• Variables used for NNII only:

7. rmsτ= tau->rms();

8. fhf= 1-(tau->emf()+tau->chf()/tau->pT());

9. Eem
T /Etau

T = tau->empt()/tau->pT();

10. prf3= tau->emcl_et1()/tau->EM3_Et_iso();

11. Eτ
T /(Eτ

T + Σpτtrk

T )= tau->pT()/

(tau->pT()+tau->ett1()tau->ett2()+tau->ett3());
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