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Abstract

Measuring the Mass of the W Boson
with the Last 3.7 fb−1 of Tevatron Data.

Michelle Brochmann

Chair of the Supervisory Committee:
Dr. Gordon Watts

Department of Physics

This thesis presents the results of an analysis of the 3.7 fb−1 of Tevatron proton-antiproton

data collected with the DZero (D0) Detector at Fermilab during the “RunIIb34” period, with

the goal of extracting an improved measurement of the W boson mass, which is currently

measured to a precision of ≈ 20 MeV. The measurement is performed on events with one

W boson which decays to an electron and a neutrino. Using a template technique, the

mass is measured from three distributions that are correlated with the W boson mass: the

transverse electron momentum, peT , the transverseW mass, mT , and the neutrino momentum,

which appears as missing transverse energy, /ET . A test measurement using this technique is

successfully performed on a mock dataset generated with a Monte Carlo simulation. In the

data, we find unexpected azimuthally dependent inconsistencies between the early and late

parts of the data taking period. Implications for the completion of the data measurement

are discussed.
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Chapter 1

INTRODUCTION

The purpose of this chapter is to place the measurement of the W boson mass in the

context of theoretical and experimental particle physics. First we give a brief introduction

to the Standard Model with an overview of the fundamental particles and their interactions,

as well as the quantities of interest for scientific measurement and theoretical prediction.

We then describe the particle interactions in the context of field theory, with particular

attention to the weak interaction and the role of symmetry breaking via the Higgs boson

in the manifestation of the vector boson masses. Then we will present the equations which

describe the expected interaction rates of the W boson, and distributions of measureable

observables, at the Tevatron. Finally, we will discuss the motivation for this analysis, and

present an overview of the previous calculations and measurements of the W boson mass.

1.1 The Particles and Interactions of the Standard Model

The Standard Model describes the interactions of the smallest known indivisible

particles in nature. There are two main types of particles, the matter particles, or “fermions”,

and the interaction particles, or “bosons”, which mediate the transmission of conserved

quantities between the matter particles. These particles are catalogued, with their charges,

electromagnetic spins, and masses, in Figure 1.1.

The fermions consist of the quarks and leptons. The quarks, which have fractional

charges (relative to the charge of the electron, which defines a unit of charge), are depicted

in the violet boxes. The lightest and most common, and therefore considered to be part of

the “first generation” of fermions, are the up and down quark, which make up the protons

and neutrons which form the nuclei of atoms, which in turn make up most of the physical
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Figure 1.1: The known fundamental particles of the Standard Model.

objects we see in every day life. The “second generation” quarks are the charm and strange

quarks. The “third generation” quarks, the heaviest quarks we know of, are the top and

bottom quarks. The massive leptons are also ranked according to mass in generations, with

the electron being the lightest, the muon being heavier, and the tau being the heaviest.

These three leptons each have charge −1 (negative by convention). Each of the massive

leptons have a (nearly) massless neutrino partner, simply called the electron neutrino, the

muon neutrino, and the tau neutrino. The neutrinos are chargeless.

There are four gauge bosons which mediate the interactions between the particles.

(The reason for the “gauge” label will be explained in Section 1.2.) The most well known

gauge boson is the massless photon, the “light” particle, which transmits the electromagnetic

force. Only electromagnetically charged particles interact via the electromagnetic interaction,

i.e. the quarks, the massive leptons, and the charged gauge bosons (described next) can
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Figure 1.2: Connecting lines indicate allowed interactions between the fundamental particles.

exchange photons. The weak interaction is transmitted by the massive weak gauge bosons

- the charged W± and the neutral Z. All fermions can interact via the weak force. The

electromagnetic and weak interactions are unified in the “electroweak” interaction before

symmetry breaking (discussed in Section 1.2). The final type of gauge boson is the massless

gluon which transmits the strong force, for which the conserved charge is “color”. There

are three types of conserved “color” charge, red, green, and blue. Only particles with color

charge can interact via the strong force, so quarks can exchange gluons, and gluons, which

also have color charge, can self-interact.

Finally, the scalar Higgs boson is responsible, via electroweak symmetry breaking,

for the masses of the weak bosons, and for part of the mass of the leptons and quarks, as will

be described in Section 1.2.All massive particles interact via the Higgs field. A schematic

diagram of the particle interactions, with connecting lines indicating whether particles can

interact with each other, is shown in Figure 1.2.

The mass (or masslessness) of a non self-interacting force transmitter indicates the

range of the interaction. The W± and Z particles, which transmit the weak force, are
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massive, corresponding to the short range of the weak interaction, ≈ 10−17 − 10−16 m. In

contrast, electromagnetic force is transmitted by massless photons and hence has infinite

range. In principle, the color force of massless gluons also has infinite range, however, the

incredible strength of this force combined with the fact that gluons self-interact results in an

effective range of the color force of 10−15 m.

The Standard Model is a unified description of three of the four fundamental forces:

the weak, electromagnetic, and strong interactions. It unfortunately does not describe grav-

ity. It describes the relationships between the masses of the particles and the characteris-

tics of their interactions. These characteristics include collison cross sections, decay rates,

branching ratios, and the kinematics of these interactions. The relationships prescribed by

the Standard Model can be derived using field theory.

1.2 Field Theory

In the classical limit of field theory, the evolution of a system is governed by the

principle of least action. This principle states that the expected path of a system is the one

that minimizes the “action”, a quantity which describes the difference between the kinetic

and potential energy of the system, integrated over time:

S =

∫
Ldt =

∫
(T − V )dt =

∫
L(φ, ∂µφ)d4x (1.1)

where the first equality states that the action S is the integral of, L, the Lagrangian, over t,

time, the second equality substitutes the difference between the kinetic energy, T , and the

potential energy, V , for L, and the last equality converts the one-dimensional integral into

a four-dimensional space-time integral over L, the Lagrangian density as a function of one,

or more, fields, φ(i), and the derivative of the field(s), ∂µφ(i). The interactions of a system of

particles are governed by the form of the terms in L(φ, ∂µφ).

By minimizing the action over an infinitesimal length of time, δt, we can derive the

Euler-Lagrange equations of motion:

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 (1.2)
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At the quantum level of field theory (QFT), the system follows all possible paths

that lead from the initial to the final state, even paths which do not conserve energy and

momentum. (The measured initial and final states must still conserve energy and momen-

tum.) The probability for the initial state to transition to the final state is the proportional

to the integral of the action over all possible paths. This is the reason “off-shell” interactions,

such as beta decay, in which a virtual W boson is emitted from a transitioning quark and

decays into an electron and neutrino with combined energy that is only a fraction of the W

mass, can occur. The multiplicity of all the paths leading from an intial to a final state is

proportional to the probability of that transition. This governs cross sections for particle

interactions and decay rates.

If the Lagrangian of a system is unchanged under a transformation of the system,

it is symmetric under the transformation. There is a conserved quantity associated with all

continuous symmetries (i.e. symmetries under continuous transformations). The Standard

Model Lagrangian is symmetric under Lorentz transformations, which include translations,

rotations, and boosts (shifts to a moving reference frame). These symmetries correspond,

respectively, to conservation of momentum, angular momentum, and energy.

The Standard Model Lagrangian is also symmetric under CPT, meaning that it

is unchanged when it is operated on by all three of the following discrete transformations

together: charge conjugation, parity, and time reversal. Individual parts of the SM La-

grangian are also symmetric under subsets of CPT. Electromagnetism and the strong force

are invariant uncer C, P, and T individually. The weak force violates all three symmetries.

Another kind of symmetry that we can have is a “local gauge symmetry”. This is

the invariance of a Lagrangian under a space and time dependent transformation governed

by a Lie group applied to the field(s) of the Lagrangian.

1.2.1 An example of symmetry breaking: QED from the U(1) symmetry

As an example, we will examine the Lagrangian of a free fermion. By requiring

that the Lagrangian is invariant under U(1) local gauge transformations, we will derive the
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Lagrangian of quantum electrodynamics (QED).

L = ψ̄(x)(i/∂ −m)ψ(x) (1.3)

where ψ̄(x) is the field of the anti-fermion, ψ(x) is the field of the fermion, and /∂ is γµ∂µ,

where γµ are the 4x4 Dirac gamma matrices

γµ =

 0 σµ

−σµ 0

 (1.4)

where σµ are Pauli spin matrices. Having U(1) symmetry means the Lagrangian is invariant

under a complex rotation of the wave function, with local phase α(x)

ψ(x)→ ψ′(x) = e−iα(x)ψ(x) and ψ̄(x)→ ψ̄′(x) = eiα(x)ψ̄(x) (1.5)

The mass term of the Lagrangian is clearly invariant under this transformation,

however, in its current form, the derivative term is not - it “breaks” the symmetry. Therefore,

we must change to a gauge covariant derivative, Dµ = ∂µ + ieAµ(x), where e is the fermion

charge and where the gauge field Aµ(x) is defined to transform under the rotation:

Aµ(x)→ A′µ(x) = Aµ(x)− 1

e
∂µα(x) (1.6)

When the field and the derivative transform according to these rules, the Lagrangian

is invariant. The field Aµ is actually the electromagnetic potential which describes Maxwell’s

equations, and whose corresponding gauge boson is the photon. Its propagation is included

via the gauge invariant term FµνFe
µν , where Fµν = ∂µAν − ∂νAµ.

The final QED Lagrangian is then

LQED = ψ̄(x)(i /D −m)ψ(x)− 1

4
FµνF

µν (1.7)

A mass term for a field Aµ(x) would look like mAµA
µ, but there is no such term in

the QED Lagrangian. This corresponds to the photon having no mass.

The Standard Model is a gauge theory based on the symmetry group

SU (3)⊗ SU (2)⊗ U (1) (1.8)
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where the SU(3) symmetry describes the coupling of the color charge to the quarks and glu-

ons, the SU(2) symmetry describes the coupling of the weak isospin to left-handed fermions

(and right-handed antifermions), and the U(1) symmetry describes the coupling of the weak

hypercharge to all fermions. The electromagnetic and weak interactions are unified under the

SU(2)⊗ U(1) symmetry as the electroweak interaction. The strong sector, which describes

the interactions of quarks and gluons, the conserved charge is color, is invariant under SU(3)

transformations. It is relevant to this dissertation in the sense that it is responsible for the

QCD background, and also in the sense that in the pp̄ interactions, the strong force is in-

volved in the collisions which break apart the protons and antprotons. Ultimately, however,

the focus of this dissertation is the W boson, a mass eigenstate which results from symmetry

breaking of the electroweak interaction by the scalar Higgs Field.

1.2.2 Electroweak theory

In the previous section, we introduced the concept of gauge symmetry breaking

by adding a term to the Lagrangian, and restoring it by adding a new field via a gauge

covariant derivative. In this section, we will explore the effect of adding a Higgs term to the

electroweak Lagrangian.

We require the electroweak Lagrangian to be invariant under SU(2)T × U(1)Y , in

order to conserve the weak isospin, T , which appears in units of 1
2

and the weak hypercharge,

Y , which appears in units of 1
3
. These quantities are related to electrical charge, Q, which

comes in units of 1 via Y ≡ Q− T 3.

Experimentally, we observe that W± bosons only decay to left-handed fermions

and right-handed antifermions. Therefore we treat left-handed and right-handed particles

differently. The fields of fermions and antifermions are described by four-component “bi-



8

spinors”:

ψ =


ψ1

ψ2

ψ3

ψ4

 =

φ
χ

 where φ =

φ1

φ2

 and χ =

χ1

χ2

 (1.9)

where the “bi-spinor” is, by convention, to have the same handedness as its first spinor

component.

Since the particles whose interactions we are investigating are, in general, not at

rest, we must treat the spin in the context of the motion of the particles. Therefore, we work

not with eigenstates of spin, but of chirality. Eigenstates of chirality are the relativistic limit

of eigenstates of helicity. Helicity is spin projected onto momentum:

λ =
1

2

~σ · ~p
|~p| (1.10)

and has eigenvalues of ±1
2
. Helicity is the only spin-dependent value that commutes with

(i.e. has the same eigenstates as) the Hamiltonian, but, because it depends on the direction

of motion1, it is not Lorentz-invariant for massive particles. Chirality, on the other hand,

does not commute with the Hamiltonian, but it is Lorentz invariant. Its eigenstates (which

approach helicity eigenstates in the relativistic limit) are the eigenstates of γ5 = γ0γ1γ2γ3,

with eigenvalues of +1 (right-handed) and −1 (left-handed). We can project the ψ states

into left-handed and right-handed components:

ψL =
1

2
(1− γ5)ψ (1.11)

ψR =
1

2
(1 + γ5)ψ (1.12)

ψ̄L =
1

2
ψ̄(1 + γ5) (1.13)

ψ̄R =
1

2
ψ̄(1− γ5) (1.14)

1i.e. it is susceptible to “spin-flipping”
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The left-handed fermion fields are doublets of SU(2) weak isospin.

lL =

νeL
e−

 ,

νµL
µ−

 ,

ντL
τ−

 (1.15)

qL =

uL
d′L

 ,

cL
s′L

 ,

tL
b′L

 (1.16)

The complex conjugates are the right-handed antifermion fields. The left-handed fermion

and right-handed antifermion fields transform under SU(2)× U(1) according to

fL → e−i(ξ
0+ξaτa)fL and f̄L → ei(ξ

0+ξaτa)f̄L (1.17)

where the τa are the Pauli spin matrices.

The right-handed fermions are singlets:

lR = eR, µR, τR (1.18)

qR = uR, dR, cR, sR, bR, tR (1.19)

and transform only under U(1):

fR → e−iξ
0

fR and f̄R → eiξ
0

f̄R (1.20)

We do not include right-handed neutrinos or left-handed antineutrinos in our theory

because we have not yet found compelling experimental evidence that they exist.

For the charged leptons, the mass eigenstates are the same as the weak isospin

eigenstates. This is not true for neutrinos, but we will not discuss neutrino mixing here.

The quark mass eigenstates are different from weak isospin eigenstates. The weak isospin

eigenstates for quarks are related to the quark mass eigenstates (“mixed”) by the Cabibbo-

Kobayashi-Masakawa (CKM) matrix:
d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 ≈


cos θC sin θC 0

− sin θC cos θC 0

0 0 1



d

s

b

 (1.21)

where θC = 13.1◦ is the Cabibbo angle.
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1.2.3 Electroweak Vector Gauge Bosons

W 1
µ , W 2

µ , W 3
µ , and Bµ are the massless gauge boson fields. They are the eigenstates

of weak isospin before they have been “mixed” by the Higgs boson. The W a
µ states couple

to the left-handed isospin current,

Jaµ =
1

2
ψ̄LγµτaψL (1.22)

where τa are the Pauli spin matrices, ψL is the isospin doublet, and ψ̄L = ψ†Lγ
0 is the adjoint

of ψL. Bµ couples to the weak hypercharge current, which includes both chiralities:

JYµ = Y ψ̄γµψ (1.23)

The leptonic Lagrangian is

LEW = ψ̄Lγ
µDψL + ψ̄Rγ

µDRψR − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (1.24)

where

D =
(
i∂µ − g

2
τaW a

µ − g′YWBµ

)
(1.25)

DR = (i∂µ − g′YWBµ) (1.26)

are the gauge covariant derivatives for the left- and right-handed leptonic fields, and

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

b
ν (1.27)

Bµν = ∂µBν − ∂νBµ (1.28)

are the terms which describe the propagation of the fields (analogous to Maxwell’s equations

for electromagnetic fields), and g (g′) is the coupling constant between the weak isospin

current and the W (B) field.

For the Lagrangian to be invariant under a SU(2)× U(1) gauge transformation of

the lepton fields, the W triplet must transform under U(1) and SU(2) via

W a
µ → W a

µ −
1

e
∂µξ

0 (1.29)

W a
µ → W a

µ + gεabcW
b
µξ

c + ∂muξ
a (1.30)
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while the B singlet must transform under U(1) via

Bµ → Bµ − 1

e
∂µξ

0 (1.31)

Note that this Lagrangian contains no mass terms for any of the fields; no gauge

covariant derivative has been developed which would allow it to contain mass terms and still

be invariant under a gauge transformation. However, experimentally we observe massive

gauge bosons. These arise through spontaneous symmetry breaking by the Higgs field, an

isospin doublet of complex scalar fields

φ =

φ1

φ2

 , φ† = (φ?1, φ
?
2) (1.32)

The U(1) transformation adds a phase to both members of the doublet while the

SU(2) transformation rotates the field between components of the isospin doublet. As a scalar

field, it is permitted to have a mass without costing the Lagrangian its gauge symmetry.

The Higgs field is included in the Lagrangian via the term

LHiggs = |Dφ|2 − V (φ) (1.33)

where we assign the hypercharge operator (included in D) on the φ doublet as Yφ = +1,

and the electric charge operator (also included in D) on the φ doublet as Q = 1
2

(σ + Y ) =1 0

0 0

. The eigenmodes of these operators imply two charged (Q = ±1) and two scalar

bosons.

V (φ) = −µ2φ†φ+
λ

2

(
φ†φ
)2

(1.34)

We require µ2 > 0, in order for the Higgs field to have a non-zero expectation value:

v =
√

µ2

λ
. The vacuum state of φ, found by minimizing V (φ), can be written as

〈φ〉 =
1√
2

0

v

 (1.35)
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With the addition of the Higgs term, the Lagrangian can be re-written in a form

that contains mass terms.

The covariant derivative can be written in terms of the mixed fields as

Dµ = ∂µ + i
g√
2

(W+
µ τ

+ +W−
µ τ
−) (1.36)

+i
1√

g2 + g′2
Zµ

(
g2τ 3 − g′2Y

)
+ ieAµ(τ 3 + Y ) (1.37)

where e = g sin θW = g′ cos θW and τ± = 1
2
(σ1 ± iσ2), τ 3 and Y are the operators for isospin

and weak hypercharge.

The interaction terms of the Lagrangian can be written in terms of the mixed fields

as

L = −eQψ̄γµψAµ − g

2
√

2
ψ̄Lγ

µ(τ+W+
µ + τ−W−

µ )ψL (1.38)

− g

2 cos θW
ψ̄γµ(gV − gAγ5)ψZµ

where gV and gA are the vector and axial-vector couplings:

gfV = τ 3
f − 2QF sin2 θW (1.39)

gfA = τ 3
f (1.40)

which describe the degree to which the Z boson interacts differently with right- and left-

handed particles.

Note that the W±, like the W a, couple only to left-handed currents. Note also that

Z couples to left-handed and right-handed currents with different strengths.

LEW = Lleptons + Lgauge (1.41)

The gauge Lagrangian is

Lgauge = −1

4
F l
µνF

l,µν − 1

4
fµνf

µν (1.42)
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where

F l
µν = ∂µW

l
ν − ∂νW l

µ − gεlmnWm
µ W

n
ν (1.43)

f lµν = ∂µBν − ∂νBµ (1.44)

are the non-Abelian and Abelian field strength tensors.

The leptonic and gauge Lagrangians, and hence their sum, are Lorentz invariant

under the transformation of two distinct local gauge symmetry groups: the non-Abelian

SU(2)L of weak isospin and the Abelian U(1)Y of weak hypercharge.

The Yukawa term is the interaction term between the fermions and the Higgs field

which breaks the chiral symmetry and provides the lepton masses:

LYukawa = −Ge

[
ψ̄Rφ

†ψL + ψ̄LφψR
]

(1.45)

where the Yukawa constant Ge is arbitrary, i.e. unconstrained by the symmetries.

We find from the form of the rewritten Lagrangian that there are now three massive

gauge bosons: the charged W bosons and the neutral Z boson. We also find the massless,

chargeless, photon.

The vacuum state of the Higgs field has broken the electroweak symmetry of the

Lagrangian. The Lagrangian that includes the Higgs term is gauge invariant under the

group U(1) only, but now it includes massive bosons (and leptons). The four bosons form

mass eigenstates which we call W±
µ , Zµ, and Aµ. These physical states are related to the

eigenstates of the SU(2)⊗ U(1) gauge group, W a
µ and Bµ, where a ∈ [1, 2, 3], via

W±
µ =

1√
2

(
W 1
µ ± iW 2

µ

)
(1.46)

and Zµ
Aµ

 =

 cos θW sin θW

− sin θW cos θ

W 3
µ

Bµ

 (1.47)

where θW is the weak mixing angle:

cos θW =
g√

g2 + g′2
or sin θW =

g′√
g2 + g′2

(1.48)
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At tree level,

cos θW =
MW

MZ

(1.49)

where MW and MZ are the masses of the physical W and Z bosons. At tree level, we can

also say

MW =
1

2
vg (1.50)

MZ =
v

2

√
g2 + g′2 (1.51)

The fermions also acquire mass from the Higgs field,

mf =
κfv√

2
(1.52)

where the κf must be determined experimentally. At tree level, the weak mixing angle2

relates the masses of the W and Z bosons

sin2 θW = 1−
(
MW

MZ

)2

≈ 0.226 (1.53)

These relationships allow the tree-level masses of the W and Z bosons to be deter-

mined in terms of three experimentally determined quantities: the fine structure constant,

α = e2

4π
= 1

137.04
, the Fermi coupling constant, GF = 1.66×10−5 GeV−2, and the weak mixing

angle, θW .

1.2.4 The W Mass from the Muon Decay Time

The determination of the true masses requires renormalizing the Standard Model

Lagrangian, which is beyond the scope of this dissertation. We will only briefly describe how

this process adds radiative corrections which depend on the Higgs and top quark masses,

which makes the value of the W mass, in addition to being sensitive to the mass of the

Z boson and the electric charge-coupling, sensitive to the Higgs and top quark masses (in

addition to dependencies of higher order corrections). In the “old Fermi four-fermion theory”,

2θW can also be defined as a function of higher orders in the calculation
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Motivation

Figure 1.3: The Feynman diagrams for the leading contribution to the W mass from the top

quark (left, plus charge conjugate) and the Higgs boson (right).

which is the effective theory of the electroweak fermion interaction, the muon decay time is

related to other observables of the Standard Model via

τ−1
µ =

G2
Fm

5
µ

192π3
F

(
m2
e

m2
µ

)(
1 +

3m2
µ

5M2
W

)
(1 + ∆qQED) (1.54)

where3

F (x) = 1− 8x− 12x2 lnx+ 8x3 − x4 (1.55)

and qQED contains QED corrections only,

An expression for calculating the W mass from the other quantities can be derived

by calculating the equivalent expression for the muon decay time in the Standard Model and

comparing it to the equation from the effective field theory, which results in the following

relationship:

MW

(
1−M2

W/M
2
Z

)
=

πα√
2GF

(1 + ∆r) (1.56)

where α = e2/4π is the fine structure constant, and ∆r contains the full radiative corrections

(including those in Figure 1.3). The full radiative corrections have been calculated to two-

loop order[31], and the fermionic corrections have been calculated to four-loop order[16].

3 3m2
µ

5M2
W

comes from the W propagator and not the Fermi theory. The numerical effect is negligible (even
considering current precision of GF ).
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1.2.5 Quantum Chromodynamics - a very Brief Overview

Quantum Chromodynamics (QCD) is a theory governed by Lie group SU(3). It is

relevant to this experiment in the sense that it governs the distribution of the vector boson

momentum. It is also used to predict the QCD background. QCD describes the strong

force interaction via the conserved color charge between the gluons and quarks. We will

not go into great detail in this dissertation, but simply state the form of the Lagrangian for

completeness:

L = q̄(iγµDµ −m)q − 1

4
Ga
µνG

aµν (1.57)

where Dµ = ∂µ+igsTaG
a
µ is the covariant derivative, Ga

µ is the gluon field, Ta is the generator

of the SU(3) Gauge Group, gs is the QCD coupling, and fabc defines the structure of the

gauge group via

[Ta, Tb] = ifabcTc (1.58)

The term

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
µ (1.59)

describes the gluon propagation, analogous to the way Maxwell’s Equations describe the

propagation of the electromagnetic field.

The strong force grows with distance, unlike the electroweak force. Quarks are

strongly held together by “color confinement”. If a strong enough (or near enough) force

manages to pull them apart, qq̄ pairs will be created from vacuum to hadronize (i.e. form

new particle states energetically which are energetically favorable due to minimizing gluon

separation) with the newly separated quarks. At short distances, electroweak and strong

force behave similarly, allowing for the electroweak decay (“asymptotic freedom”).

1.3 Motivation

All of the fundamental particles of the standard model have now been measured,

including the Higgs mass, and the model is now over-constrained, meaning that we can check

its applicability to nature by testing whether it predicts the same relationships between
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Figure 1.4: The predicted value of the W boson mass compared with the measured world

average, based on a χ2 method calculated from the pulls shown in Figure 1.6[17].

various quantities that have been measured experimentally. The W boson is unique in that

the experimental uncertainty on its mass has not yet been decreased to be less than the

uncertainty of the theoretical predicted value, meaning that increasing of the precision of its

measurement will add to our understanding of the Standard Model’s adequacy in describing

nature as we observe it. There is a small tension between the predicted and experimentally

measured values of the mass, as can be seen from the χ2 dependency on the W mass in

Figure 1.5 and the W and top quark mass in Figure 1.4. These χ2 discriminants have

been calculated from a sum of the squared pulls for the electroweak precision observables as

shown in Figure 1.6. Given the current state of knowledge, the W mass is the observable

whose measurement most effectively can further constrain the Standard Model, therefore

continuing to decrease the experimental uncertainty on this physics quantity is a crucial part

of continued validation of the Standard Model.
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Figure 1.5: The predicted value of the W boson and top quark masses compared with the

measured world averages, based on a χ2 method calculated from the pulls shown in Figure

1.6[17].

1.4 W Boson Production at the Tevatron

W bosons are produced at the Tevatron primarly through the following interactions:

d (pd) + ū (pu)→ W− → e− (pe) + ν̄ (pν) (1.60)

d̄ (pd) + u (pu)→ W+ → e+ (pe) + ν (pν) (1.61)

Both the W and Z bosons appear as resonances at the tevatron. This means that

the particle is not stable, and always decays after a finite amount of time. The average of the

time to decay is called the lifetime. The lifetime is inversely related to the decay width (i.e.

the invariant mass width) of the resonance, which can be approximated by a Breit-Wigner

spectrum.

To get the differential cross section for any process (i.e. transition), we must com-
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Figure 1.6: The pull plots describing the tensions between the observed and expected values

for various observables of the Standard Model.

pute the scattering matrix Sfi = 〈f |S|i〉.4

The differential cross section is

dσ = ¯|M|2 p

32π2s3/2
dΩ. (1.63)

To determine the spin-averaged amplitude for a particular process we use the Feyn-

4Which is normalized according to:

Sfi = δfi + (2π)4δ4(Pf − Pi)(−iMfi)
∏

j=f,i

1√
2Ej

(1.62)
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man rules. The probability of a transition is dp ∝ ¯|M|2. At tree level, we have two types of

vertices and one type of propagator.

The leptonic-W vertex factor is:

−i g

2
√

2
ēγµ(1− γ5)νW−

µ = −i
√
GFM2

W√
2

ēγµ(1− γ5)νW−
µ plus CC (1.64)

The quark-W vertex factor is:

−i g

2
√

2
ūγµ(1− γ5)d′W−

µ = −i
√
GFM2

W√
2

ūγµ(1− γ5)d′W−
µ plus CC (1.65)

We have one propagator:

1

m2 −m2
W + imWΓW

(1.66)

These are combined and squared to get:

∣∣M (
dū→ e−ν

)∣∣2 = 16
(

2
√

2GFM
2
W

)2

|Vud|2 (pu · pe)2(
(pu + pe)

2 −M2
W

)2
+M2

WΓ2
W

(1.67)

where |Vud| is the CKM matrix element.

If we define θ∗ as the polar angle of electron (positron) emission in the rest frame

of the W± boson, measured relative to the incident direction of the incident antiproton

(proton),

(pu · pe)2 =
M4

W

16
(1 + cos θ∗) (1.68)

which leads to

cos θ∗ =

√
1− 4pe2T

M2
W

(1.69)

When we average over the W+ and W− bosons, we get an angular distribution of

combined electrons and positrons:

1

σ

dσ

d cos θ∗
=

3

8

(
1 + cos2 θ∗

)
(1.70)
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Figure 1.7: Normalized differential cross sections for the decay of a W boson in the rest

frame for the peT (a) and mT (b) observables. The blue shaded regions show the effect of the

pWT distribution at the Tevatron, and the red points show the effect of the detector response.

Transforming variables, gives us:

1

σ

dσ

dpe2T
=

3

M2
W

(
1− 4pe2T
M2

W

)−1/2(
1− 2pe2T
M2

W

)
(1.71)

which is strongly peaked at peT = MW

2
, known as the “Jacobian peak” or “Jacobian edge”,

seen in Figure 1.7.

Our strategy for measurement is to accurately determine the position of the peak.

The neutrino distribution is the same as the electron distribution, and there is a similar peak

in the transverse mass distribution, where M2
T = 2peTp

ν
T (1− cos ∆eν).

Since the W boson is not decaying from rest, the peaks for the neutrino and electron

transverse momentum are modified by the W boson pT distribution (pWT ) at the Tevatron.

The peaks for the transverse momentum quantities and the transverse mass are affected by

both electroweak corrections from FSR and by QCD corrections from ISR.

The transverse boson momentum at the Tevatron is small, qT � Q, where qT = pWT

is the transverse momentum of the W boson, and Q = mW is the mass of the W boson.5

Because it is small, the calculation is more complicated than if it were large. To calculate

5These are the variable names used when performing the QCD production cross section.
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the transverse momentum distribution via QCD is beyond the scope of this dissertation, but

we reproduce results here:

dσ

dq2
T

= αS

(
A

ln (Q2/q2
T )

q2
T

+B
1

q2
T

+ C
(
q2
T

))
(1.72)

where A and B are calculated perturbatively. The first two terms diverge at small transverse

boson momentum, exhibiting singular behavior of the invariant amplitude when a soft gluon

is emitted. The integral is regularized by virtual corrections at every order, but first factor

is large when

αs ln
Q2

q2
T

& 1→ qT . 10 GeV (1.73)

there is divergence at every perturbation order:

1

σ

dσ

q2
T

'
[
A1αS ln

Q2

q2
T

+ A2α
2
S ln3 Q

2

q2
T

+ · · · + Anα
n
S lnn

Q2

q2
T

+ · · ·
]

(1.74)

so, for low boson transverse momentum convergence cannot be achieved at fixed order. The

series can be resummed in impact parameter space, as was first discovered by Collins, Soper

and Sterman,[26] using the “CSS formalism” used by the RESBOS simulation described in

Chapter 4, where the cross section for W and Z production is calculated via(
dσ(h1h2 → V (→ `1

¯̀
2)X)

dQ2dydq2
TdφV d cos θdφ

)
res

=
1

96π2S

Q2

(Q2 −M2
V )2 +Q4Γ2

V /MV

(1.75)

×
{

1

(2π)2

∫
d2beiq̄T ·

~b
∑
j,k

W̃jk̄(b∗, Q, x1, x2, θ, φ, C1, C2, C3)W̃NP
jk̄ (b,Q, x1, x2)

+Y (qT , Q, x1, x2, θ, φ, C4)

}
where

x1 = eyQ/
√
s and x2 = e−yQ/

√
s (1.76)

are the parton momentum fractions, and
√
s is the center-of-mass energy of the hadrons h1

and h2, and V represents the W or the Z.

The renormalization group invariant quantity W̃jk̄(b) sums to all orders in αS the

singular terms that behave like q−2
T or q−2

T ln(q2
T/Q

2) as qT → 0. To avoid the Landau pole,
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we introduce a cutoff at large values of b by replacing the impact parameter in W̃jk̄(b) with

b∗ =
b√

1 + (b/bmax)2
(1.77)

This region cannot be calculated perturbatively, but we can introduce a phenomeno-

logical non-perturbative form factor

W̃NP
jk̄ (b,Q, x1, x2) (1.78)

For this analysis, we use the “BNLY” parametrization as form factor, which has

been fitted to Tevatron Run I data[38].

W̃jk̄(b) = exp
[
(−g1 − g2 ln(Q/Q0)− g1g3 ln(100x1x2))b2

]
(1.79)

The values we use in our simulations are

g1 = 0.21+0.01
−0.01 and g2 = 0.68+0.01

−0.02 and g1 = −0.6+0.05
−0.04 (1.80)

1.5 Previous Calculations

First published calculation of the W mass was performed by Marciano and Sirlin

[45], and recently reviewed in [52].

The most up-to-date calculation is the full two-loop-order calculation, but fermionic

corrections in three and four loops are also known[16].

When Equation 1.56 is used to predict the value of the W boson mass, there are 4

MeV of uncertainty due to uncalculated higher order corrections. This calculation is usually

done in the “on-shell” renormalization scheme, using the physical mass as the renormalized

mass which leads to all renormalized equations having a direct physical interperetaion[51].

The relationship between the on-shell, or “pole”, mass and the M̄S (modified min-

imum subtraction mass), is known to two-loop precision[35][36].

Before the Higgs mass was measured, Equation 1.56 was used to predict its value.

Now, it is a powerful test of relationship between the W and top quark masses.
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1.6 Previous Measurements

The W boson mass was first measured by the UA1[11] and UA2[12] collaborations

with data from CERN’s Super Proton Synchrotron (SPS), using similar methods to those

used for the current analysis. These two measurements, 81± 5 GeV by UA1 and 80 + 10− 6

GeV by UA1, resulted in a Nobel Prize. The H1[57] and Zeus[25] collaborations at HERA

performed early measurements as well, but the first “precision” measurements were done at

LEP and the Tevatron.

At LEP, the ALEPH[48], DELPHI[9], L3[10], and OPAL[8] collaborations measured

the W mass in the e+e− → W+W− → qq̄qq̄ and e+e− → W+W− → qq̄lν channels by

reconstruction of the invariant mass of the decay products. The result of these measurements

had a combined precision of 31 MeV.

At the Tevatron, the D0 and CDF collaborations measured the W mass using

similar strategies, but different calibration procedures. CDF measured the mass from in the

W → eν and W → µν channels, with 19 MeV of uncertainty[4]. CDF’s measurement using

the mT observable from the muon channel was the most precise individual measurement

W mass, until the recent measurent by ATLAS, which achieved similar precision. The D0

collaboration measured the mass in the electron channel only, to a precision of 23 MeV.

The current world average is dominated by Tevatron RunII and LEP measure-

ments. The various contributions to this average can be seen in Figure 1.8. It was 80.385±
0.015 GeV[1] prior to the latest ATLAS measurement, the result of which is shown in Figure

1.9.
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Figure 1.8: Previous measurements and world average of W mass before ATLAS measure-

ment.

Figure 1.9: December 2016 ATLAS measurement of the W mass.



26

Figure 2.1: The Fermilab accelerator chain

Chapter 2

EXPERIMENTAL APPARATUS

2.1 The Fermilab Tevatron Collider

Between 2002 and 2011, the Tevatron produced proton-antiproton collisions at a

center-of-mass energy of 1.96 TeV. The Tevatron collider was the last in a chain of accelerators

which produced protons and antiprotons and accelerated them from production to interaction

point. (Fig. 2.1)
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Tevatron operation was divided into “epochs” or “runs”. RunI took place from

1992 to 1996, with 120 pb−1 recorded, during which CDF and D0 independently observed

the top quark. RunII lasted from 2001 to September 2011, and was separated into RunIIa

and RunIIb by a break from April to June 2006 during which improvements were made

both to the accelerator complex and the D0 detector. During RunII, a total of 11.9 fb−1

was delivered, of which D0 recorded 10.7. (In contrast, the CDF measurement used only

2.2 fb−1; they achieved similar precision by using muons in addition to electrons.) The

recording efficiency of ≈ 90% was limited by the trigger framework dead time (Section 2.4)

and temporary detector problems.

The protons started life as the nuclei of hydrogen atoms in a gas. The gas was

ionized to have one extra electron per hydrogen atom, and the ions were accelerated inside

inside a Cockroft-Walton accelerator (see Figure 2.1 to 750 keV. The ions were further

accelerated in the LINAC (an RF linear accelerator) to 400 MeV, when they were passed

through a carbon foil to strip off their electrons leaving free protons. Next, they were

accelerated to 8 GeV in the Booster (a circular accelerator), where they were stored until

approximately 5 × 1012 protons were available. Then, they were transferred to the Main

Injector (another circular accelerator) where they were accelerated to 150 GeV. From the

Main Injector they were routed into the Tevatron, where they were accelerated to their final

energy of 980 GeV.

To produce antiprotons, protons from the Main Injector were collided with a Ni-Cu

target, producing particle showers from which antiprotons were collected with a high-gradient

lithium lens. The lithium lens was a 3.6 cm diameter and 15 cm long cylinder of lithium

metal with constant (106A) axial current resulting in the azimuthal magnetic field (with a

gradient of 5 T/cm) which collimated the beam. After passing through the lithium lens,

the antiprotons were injected into the Debuncher ring where their large energy spread was

narrowed by stochastic cooling. The antiprotons were then transferred to the Accumulator

ring where they were accelerated to 8 GeV. When 60−70×1010 antiprotons were accumulated,

they were transferred to the Recycler Ring where they were cooled further, stochastically
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and with an electron beam. From there they went to the Main Injector, where, like the

protons, they were accelerated to 150 GeV for injection into the Tevatron. The Recycler

Ring was named for one of its original purposes, which was to recycle the difficult-to-produce

antiprotons. It was not, however, used for this purpose, for two reasons: 1) the extraction and

cooling of antiprotons from the Tevatron after a store never reached a satisfactory efficiency,

and 2) antiproton production “from scratch” exceeded expectations, as described next.

Only about one antiproton could be produced for every 105 protons incident on the

Ni-Cu target; this was the limiting factor for the number of antiprotons in the ring during

a store (whereas the limiting factor for protons was the capacity of the ring). However, the

low production efficiency was significantly mitigated by factors including a high proton beam

intensity on the Ni-Cu target and using electron cooling in addition to stochastic cooling,

as well as improvements to the lithium lens and Debuncher during the 2006 upgrade. After

this upgrade, the production of antiprotons almost doubled so that there were 127 × 109

antiprotons per bunch, compared with 270× 109 protons per bunch.

2.2 The Tevatron Bunch Structure and Luminosity

Each fill of the Tevatron was called a “store”, and each store lasted approximately

16 hours. The protons and antiprotons travelled in opposite directions in a single vacuum

pipe (unlike proton-proton beams at the LHC which require separate pipes) and were kept in

different helical orbits overlapping only at the collision points by electrostatic separators. One

of the advantages of a single vacuum pipe is that, when focused at the interaction points at

D0 and CDF (at point B0 on the other side of the ring), the crossing angle is nearly zero and

the beams collide nearly head-on, which maximizes the number of collisions. A disadvantage

is that when the beams are not physically isolated, the proton and antiproton beams have a

defocusing effect (essentially, knocking each other out of orbit) which is strongest near the

interaction point where the orbits overlap.

The typical instantaneous luminosity during a store was L ≈ 200 × 1030cm−2s−1,

but could be as much as L ≈ 430× 1030cm−2s−1. Over the course of a store, the luminosity
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would decrease as protons were lost to interactions and vacuum imperfections. When the

luminosity had decreased beneath useful levels, the store was sent to a beam dump. The

beam-beam interaction described above was responsible for 40% of the luminosity loss during

a store. The rest of the luminosity loss was mainly due to collisions at the interaction point,

and vacuum imperfections (mainly interactions with renegade nitrogen molecules)[49][50].

Protons and antiprotons traveled around the ring in packets called “bunches”. They

were accelerated by a time-space pattern of longitudinally focusing pulses, or “acceleration

radio-frequencey (RF)”, operating at 53.104 MHz, or one pulse every 18.85 ns. A pulse was

called a “bucket”, because each one could hold a bunch of particles in its moving electromag-

netic potential. With a revolution frequency of 47.713 kHz, or 21µs per revolution, there

were 1113 RF buckets around the ring. The buckets were further divided into ticks of 7

consecutive buckets each, for 159 ticks. Only the first bucket in a tick was allowed to hold a

bunch, but not all ticks held bunches. A store in RunI had 6 equally-spaced bunches each

of protons and antiprotons while a store in RunII had 2× 36 bunches divided into 3 “super-

bunches” of 12 bunches each. A superbunch contained one bunch for every three ticks, and

superbunches were separated by 17 ticks (nearly 20 including all the empty buckets after the

last bunch in a superbunch), or ≈ 2.64µs. The RunI configuration resulted in bunch cross-

ings every 3500 ns at a CoM of 1.8 TeV, while the RunII configuration had bunch crossings

every 393 ns, at a CoM of 1.96 TeV.

In the absence of a crossing angle, instantaneous luminosity is given by [18]

L =
fBNpNp̄

2π(σ2
p + σ2

p̄)
F (σl/β

∗) (2.1)

where f is revolution frequency, B is the number of bunches per beam, Np(p̄) is the number

of protons (anti-protons) per bunch, σp(p̄) is the RMS size of the proton (anti-proton) beam,

F is a form-factor that depends on ratio of σl to β∗, σl is the bunch length, and β∗ is beta

function at interaction point. In this dissertation and in many publications, instantaneous

luminosity is expressed in units of I0 = 1030 cm−2s−1 = 1µb−1 s−1, i.e. one “microbarne” per

second.
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The luminosity L is related to average number of interactions per beam crossing

N̄LM via

L =
f

σLM

N̄LM (2.2)

where σLM is the inelastic luminosity cross section corrected by the Luminosity Monitors

acceptance and efficiency. A tick was considered to contain an interaction at D0 if there

was a coincidence signal in both Luminosity Monitors during that tick (see Section 2.3.5).

The number of interactions per revolution n could not be measured directly, but followed a

Poisson distribution with mean N̄LM = LσLM/f .

Knowing the fraction of beam crossings with no collisions, we can exploit the rela-

tionship P (0)turn = e−N̄LM to find

L = − f

σLM

ln (Pturn (n = 0)) (2.3)

A tick, or even a turn, was too short a period of time to measure luminosity, but a hypo-

thetical probability of no interactions during a turn assuming perfectly constant conditions

could be calculated from the number of coincidences in the luminosity monitors ∆LM over

a pre-determined period of time called the Luminosity Block (LB) and lasting ∆ticks ticks.

In general, the LB lasted 60 s, corresponding to 455 million ticks. 1

N̄LM was not constant from tick to tick: not every tick contained a bunch, and

individual bunches varied in size. However, a given pair of proton and antiproton bunches

which collided at tick i of a revolution would collide at tick i of every revolution. The

luminosity block was short enough that the instantaneous luminosity for the two bunches

colliding at tick i didn’t change appreciably over its duration, but was long enough to neglect

the statistical fluctuations in the LM count. Thus we can average over 159 measurements

each lasting the duration of the LB and integrating LM coincidences for a particular i, to

1The LB number (LBN) was also incremented upon run or store transitions, TFW or SCL initialization,
or by request. Raw data files were opened and closed on LBN boundaries[5].
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find

L = − f

σLM

159∑
i=1

ln

(
1− 159 · ∆LMi

∆ticksi

)
(2.4)

2.3 The Run II D0 Detector

The D0 Detector[5] was made up of several important subsystems, including the

central tracking detector (CTD), the uranium/liquid-argon calorimeters, the forward pro-

ton detector (FPD), the luminosity monitors (LMs), preshower detectors, and the muon

spectrometer, as well as the trigger system which interfaced with all these components to

orchestrate when and what data to record. All of these components will be described in

this section, although the most important for the W mass measurement were the CTD and

the calorimeters. The detector surrounded the D0 beam pipe which was made of beryllium,

2.37 m long, and with an outer diameter of 38.1 mm and wall thickness of 0.508 mm.

2.3.1 Central Tracking Detector

The Central Tracking Detetor (CTD) consisted of a center scintillating-fiber tracker

(CFT) and a silicon microstrip tracker (SMT) inside a 2 T solenoidal magnet. The latter two

components were added during the 2006 upgrade, when the radiation damaged CFT was also

replaced. The magnetic field allowed for track-based momentum measurement of charged

particles, used to calibrate the calorimeter and identify electrons via the energy-momentum

(E/p) ratio. The CTD provided vertexing with a high resolution of 35µm and tracking

information for leptons and jets which was also used for triggering (see Section 2.4).

2.3.1.1 Silicon Microstrip Tracker

The Silicon Microstrip Tracker (SMT) was designed to have almost as much cov-

erage in η as the calorimeter and muon systems. Its length corresponded to the size of the

≈ 25 cm interaction region. As seen in Figure 2.3, the central portion is divided lengthwise
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Figure 2.2: Cross-sectional view of the D0 detector in the x − z plane. The main focus is

the central tracking cystem, but the solenoid, the preshower detectors, luminosity monitor,

and the calorimeters are also shown[5].

Figure 2.3: The silicon microstrip tracker[5].
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into six “barrels” with centers at z = 6.2, 19.0, and 31.8 cm. Each barrel is capped with a

flat “F-disk” on the high-z end, at 12.5, 25.3, and 38.2 cm. There are three more F-disks in

front of and behind the central barrel region, at z = 43.1, 48.1, and 53.1 cm. Finally, there

are four large-diameter “H-disks” at z = ±100.4 cm and z = ±121.0 cm, the far-forward

and far-backward regions of the SMT. The disks and barrels can track particles in the r− φ
plane, while only the disks can track particles in the r− z plane. The barrels each have four

layers of silicon sensors in a “ladder” configuration; the inner two layers have 12 ladders each

while the outer two layers have 24 ladders each, for a total of 432 ladders. The F-disks are

composed of 12 double-sided wedge-shaped sensors each, for a total of 144 F-wedges, and

the H-disks are composed of 24 back-to-back pairs of single-sided “half-wedges”each, for a

total of 96 full H-wedges. The trapezoidal wedges overlap as they are arranged around the

disks, resulting in a 30◦ stereo angle for the F-disks and a 15◦ stereo angle for the H-disks.

2.3.1.2 Central Fiber Tracker

The CFT consisted of 2 inner cylinders 1.66 m long and 6 outer cylinders 2.52 m

long arranged as in Figure 2.2. It surrounded the SMT, occupying the radial space from 20

to 52 cm. The outer cylinder covered η . 1.7 (the inner cylinders covered a somewhat larger

range). Each of the 8 cylinders supported one doublet layer (Figure 2.4) of 835 µm diameter

fluorescent dye doped polystyrene (PS) scintillating fibers oriented along the beam direction

(the “axial”, or “z”-, layer) and an additional doublet layer oriented at a ±3◦ angle relative

to the first layer (the “stereo”, or “u”-(positive φ)/“v”-(negative φ) layer). The cylinders

alternated between u- and v- layers, with an innermost u-layer. The scintillating fibers were

coated with 90% reflective sputtered aluminum coating one one end and the other end was

coupled to 7.8-11.9 m long clear (undoped) PS fiber waveguides which led to visible light

photon counters (VLPCs)2. About 200 km of scintillating fiber and 800 km of clear fiber

was used in the CFT! The CFT had an inherent doublet layer resolution of ≈ 100µm as

long as individual fiber positions were known to 50µm. The fast L1 hardware triggered (see

section 2.4.3) on discriminator signals from the axial doublet layers, such as number of track
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Figure 2.4: The curved scintillating fiber ribbon fabrication process. A 1/16” thick was

prepared with precisely spaced (between 928 and 993 µm, depending on the radius of the

corresponding support cylinder) grooves, the ribbon was attached to a curved backing plate

of the appropriate radius, and 256 fibers are inlaid in an offset double layer. Note that not

all 256 fibers are shown, and that there was also a top layer holding the fibers in place[5].

candidates above specified pT thresholds (min 1.5 GeV/c)). The L2 trigger also used track

candidates, and if the event passed L2 triggering, the full CFT readout information was read

out.

2.3.2 Solenoidal and Toroidal Magnets

The D0 toroid system, which was part of the muon system already in place during

RunI, consisted of one central and two end toroids, as shown in Figure 2.6. The central toroid

was a square annulus 109 cm thick, with an inner surface about 318 cm from the beamline,

2The n = 1.59 polystyrene fibers (PS) were doped with 1% (by weight paraterphenyl (PT) (an organic
flourescent dye) and 3-hydroxyflavone (3HF) (a wave-shifter dye) at 1500 ppm. Excitations in PS were
transferred to the PT via non-radiative dipole-dipole interaction. PT fluoresces at ca 340 nm with decay
time of a few ns. The mean free path in PS at this wavelength is only a few hundred microns, but 3HF
picks up the light and reemits it as 530 nm light, which is readily transmitted through the fiber. The PS
fibers were double-clad, with a 25µm inner layer of n = 1.49 polymethylmethacrylate (PMMA), and a
25µm outer layer of n = 1.42 fluoro-acrylic. The PMMA inner layer was a mechanical interface between
the inner core and outter cladding, which were mechanically incompatible. The scintillating fiber had an
attenuation length of 5m and the clear fiber an attenuation length of 8m.
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Figure 2.5: A CFT fiber ribbon mass terminated via a v-groove connector. Light transmission

between this connector and the waveguides is 95% with optical grease[5].

and covered region |η| . 1. It was constructed in three sections - a center bottom section,

and two C-shaped side sections. It was wound with 20 coils of ten turns each. The two end

toroids, also square, occupied the spaces with 454 ≤ |z| ≤ 610 cm. The inner surfaces were

about 91 cm from the beam line, and the outer surfaces 426 cm from the beam line in x and

y. The toroids were operated in series during RunI and RunII, and during RunI a current of

2500 A was used, and the magnetic fields in the central and end toriods were 1.9 and 2.0 T.

During RunII, because momentum could now be measured in the central tracker, the current

was decreased to 1500 A, with a magnetic field decrease of 6%.

The D0 superconducting solenoidal magnet, added during the upgrade prior to

RunII, was designed to optimize momentum resolution δpT/pT and tracking pattern recog-

nition based on RunI detector constraints. At 2.73 m long and 1.42 m in diameter, it

maximized use of the available space inside the CC. It was as thin as possible to maximize

the available tracking volume, and to optimize the performance of CPS detector, was one

radiation length in thickness at normal incidence (η = 0). It was designed to operate safely

and stably at either polarity, both for cancellation of systematic uncertainties and for asym-

metry measurements. Two layers of superconductor windings (in ribbons, each containing

18 superconducting strands as seen in Figure 2.7) were necessary to achieve the required

current of 4749A for the intended 2.0 T central field (only a 1.9 T field was used at run

time, since a cracking noise was heard when the magnet was operated full intensity [43]),

and field uniformity was maximized by appropriately increasing the density of the windings
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Figure 2.6: A cut-away view of the D0 solenoid inside the central calorimeter. Only one

end calorimeter and parts of the muon chambers and toroid system are shown. Note the

positions of the central beam, support platform, service chimney, and control dewar[5].

(by narrowing the ribbons) at the ends of the coil.

2.3.3 Muon System

The D0 muon system consisted of the central muon system, covering |η| . 1.0, and

the forward muon systems, covering 1.0 . |η| . 2.0. All had three layers of drift chambers,

an A layer outside the calorimeters and inside the toroids, and a B and C layer outside the

toroids. The drift chambers were made of rectangular extruded aluminum tubes, and were

typically 2.8× 5.6 m2. The drift tubes were filled with a gas of 84% argon, 8% methane, and

8% CF4, which was exchanged and filtered at a rate of three volumes per day. The central
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Figure 2.7: Cross sections of the two superconducting ribbons used in the solenoidal magnet.

The narrower ribbon was used at the end of the coil, to increase the current density there[5].

muon system used proportional drift tubes (PDTs) that had been used in RunI, while the

new forward muon system used mini drift tubes (MDTs). Approximately 55% of the central

region was covered by three layers of PDTs, and close to 90% was covered by at least two

layers. The A- and C-layer of the central muon system and all layers of the forward muon

system were equipped with scintillation counters. The 630 in the central muon system were

“Aφ Counters”, and the 4214 in the forward regions were “Pixel Counters”. The muon

system also included a “cosmic cap” and “bottom” scintillation counters, for the purpose of

detecting and discriminating against cosmic ray muons at the trigger level. The scintillation

counters of the muon system were calibrated and monitored by an LED-based pulser system.

2.3.4 Forward Proton Detector

The purpose of the FPD was to detect elastically scattered protons and antiprotons,

track them (with a position resolution of 130 µm), and measure their momentum. The

Forward Proton Detector (FPD) consisted of 18 position detectors arranged as in Figure

2.9. As seen in Figure 2.10, each position detector contained three pairs of scintillating fiber

layers, one oriented vertically and two at ±45◦ from vertical. The fiber stack in a single

layer of a pair was offset with respect to that of the other layer to provide full coverage. The
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Figure 2.8: A side view of the D0 magnetic field in kG. Both the toroidal and solenoidal

magnets are at full current (1500 A and 4749 A, respectively). The fields in the central and

end toroids are ≈ 1.8 and ≈ 1.9 T, respectively. Note the top to bottom asymmetry in the

field. There is also asymmetry in the x direction. These asymmetries were not desired, but

were unavoidable due to structural support requirements in the detector[5].

scintillating fibers were read out into 16-channel multi-anode photomultipliers (MAPMTs).

The position detectors also each contained a layer of trigger scintillator, read out into a fast

photomultiplier tube. The muon LED system was also used to calibrate the FPD.

The position detectors could be moved, via “Roman pots”, in and out of the ultra-

high vacuum inside stainless steel “castles” which resided in the beam line, and of which there
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Figure 2.9: The Forward Proton Detector layout. Quadrupole castles are designated with a

three-symbol code: P (A) when on the p (p̄) side; a number designating the station location;

U for up, D for down, I for in, O for out. D1I and D2I are the dipole castles[5].

were six as described in the caption of Figure 2.9. The quadrupole castles (Figure 2.11) were

connected to the ultra-high vacuum of the beam pipe via bellows, and their position could be

adjusted in all directions over a range of 15 mm with an accuracy of 0.1 mm. The detectors

in their pots were separated from the beam pipe vacuum by 200µm-thick stainless steel

windows.

2.3.5 Luminosity Monitor

The Luminosity Monitor (LM) was situated at the high η region for maximum

sensitivity, catching particles deflected in the softest of interactions. For a valid luminosity

signal, at least one in-time hit in both north and south Luminosity Monitors was required.

In addition to measuring luminosity, it provided fast vertex estimation and a halo veto. The

vertex estimation was calculated via zv = c
2

(t− − t+), where t+ and t− were the times-of-

flight for particles hitting the LMs at z = ±140 cm. The LMs had a temporal resolution of

about 0.3 ns, mainly due to light path variation across the scintillator. Beam-beam collisions

required hits in the temporal window 6.4 ns around the interaction point (IP), or zv . 100 cm.

At about three times the size of the typical luminous region (|zv| . ±40 cm), this would catch

nearly all pp̄ collisions. Beam halo particles tended to have t− − t+ ≈ 9 ns, or |zv| ≈ 140 cm
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Figure 2.10: Forward Proton Detector scintillating structure composition and connection to

the multi-anode photomultiplier[5].

(although in this case, technically there was no vertex). These were automatically eliminated

by the zv . 100 cm requirement. More than six halo particles per bunch crossing would result

in a halo veto, as in this case the detector would be too noisy for an accurate luminosity

measurement. All other crossings were called “live crossings” and sent to the L1 trigger.

The LM was considered to be “Level 0” of the D0 trigger system[24].

The LM had a coverage of 2.7 < |η| < 4.4 and consisted of two arrays of scintillation

counters attached to the D0 ECs, as seen in figure 2.12. There were 24 wedges per array, read
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Figure 2.11: FPD quadrupole castle[5].

Figure 2.12: The location of the LMs in the D0 detector[5].
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Figure 2.13: The geometry of the LM counters, including the locations of the PMTs (solid

dots)[5].

out to PMTs mounted directly on face of scintillators, as seen in figure 2.13. The LM had

no magnetic shielding, and was in a 1 T field when the solenoid was on; this reduced its gain

by a factor of ≈ 30. This close to the beam, the PMTs were irradiated by ≈ 25 krad/fb−1,

so instead of borosilicate glass, fused quartz windows which are much less susceptible to

radiation, were used. The scintillator itself was irradiated by up to ≈ 300krad/fb−1 at the

inner edge. This would degrade the scintillator somewhat, and ≈ 10% light loss was expected

after ≈ 3 fb−1. The scintillation counters were held in light-tight enclosures, two per LM (east

and west), with twelve counters per enclosure. They were read out to preamps with 5× gain

inside enclosure. The enclosure was purged with nitrogen gas to protect them from helium

to which borosilicate glass is permeable.
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2.3.6 The D0 Calorimetry System

The D0 calorimetry system consists of three sampling calorimeters, including the

inter-cryostat detector attached to the endcaps.

2.3.6.1 Liquid Argon Calorimeters

There were three liquid-argon (LAr) calorimeters, each inside its own cryostat main-

tained at 90.7±0.1 K. The central calorimeter (CC) covered |η| . 1.0 and the north and south

endcap calorimeters (ECN and ECS) extended the coverage to |η| ∼ 4.0. Each calorimeter

contained an electromagnetic section followed by fine and coarse hadronic sections (FH and

CH). The CC and endcap (EC) EM calorimeters used, respectively, 3 mm and 4 mm plates

of nearly pure depleted uranium as absorbers, while the FH used 6 mm plates of uranium-

niobium 2% alloy and the CH used 46.5 mm plates of copper/steel in the CC/EC. The signal

boards in all but the smallest angle modules in the EC are made of two sheets of 0.5 mm

G-10 fiberglass, sandwiching an inner copper layer milled into a segmented readout pattern.

The small angle monolithic EM and hadronic modules have single multilayer printed circuit

boards to avoid the significant dead regions that would occur with individual signal boards

per cell. The absorber plates are grounded and the signal boards are held at a positive high

voltage, typically 2.0 kV. The LAr gap between the absorber and the signal board is 2.3 mm,

with approximately 450 ns electron drift time. A schematic of a typical cell can be seen in

Figure 2.14.

The cells were arranged in“pseudo-projective” towers with the centers of cells lying

along projective rays and the cell boundaries are perpendicular to absorber plates, as seen

in Figure 2.16. The resulting offset of subsequent layers of cells provided hermiticity. The

projective sizes of the towers in the EM and hadronic modules were ∆η = 0.1 and ∆φ =

2π/64 ≈ 0.1, except at larger η, where cell sizes were increased to avoid tiny cells, and at

the third layer of the EM modules which were located at the typical EM shower maximum,

and therefore twice as finely segmented in both η and φ for more precise location of shower
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Figure 2.14: Schematic view of the absorber plates (grounded), signal boards (connected to

high voltage), and liquid argon gap in the calorimeter. Several unit cells are ganged together

to form a single readout cell[5].

centroids. The transverse sizes of the readout cells were in general comparable to transverse

size of showers: 1-2 cm for EM showers and 10 cm for hadronic showers.

The CC and EC EM calorimeters each had four layers, from inside to outside, the

CC layers were 1.4, 2.0, 6.8 and 9.8X0 thick (where X0 is the radiation length), and the EC

layers were 1.6, 2.6, 7.9, and 9.3X0 thick. In addition, the material in front of the CC had

thickness 4X0 while in front of the EC at η = 2, there was 4.4X0 of material. In the CC, the

thicknesses of the three FH and single CH hadronic layer were, respectively, 1.3, 1.0, 0.76,

and 3.2 λA thick (where λA is the nuclear interaction length). In the EC (see Figure 2.15),

both the FH and CH inner module had inner and outer radii of 3.92 and 86.4 cm. The FH

portion had four readout cells, each 1.1λA thick, and the CH had a single readout cell 4.1λA

thick. The middle EC hadronic module had four FH cells, each 0.9λA thick, and a CH single

readout cell 4.4λA thick. The outer EC hadronic module had stainless steel absorber plates
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Figure 2.15: Cutaway, isometric diagram of the structure of the D0 central and end

calorimeters[5].

of total thickness about 6λA, inclined at 60◦ with respect to the beam axis, as seen in Figure

2.16.

2.3.6.2 Inter-Cryostat Detector

Due to the geometry of the three separate cryostats holding the detector compo-

nents, there was incomplete coverage in pseudorapidity region 0.8 < |η| < 1.4. In addition,

there was substantial unsampled material in this region which by starting showers early de-

grades the resolution of energy measurements. To remedy this, extra sampling layers called

“massless gaps” were attached to the external surfaces of the end cap calorimeters, in front

of first layer of uranium. Whereas in RunI the full 0.8 < |η| < 1.4 was covered, space was

needed for SMT and CFT cabling in RunII, so the size of the extra sampling layers was

decreased to cover region 1.1 < |η| < 1.4. These extra layers formed modules called the
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Figure 2.16: Side view of one quadrant of the D0 calorimeter, showing the calorimeter

segmentation and tower definition in the CC and EC. Lines of constant pseudorapidityshow

the (ηdet) coverage of cells and projected towers. The solenoid and tracking detectors can

also be seen in the inner part of the detector[6].

Inter-Cryostat Detectors (ICDs), one on each endcap. They were composed of 12 0.5” thick

scintillating tiles, as shown in Figure 2.17, each covering ∆η×∆φ ≈ 0.3× 0.4 and separated

via epoxy filled grooves into 12 ∆η ×∆φ ≈ 0.1× 0.1 subregions, as seen in Figure 2.18.

Each subtile was read out via two 0.9 mm wavelength shifting fibers, and a third

fiber, used to inject light during calibration, was also attached. These fibers ran in a 3.5mm

groove along the outside edge of the subtile, and were in turn mated to 1.0mm clear optical

fibers at outer radius of the tile. These clear fibers passed through a light tight “fiber

backplane” and iron block (for magnetic shielding) into a drawer in a low magnetic field
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Figure 2.17: The ICD tiles are radially arranged on the surfaces of the endcap cryostats.

The iron block and fiber backplane assemblies which contain the ICD electronics and PMTs

are shown on each side[5].

region where they terminated in the photocathodes of PMTs.

2.3.6.3 The Central and Forward Preshower Detectors

The Central and Forward Preshower Detectors (CPS and FPS) performed both

tracking and calorimetry, enhancing spatial matching between tracks and calorimeter show-

ers, and aided in electron id and background rejection during triggering and offline reconstruc-

tion. CPS and FPS signals could be used for offline correction of EM energy measurement

from losses in the solenoid and other upstream dead material. The axial layers were used to

provide fast energy and position measurements which could be included in the L1 trigger,

and all three layers could be used in L2 and L3.

Each preshower detector was made of sheets composed of 1280 parallel strips of
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Figure 2.18: Diagram of the subdivision of an ICD tile. The WLS fibers are embedded along

the edges of each of the twelvetrapezoidal subtiles[5].

scintillator.3The scintillator strips had a triangular cross section and were interleaved as

shown in Figure 2.19, and sandwiched between 1/30 inch stainless sheets. The overlap

and lack of dead space between strips allowed for improved measurement via strip-to-strip

interpolation. Each strip had a wavelength shifting (WLS) fiber at its center, to collect

and carry light to the end of the strip, where the fibers were grouped in bunches of 16 and

connected to clear lightguide fibers going to VLPC cassettes. The WLS fibers split at z = 0

and read out from each end resulting in 2560 readout channels per layer - eighty sectors

of sixteen-fiber groups. As in the CFT (2.3.1.2), the WLS and clear fibers were 835µm

diameter multiclad fibers.

3The strips were extruded polystyrene plastic doped with 1% p-terphenyl and 150 ppm diphenyl stilbene
(similar to Bicron BC-404 scintillator). For optical isolation they were machine wrapped with aluminized
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Figure 2.19: End view of the layout of the CPS and FPS scintillator strips, showing the cross

sectional structure of the strips. The embedded wavelength-shifting fibers run through the

centers of the strips, perpendicular to the page, as denoted by the circles[5].

The central preshower detector (CPS) had three concentric cylinder layers of the

scintillator sheets in an axial-u-v geometry (with a u stereo angle of 23.774◦ and a v stereo

angle of 24.016◦) in the 5 cm gap between the solenoid and the central calorimeter, with an

inner radius of 28.25 inches and an outer radius of 29.21 inches. The CPS covered |η| < 1.3.

Each layer was divided into eight 45◦ octants, of which an “unwrapped” view can be seen in

Figure 2.20.

Outside the solenoid and inside the CPS was a lead radiator cylinder, 7/32 inches,

or approximately one radiation length, thick, 96 inches long, covering η < 1.31. The lead was

covered with a layer of stainless steel, 1/32 inches thick, and 103 inches long. The solenoid

itself was 0.9 X0 thick, for a total of approximately two radiation lengths before the CPS at

mylar and the ends were painted white to enhance reflectivity.
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Figure 2.20: View of the CPS if it were unwrapped in a plane. Each rectangular (trapezoidal)

module forms one octant of the corresponding axial (stereo) layer. The stereo octant edges

align precisely with the axial octant edges[5].

normal incidence (η = 0), increasing to four radiation lengths at larger angles.

The North and South forward preshower detectors (FPS) were mounted on the

spherical heads of the endcap calorimeters, between the LMs and the ICDs, and were shaped

to conform to the calorimeter geometry. Each had coverage of 1.5 < η < 2.5. Each FPS

had two layers of scintillator, each layer consisting of two planes, each divided into 8 22.5◦

wedges of active material alternating with 8 wedges of inactive material, and the active

material wedges in one layer are offset from those in the other layer so that there are no φ

cracks. The active material itself is composed of two sublayers of nested scintillator strips

with a stereo angle of 22.5◦ with respect to one another.also Between the two layers was a

2X0-thick absorber divided into 48 wedges covering 7.5◦ and weighing approximately 5 lbs.

each. Each wedge consisted of a 2/8”-thick stainless-steel supportive plate sandwiched by

two plates of lead.

The upstream layer was known as the “minimum ionizing particle” (MIP) layer

- it measured the (η,φ,z) location of charged particle tracks from their minimum ionizing

signal. It covered 1.5 < |η| < 2.5. The downstream layer was known as the “shower

layer”. The lighter particles, including chargeless particles such as photons, would shower

in the absorber producing an energy cluster, typically about three strips wide, which was
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Figure 2.21: One φ-segment of a FPS module. Two large and two small modules, each

consisting of overlapping u − v MIP and shower layers, surrounded the lead and stainless

steel absorber. Only one large and one small module is shown[5].

measured and matched with MIP signal, while heavier particles which do not shower so

readily would usually deposit a MIP signal in the downstream layer as well. The absorber

and the downstream layer covered 1.65 < |η| < 2.5. Note that the region 1.5 < |η| < 1.65

of the FPS, covered by the MIP layer but not the absorber or the downstream layer, was in

the approximately 3X0 thick shadow of the solenoidal magnet coil.

2.3.6.4 Calorimeter Readout System

There was a total of 47,032 calorimeter electronics channels (of the 55,296 available)

connected to the physical readout modules in the cryostats. Timing was crucial due to the

bunch crossing time of 396 ns and the electron drift time of 450 ns. The system was upgraded

before RunII to cope with the significant reduction in the Tevatrons bunch spacing, and could

handle a minimum bunch crossing time of 132 ns (or 7.57 MHz). There were three stages of
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readout:

1) ”Front end electronics”: Detector signals were transported to preamps located on

the cryostats via low-impediance (30 Ω) coaxial cable - these had been replaced for RunII to

match (30 Ω) preamp input impedance, and to equalize lengths to minimize spread of signal

arrival times. The preamps were “transimpedance” - charge to voltage hybrid amplifiers, and

two pre-amp gain paths - ×1 and ×8 - were available to increase dynamical range. The 55,296

preamps were contained in twelve boxes with ninetysix motherboards per box, and fortyeight

preamps per motherboard. Because access to these boxes were limited, there were two low

noise commercial power supplies per box, a primary plus a backup. Because the calorimeter

cells varied in impedance, fourteen species of preamp were required to give approximately

the same output waveform for all cells. The motherboards were printed in eight layers,

which were separated by solid copper ground or power planes to minimize noise pickup and

cross talk. The motherboards also housed 10 kΩ and 20 kΩ 0.1% precision resistors used

for calibration voltage pulses, with six preamps pulsed at once. These electronics were all

magnetically shielded from the local residual magnetic field of a few hundred gauss.

2) “Signal shaping and trigger pickoff”: A single preamp output was the integral

of the detector signal, with a rise time of ≈ 450 ns and a recovery of 15 µs. The outputs of

the preamps were transported via twisted-pair cables to analog signal shaping and storage

circuits on baseline subtractor (BLS) boards. The BLS removed low frequency noise and

minimized pileup by using only the first 260 ns of charge (about 2/3) collected by the preamp

for signal shaping. This was converted with a shaper circuit to a unipolar signal with peak

at ≈ 320 ns and recovery time of 1.2 µs. The converted signals were sampled every 132 ns

(for three samples per bunch crossing), including a sample at the ≈ 320 ns peak. Baseline

subtraction was accomplished by subtracting the signal from three samples (396 ns) earlier.

After subtration, the signal was digitized by a 12-bit successive approximation ADC. Because

of uncertainty in the subtraction, large negative energy signals could occur; this happened

more in RunII than in RunI due to increased pileup, so much so that in RunII, there was

an explicit luminosity dependence of some calorimeter based measurements. At the shaper
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Layer Pedestal RMS (ADC) Pedestal RMS (MeV)

CC(EM1) 3.1 48

EC(EM1) 3.2 50

CC(EM3) 2.0 25

CC(FH1) 6.6 80

CC(CH) 6.4 297

Table 2.1: Some typical calorimeter pedestal RMS values, given in ADC units and MeV[43].

inputs, faster shaped analog sums of the signals from 0.2×0.2 trigger towers were also picked

off (via resistor packs on BLS boards) to provide prompt inputs to the L1 and L2 calorimeter

trigger system. The resistor packs were configured based on a sampling weight optimization

study maximizing 1) electron resolution and 2) jet resolution, for the channels included in the

trigger (CH sections did not contribute). The BLSs used switched capacitor arrays (SCAs)

as analog storage devices; these held the signals for ca 4µs until the L1 trigger decision was

made, and could hold them up to 25 ms longer (on average 2 ms) for a L2 decision.

3) Digitization: the precision BLS signals were transmitted via analog bus, driven

by analog drivers, over 130 m of twisted pair cable to the analog-to-digital converters (ADCs).

The digital signals entered the data acquisition system for the L3 trigger decision and storage

to tape.

Between stores, values of calorimeter pedestal signals were measured, with RMS σ

(due to thermal noise) a function of the capacitance of each cell. For some typical pedestal

values, see Table 2.1 The pedestal was subtracted from each readout signal. For most events,

a 1.5σ zero-suppression was applied to all cells. During reconstruction, only signals with

positive energies above 2.5σ were kept, and at a later stage, the high-level T42.5 algorithm

further suppressed energies above 4σ unless the cell was a 3D neighbor of another cell above

4σ.
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Driven by a special trigger based solely on the accelerator clock, the calorimeter

was also sampled sequentially in each tick with a bunch crossing at constant low exposure;

these zero-bias events were collected without any zero-suppression.

2.3.6.5 Anomalous Currents

During run time, the response of the calorimeter detectors would vary due to anoma-

lous currents, of which there were two significant sources. One was due to high currents in

the detectors during periods of high luminosity causing a decrease in the voltage drop across

the liquid argon gap, the other from “dark current” due to insulating buildup on absorber

surfaces.

An insulating layer of uranium oxide would form on the absorber surfaces during

manufacture, and these layers collected argon ions in the detector. As the layer of argon ions

built up, the field across this layer increased the number of electrons tunneling through the

oxide into the gap and thereby increased the current in resistive coats. Known as the “Malter

process”, this effect was first seen in aluminum oxide at room temp (resisitivity 1.0× 1014 Ω

cm), with a rate comparable to that of uranium oxide at 83K, (resistivity 1.4× 1016 Ω cm).

When the current became high enough, the ions were quenched, and the process began anew.

The Malter effect, plus the effect of high luminosity currents across the high resistiv-

ity coating of the signal boards, led to luminosity dependence in the liquid argon calorimeter

gain. There was also an η dependence as well, due to the voltage being fed from corners of

calorimeter modules.

Understanding the behavior of these anomalous currents is crucial to a proper

calibration of the calorimeters.

2.4 Triggering

The D0 trigger system was composed of hardware and software modules which

sampled information from the various detector subsystems, and decided, based on this infor-

mation, when to record detector data in high detail. It had three levels, with each successive
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level examining fewer events in greater detail. The Level 1 trigger (L1) had an average ac-

ceptance rate of 2 kHz (though in RunII, L1Cal could exceed 10kHz), the Level 2 trigger

(L2) accepted events at a rate of 1 kHz; all data blocks for accepted events were fully digi-

tized and sent to the Level 3 (L3) “farm” of microprocessors with sophisticated algorithms

which performed fast reconstruction of high level objects on which decisions were based. L3

events were accepted at 50 Hz and these events were recorded for offline reconstruction. Due

to their high acceptance frequency, L1 and L2 minimized deadtime with FIFO pipelining

of event data awaiting a L2 decision or being transferred to L3 farm. Overall coordination

and control of the triggering system was handled by the D0 central coordination program

(COOR). COOR coordinated all trigger configuration and programming requests. Global

trigger lists, containing requirements and parameters for all triggers used by the experiment,

were specified using this application as were more specific trigger configurations (many of

these would operate simultaneously) used for calibration and testing[5].

The trigger framework (TFW) collected single-bit signals4 of which there were a

maximum of 256 - from all the L1 trigger outputs of various detector modules. Using

global D0 timing and control signals it coordinated these signals to form a maximum of

128 trigger terms (each with a separate associated programmable “beam condition” trigger

requirement), decided whether or not to accept a particular event for further examination.

Individual triggers could be combined to create more complex triggers. Whereas RunI only

allowed for hardware “AND”ing of device outputs for individual L1 trigger terms, Run II

also used software to create “pseudoterms” including “OR” operations at the L1 level. This

allowed sharpening of trigger curves and reduction of combinatorial backgrounds and thus

low pT triggers. The TFW was also responsible for prescaling5 and vetoing events. The

trigger control computer (TCC) was in charge of setting up initializing the TFW before each

run.

4These single-bit signals are referred to as “primitives” by the author’s advisor.
5i.e. reducing the recording rate of very frequent events by simply ignoring some fraction of them.
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2.4.1 Level 1

For the L1 calorimeter trigger (L1CAL), triggering depended in part on the fast

pickoffs (see Section 2.3.6.4) of the following values:

• Global variables:
∑
ET (sum of all tower ET s) and/or /ET , each with four thresholds.

• Local variables: counts of single EM and EM+H towers exceeding four possible thresh-

olds. There were two EM count limits and four EM+H count limits.

• Large tiles: counts of partial sums (covering 4×8 trigger towers, or 1.28 in η×φ space)

of tower ET , exceeding four possible thresholds. There were two EM+H count limits.

The L1 forward proton detector trigger (L1FPD) checked for small-angle scattered

protons or antiprotons from diffractively-produced events. Coincidences in hits between both

position detectors in a single FPD spectrometer might correspond to a single diffractive event,

while two coincidences in a back-to-back configuration might signify elastic diffraction, and

other two-spectrometer configurations might signify double pomeron production - any of

these could cause an L1 trigger. Hits with large multiplicities were rejected since these were

most likely from the beam halo.

The central track trigger (L1CTT) used field programmable gate arrays (FPGAs)

with fast discriminator data from the CFT, CPS and FPS to reconstruct the trajectories

of charged particles by comparing CFT hits with 20,000 predefined track equations and

matching CFT tracks with CPS clusters, as seen in figure 2.22. Triggering decisions are

based on momentum thresholds and cluster requirements. This trigger was optimized for

making fast decisions at the L1 level using the CFT/CPS axial layers and the FPS, but the

electronics also stored event data such as sorted lists of tracks and preshower clusters for

later L2/L3 readout, or for use as seeds by other D0 trigger systems. L1CTT has a maximum

latency of 2.5µs.
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Figure 2.22: Transverse schematic (CPS is further from the CFT than shown, see Figure

2.2) view of a single 4.5◦ sector of the full CFT and CPS (see lower left of figure). A track is

overlaid on the eight CFT axial doublet layers and CPS axial layer. The L1 trigger requires

a match to a predefined equation with a fiber hit on all eight CFT axial layers and a CPS

cluster match[5].

The L1 muon system trigger (L1Muon) used FPGAs to compare output from 60,000

muon channels (wire chambers and scintillation counters) and up to 480 tracks from L1CTT

for every bunch crossing and search for patterns consistent with muons. L1Muon had a

latency of about 3.20µs[23].

2.4.2 Level 2

The L2 trigger could handle input rates of up to 10 kHz and had a maximum accept

rate of 1 kHz. It had preprocessors for each detector subsystem to form higher quality physics

objects and a global processor (L2Global) which integrated data and tested for correlations

in physics signatures across detector subsystems. Events which passed L2 were tagged for

full readout and further analysis in the L3 trigger.
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The L2 calorimeter trigger (L2Cal) preprocessor identified jets, electrons, and pho-

tons, and calculated event /ET from using the ET data from the 2560 calorimeter trigger

towers. Jet cluster energies were measured from groups of 5 × 5 calorimeter trigger towers

centered on seed towers from L1, with algorithms for separating or discarding overlapping

jets. The list of jets was passed to L2Global. The energies of electrons and photons were

measured by summing the ET of the seed tower with the ET of the highest energy neighbor

tower, and comparing it with the energy of a 3 × 3 tower centered on the seed tower to

reduce background. Electron candidates were sent to L2Global. The /ET algorithm could

use different tower ET thresholds and η ranges.

The L2 Muon trigger (L2Muon) used calibration and more precise timing informa-

tion to improve the quality of the muon candidates. It received the L1Muon output and

data from approximately 150 front-end modules (from the PDTs, MDTs, and the scintil-

lation counters). The muon candidates contained the track pT , η and φ coordinates, and

quality and timing information.

The L2 preshower detectors trigger (L2PS) compared signals of early shower de-

velopment in the CPS and FPS with tracks and calorimeter clusters. At L2, CPS and FPS

were treated separately. CPS axial clusters were tagged by L1 with the presence (possible

electron) or absence (possible photon) of a CFT track. At L2, clusters in the other two stereo

layers of the CPS that lined up with the axial clusters were sought, and if found, the three

centroids were compared to produce an (η, φ) coordinate for the cluster. These coordinates

were binned to match up with calorimeter trigger towers with ∆η × ∆φ = 0.2 × 0.2. Any

preshower hit within 0.05 of a trigger tower was designated a calorimeter match. A similar

process of matching between preshower clusters and calorimeter towers was done with the

FPS and the EC.

The L2 central track trigger (L2CTT) used track information from the L1CTT

and refined the pT measurements using the additional hit and tracking information available

from the CFT at L2, with an optional mode to also use input from the L2STT (see below).

It determined the azimuthal angle with respect to the beamline, φ0, and calculated the
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expected azimuthal angle at EM3 due to the solenoidal magnetic field. Isolation values were

also calculated to help identify tau leptons. The L2 tracks were passed to L2Global sorted

by pT ; if input from L2STT was used, the list was also sorted by impact parameter.

The SMT did not provide trigger input until L2. The SMT track trigger (L2STT)

utilized the much finer spatial resolution of the SMT to improve the position and momentum

measurement of charged particle tracks found by the CFT. It used only the (r,φ) information

from three of the four layers of axial SMT strips together with the inner and outer layer of

the CFT to precisely measure the impact parameter of tracks. This measurement helped

identify long-lived particles, such as B hadrons, at L2.

2.4.3 Level 3

Level 3 triggering was performed in software, on a farm of commodity CPUs.

Physics objects are created with “object specific software algorithms” and triggering was

performed based on the following characteristics of these objects:

• Level 3 jets and electrons: The L3 jet tool used high precision calorimeter and vertex

data with a jet cone algorithm and rejection of hot cells to identify jets with high

efficiency, as can be seen in Figure 2.23. ET , EM/H fraction and transverse shower

shape were used to distinguish electrons from hadronic jets, achieving jet rejection

factors of 20-50.

• Level 3 muons: At Level 3, track-finding algorithms linked segments constructed

from wire and scintillator hits to identify three-dimensional muon tracks, which were

matched with tracks in the CFT. Cosmic ray muons were discriminated against based

on timing characteristics deduced from their velocities and candidate tracks, as well as

association with an incoming track.

• Level 3 /ET : At Level 3, the /ET was calculated in more detail, via individual cells in

pseudorapidity ring sums, and corrected for a non-(0, 0, 0) vertex when possible. This
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Figure 2.23: Efficiency of the L3 jet trigger as a function of the offline leading jet pT . Note

the turn-on due to the online selection cut of 15 GeV/c applied by the L3 filter. Statistical

errors are plotted, but for most points are obscured by the symbol[5].

provided e.g. stricter selection of top quark events and redundancy for selection of W

boson events.

• Level 3 tracking: At this level, more detailed information from the trackers was fed

through more complex algorithms. CFT tracks were fit in two steps, first to circular

arcs S in the r− φ plane, and then to “straight” lines in the S − z plane. SMT tracks

were fit to helical paths in a single step.

• Level 3 relational filters: At this level, the measurements from multiple physics objects

could be combined in any way to derive quantities such as invariant mass, relative angle,

and scalar ET sums. Additional selections were made based on these combinations.

The D0 single electron trigger, described in Section 2.4.4, was such a filter.
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Trigger L1 L2 L3

E1 SHT5 (v16) ET > 19 GeV ET > 25 GeV or ET > 25 GeV cut and

ET > 19 GeV and likelihood shower shape requirements

E1 SHT7 ET > 19 GeV ET > 25 GeV or ET > 27 GeV cut and

ET > 19 GeV and likelihood shower shape requirements

Table 2.2: Single EM triggers - from [19]

2.4.4 The D0 Single Electron Trigger

In collecting data for the W mass measuremnt, the D0 single electron trigger was

crucial. Two different unprescaled triggers were used E1˙SHT25 (v16) and E1˙SHT27. The

L1 and L2 stages of the two triggers were identical: a calorimeter electron cluster with

transverse energy greater than 19 GeV for L1, and a further cut at 25 GeV for L2, unless the

cluster satisfied a shape-based likelihood criterion (see Section 5.2.3.1). L3 however, could

vary. During the beginning of a store, when InstLumi was high, the experiment used the

E1 SHT7 trigger with L3 pT cut of 27 GeV to reduce QCD background and keep trigger rates

acceptable. Later in the store, when InstLumi decreased, the experiment used the E1 SHT5

trigger with L3 pT cut of 25 GeV.
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Chapter 3

MEASUREMENT STRATEGY

3.1 Event Characteristics

W and Z bosons are produced at the Tevatron mainly through valence quark-

antiquark annihilations with smaller contributions from the quark sea. The initial state

radiation is mostly soft gluons, but sometimes the gluons have enough energy to create

hadron jets; this leads to a long tail of bosons with high pT . After the collision, conservation

of momentum (which is zero in the transverse direction) means that the boson pT (measured

from its decay products) must be balanced by the collective transverse momentum of all

other event products (“hadronic recoil”).

Both W and Z production is exploited in the W mass measurement. As the mea-

surement sample we use the electron channel of the W boson decay, pp̄→ (W± → e±ν)+X,

and as the calibration sample we use the electron channel of the Z boson decay, pp̄ →
(Z → ee) + X. The size of the Z → ee sample is limited by its relatively small branch-

ing fraction BR (Z → ee) /BR (W → eν) = 0.31. Note that in this dissertation, “electron”

means “electron or positron” unless specifically noted.

Candidate W boson decay events are characterized by measurements of i) the trans-

verse electron momentum ~peT , ii) the transverse hadronic recoil ~uT , and iii) the missing

transverse energy, /~E
T

= − (~peT + ~uT ) (also referred to as “MET” in this dissertation), cor-

responding to the energy of the decay neutrino which escapes without leaving any signal in

the detector. Candidate Z boson decay events are characterized by measurements of i) the

transverse electron momenta pe1T and pe2T , and ii) the transverse hadronic recoil uT . Electrons

(and neutrinos) from W and Z boson decays typically have transverse momentum of about

half the mass of the decaying boson, and are well isolated in the calorimeter. Electrons may
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Figure 3.1: Schematic of transverse quantities from W → eν and Z → ee events in the D0

detector.

radiate one or more photons via final state radiation (FSR), or by bremsstrahlung in dead

material before the calorimeter. At the Tevatron, W and Z decays were the primary source

of high pT , isolated electrons, allowing for a clean sample selection.

The electron in a sample W candidate event (and at least one of the two electrons in

a Z candidate event) is required to have |ηdet| < 1.05, whereas the hadronic recoil is measured

from all other particles with |ηdet| < 4.2. Particles with |η| > 4.2 were not measured by the

calorimeters, but their contribution to the recoil transverse momentum is negligible. The D0

calorimeter provided a precise measurement of electron energies, with an average resolution

of 4.5% across the angular and energy spectrum of electrons used in the measurement.

3.2 Mass Measurement Strategy

We measure the W mass from distributions of the magnitudes of the following three

kinematic observables: i) the W transverse mass, mT , ii) the electron transverse momentum,
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peT , and iii) neutrino transverse momentum, /ET . Transverse quantities were used because, in

a pp̄ collision, the longitudinal momentum of the center-of-mass of interacting parton pairs is

undetermined due to the shape of the parton density function (PDF) at relativistic speeds,

and therefore, the longitudinal momentum of the neutrino is impossible to deduce. While in

theory longitudinal electron momentum information from the tracker could be used, for this

study, it was not.

Using three distributions measured from the same data sample increases the preci-

sion of the measurement - the less correlation between the different measurements, the more

powerful the combination of the results. The systematic uncertainties of the mT and peT

measurements are only weakly correlated: the mT spectrum is dominated by the detector

resolution via the recoil energy measurement, while the peT spectrum is mainly affected by

the transverse momentum of the W boson, and hence by the kinematics of the recoil system

and initial-state radiation, as seen in Figure 3.2. The /ET measurement is moderately cor-

related with the other two measurements and has a significantly worse resolution, but still

adds some precision to the measurement.

The measurement strategy is to compare the measured distributions to predicted

distributions whose shapes depend on MW , and determine MW from the best match. Because

of complicated detector acceptance, scaling, and resolution effects, the distributions of the

measured variables cannot be calculated analytically. Therefore, Monte Carlo simulations

with varied W masses must be used to generate test distributions, called “templates”. Very

high statistics of ≈ 109 events are necessary to characterize all the systematic uncertainties

with negligible statistical uncertainty. The detailed D0 detector simulation (FullMC) is too

slow to generate many samples of this size, and in addition it does not reproduce the detector

performance in data with sufficient precision to measure the W boson mass. Therefore,

a parameterized Monte Carlo simulation (FastMC) has been developed to generate large

samples on a reasonable time scale. To check that the FastMC is sufficiently accurate for the

measurement of the W boson mass, we test for “closure”, which means that when we perform

a test measurement of the W boson mass using FullMC data with FastMC templates, we
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Figure 3.2: The (a) peT and (b) mT spectra for simulated W bosons with various levels

of detector effects simulated. The solid lines show the spectra without detector resolution

effects for W bosons with transverse momentum pWT = 0. The shaded area shows the spectra

without detector resolution effects for W bosons with the range of pWT seen at the Tevatron.

The points show the spectra with detector resolution effects for W bosons with the range of

pWT seen at the Tevatron.

get the same value of the W mass out that the FullMC used to generate events.

An added benefit to the parameterized FastMC is that, while the FullMC does not

perfectly simulate data, the FastMC can be tuned to match the data even better than the

FullMC can. Therefore, we create two versions of the FastMC: one which is tuned with

information from the FullMC generated sample, and a modified version of the first tune

which is adjusted to match the data. The tuning procedure is described in detail in Chapter

7.

We mainly use Z → ee events (in FullMC and data) to determine the FastMC

parameters. For example, the EM calorimeter energy scale used for simulation is based on

a detailed study of the shape of the Z mass peak in data or FullMC. Since the calibration

depends on the Z mass which has been measured with high precision[3], the measurement

can be thought of as a measurement of the ratio of W to Z mass. Hower, since the W mass

is about 20% lower than the Z mass, care must be taken to ensure that the EM calorimeter
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energy scale is valid at the lower average energies of the W electrons. A FullMC simulation

of the Z → νν process is also used to aid in determination of some of the hadronic recoil

parameters, as described in Section 7.4.1.

Once the detector response is well parameterized, the W mass is determined with

a “binned likelihood” method. Distributions of the three observables, mT , peT , and /ET ,

are constructed from the data sample and from FastMC samples generated with a range

of input W masses in increments of 10 MeV. For each observable, the data distribution is

compared with the FastMC distributions (“templates”) for that observable by calculating

the log-likelihood using the Poisson probability that bin i which has mi template events

would have ni observed (data) events. The total likelihood is the product of individual bin

probabilities:

L =
N∏
i=1

e−mimni
i

ni!
(3.1)

and taking the negative natural logarithm gives

− lnL =
N∑
i=1

(−ni lnmi +mi + ln (ni!)) (3.2)

The fitting program MINUIT is then used to find W mass which maximizes likelihood, inter-

polating between the
(
mWi

,− lnL〉
)

pairs.

3.3 Blinding the W Mass to Avoid Bias

Because we do not want to bias our measurement procedure towards a particular

desired outcome of the W mass measurement, we use a blinding procedure by which we add

a random, recoverable number between ±2GeV to the mass in the process of the calculation.

This is performed in the code, so we do not see the value of the random number. This

allows us to perform studies of systematic effects (“sensitivity methods”). The same number

is added to the mass for both RunIIb3 and RunIIb4, so we can see tensions between the

measurements from the two samples despite the blinding. When we have developed our

measurement strategy to a satisfactory level, we “unblind” our measurement, recovering the

final value for the measurement of the W boson mass in data.
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3.4 Systematic Uncertainties

The effects of systematic uncertainties in the parametrization (see Chapter 7) on

the W boson mass are determined using an ensemble of pseudo-experiments simulated in

fastMC. To determine the systematic uncertainty on the W mass due to the uncertainty on a

given parameter, pseudo-experiments are generated in which that parameter is varied inde-

pendently in steps of multiples of ±0.5σ, where σ is the one standard deviation uncertainty

for the parameter under study) while holding all other parameters constant.

For each variation, MW is determined using the standard fit method comparing the

unmodified distribution to the templates generated by the pseudo-experiment. This yields

a value MWi
for each variation δi. The set of (δi,MWi

) pairs is fitted to a straight line. For

all systematic uncertainties in this measurement, we verify that the linear regime assumed

by this procedure is a valid approximation. The slope of the line determines the systematic

uncertainty in MW as in the usual error propagation:

σ2
MW

(X) =

(
∂MW

∂X

)2

σ2
X (3.3)

where σX is the uncertainty in the determination of the parameter X in the simulation. If

a set of parameters are correlated, then the uncertainty in MW due to the set of parameters

~X is

σ2
MW

(
~X
)

=
∑
i,j

(
∂MW

∂Xi

)
CX
ij

(
∂MW

∂Xj

)
(3.4)

where CX is the correlation matrix for the parameters ~X.

3.5 Conventions

A momentum vector ~p in the D0 standard coordinate is represented using a right-

handed Cartesian coordinate system, px, py, pz, where ẑ is the direction of the proton beam

and ŷ points upward. It is convenient to use a cylindrical coordinate system in which

the same vector is given by the magnitude of its components perpendicular to the beam

(transverse momentum) pT , its azimuthal angle φ, and pz. In spherical coordinates, the
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polar angle θ is sometimes replaced by the pseudorapidity η = ln
(
tan θ

2

)
. When refering to

instrumental effects, sometimes it is convenient to define ηdet as the pseudorapidity of the

particle determined as if it had been produced at the center of the calorimeter.

3.6 Additional Kinematic Variables

In Z → ee decays, the di-electron momentum is ~pee = ~pe1 + ~pe2 and the invari-

ant mass is mee =
√

2Ee1 · Ee1 (1− cosω), where ω is the opening angle between electrons.

When working with Z → ee data, it is useful to define a coordinate system in transverse plane

first introduced by UA2[12] and reproduced in Figure 3.3. These coordinates depend on the

electron directions, but not their energies. The η̂ axis is the inner bisector of the electron

momenta, and ξ̂ is perpendicular to η̂. These variables describe the balance of momentum

in events and are of particular use when determining final adjustments to the FastMC sim-

ulations (Section 7.4.5). For W → eν decays, to study the correlation between the recoil

system and the electron direction, one useful quantity is the projection of the recoil system’s

transverse momentum onto the direction of the electron transverse momentum: u‖ = ~uT · p̂eT ,

and another useful quantity is the magnitude of the remaining component, perpendicular to

the electron direction: u⊥ = ~uT · (p̂eT × ẑ). (See Figure 3.3) These quantities can also be

calculated for each electron from a Z → ee event. The u‖ observable, because it describes

the degree of “overlap” between electron energy and recoil energy, has significant correlation

with electron efficiency and energy measurement, and both u‖ and u⊥ distributions are used

to check the quality of the FastMC simulations.

Another useful quantity which reflects the total hadronic activity in the calorimeter

is the Scalar ET or SET: the scalar sum of all transverse energies in the calorimeter, except

electron energy. Its average value is correlated with the instantaneous luminosity (InstLumi).

Its significance is discussed in Section 7.2.4 and other parts of Section 7.2.
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Figure 3.3: (a) Definition of η and ξ axes for Z → ee events. (b) Definition of u‖ and u⊥.

The variable u‖ is negative when opposite to the electron direction. See Section 3.6 for more

information.
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Chapter 4

COLLIDER DATA, FULLMC SAMPLES, AND GENERATORS
FOR FASTMC

Some important aspects of the collider data and simulated data samples are dis-

cussed in this chapter. In the first section, we describe the data samples used to measure

the W mass and to tune the FastMC simulations. In the second section, we describe vari-

ous FullMC samples which are used to tune the FastMC simulations described in detail in

Chapter 7 and also used as mock data to test the accuracy and precision of our analysis

strategy. In the third section we describe the event generators which are used to simulate

the pp̄ collisions for the FullMC and the FastMC simulations.

4.1 Collider Data Samples

For this analysis, we use three main samples of events from the 3.7 fb−1 of collider

data, with special selections applied, called “skims.” The sample from which we measure the

W mass is called the “EM+MET” skim, the sample we use to tune our FastMC simulations

is called the “2EM” skim, and the sample we use to estimate background contribution is

called the “EMJET” skim. The selection requirements for the three skims, which are each

separated into a RunIIb3 and a RunIIb4 sample, are described below.

EM+MET:

• One EM object with pT > 20 GeV, |ηdet| < 1.2, and EMF > 0.9

• /E
raw
T > 20 GeV
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2EM:

• Two EM objects, each with pT > 20 GeV, EMF > 0.9, and ISO < 0.2

EMJET:

• One EM with pT > 20 GeV, |ηdet| < 1.2, EMF > 0.9, and ISO < 0.2

• One jet with pT > 20 GeV, |ηdet| < 0.8, or 1.5 < |ηdet| < 2.5, 0.05 < EMF < 0.95,

CHF < 0.4, HCR < 10, n90 > 10

Where EMF is the electromagnetic fraction, ISO is the isolation, CHF is the coarse

hadronic fraction, HCR is the hot cell ratio which is proportional to the fraction of hot cells

in the measurement cone, and n90 is the number of jets with 90% of the total pjet
T .

The last 3.7 fb−1 of data are split into a RunIIb3 and a RunIIb4 sample for each

skim.

4.2 FullMC Samples

FullMC events are created in two steps. First, the collision is simulated with a

particle physics simulator (the “generator”, which is described in Section 4.3). The output

of the generator is a list of the products of the collision(s), their particle ids, and their four-

momenta. Then, a full detector simulation processes this output, simulating the interaction

of the particles with the detector, in particular, the tracker and the calorimeter. The output

of the full detector simulation contains the tracker hits and calorimeter energy deposits, in

the same format as the output from a full collider run, so that the same reconstruction

process can be applied to FullMC as it is to collider data.
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4.2.1 Detector Simulation

GEANT (GEometry ANd Tracking) is a software package used for the simulation

of the passage of particles through matter using Monte Carlo methods with our current

best understanding of material physics. The D0 version is often referred to as D0gstar1.

The output of the generators - the list of particle four-vectors - are passed to GEANT, which

simulates their interaction with the detector. The output is passed to the D0sim2 software for

Analog-Digital Converter (ADC) simulation, resulting in the final sample on which “data”

reconstruction is performed.

We simulate the energy of other pp̄ interactions in the detector with an overlay of

non zero-suppressed Zero Bias (unzsup ZB) events from recorded collider data. To perform

the overlay for a given event, an unzsup ZB data event chosen randomly from a library of

unzsup ZB collider data events with the appropriate luminosity profile (indicated by LBN,

see Section 2.2), its raw cell energy is added to the raw cell energy from D0gstar, and the

sum is converted to ADC counts with standard zero-suppression applied (Section 2.3.6.4).

This energy is converted to calorimeter energy sums in the reconstruction process (Chapter

5).

Standard D0reco is used for the FullMC reconstruction with a primary vertex re-

constructed from the reconstructed charged particles as is done with collider data. For the

single electron/photon sample used for the geometrical energy correction and for the pho-

ton radiation studies (Chapter 6 and Sections 7.2.2 and 7.3.1), the transverse energies are

calculated using the generated primary vertex rather than the reconstructed vertex.

Table 4.1 describes the MC samples used in this study, including the corresponding

integrated luminosity. Note that for the simulated events, a much higher Integrated Lumi-

nosity (with the same InstLumi profile) is available, allowing for precise measurements for

tuning the FastMC and testing the analysis procedure. The Minimum Bias sample was pro-

1“GEANT Simulation of the Total Apparatus Response”
2Version 20.17.03 is used for RunIIb3 samples and version 20.19.02 is used for RunIIb4 samples.
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Process
∫ Ldt # Events Description

Z → ee RunIIb3: 43 fb−1 12.8 M Underlying Event Turned on

RunIIb4: 51.8 fb−1 15.4 M

W → eν RunIIb3: 20 fb−1 50.2 M Underlying Event Turned on

RunIIb4: 24 fb−1 60.4 M

Z → νν 10 M

10 M

Min Bias 54.7 M

53.6 M

Single Neutrino 21 M “ZB-only” sample

21 M

Single Electron Unknown

# Events

Table 4.1: The GEANT FullMC samples that were generated for RunIIb34.

duced from inelastic pp̄ events generated by PYTHIA and processed with GEANT. The Single

Neutrino sample, described in detail in Section 7.4.1, is used to calculate the hard recoil in

Z → ee events. ZB overlay is applied for all samples.

4.3 Event Generation for FullMC and FastMC

Events for the Full Detector Monte Carlo samples (FullMC) are generated with

PYTHIA version 6.409 and PDF lib CTEQ6L1. To generate the spectator particle interac-

tions (the underlying event), we use the “tune A” version of PYTHIA, verified by the CDF

collaboration using RunI data in 1987[53], with the standard initial-state radiation and final-

state radiation (FSR) are turned on.

The events are generated for the GEANT FastMC and the data FastMC in slightly

different ways.
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For the GEANT FastMC, which is used to simulate the GEANT FullMC, events are

generated in exactly the same way as they are for the FullMC (using PYTHIA)[20].

For the data FastMC, PYTHIA does not simulate the pT spectrum sufficiently. No

single generator includes complete QCD and EW corrections. Therefore, events are gener-

ated with RESBOS3 + PHOTOS[21]. At low boson transverse momentum, the pT spectrum is

dominantly driven by QCD emission of multiple soft gluons, described well by RESBOS. The

dominant electroweak (EW) effect is final state radiation (FSR) photons which originate

directly from the W decay, PHOTOS is run with a limit of two FSR photons, and the effect

of additional photons is absorbed into the calibration of the electron energy scale based on

Z → ee events (Section 7.3.3.2). Initial state radiation (ISR) and other EW effects are not

simulated, but the systematic uncertainty due to their absence has been determined from

studies using the generators WGRAD[56] and ZGRAD[55], which do include those effects.

For both data and GEANT FastMC, Zero Bias and Minimum Bias are each selected

from libraries, however unlike for the FullMC, they are libraries of the reconstructed vector

momenta of the jets and electrons in the event, not distributions of raw cell energies.

3Software version dated Feb 8, 2011
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Chapter 5

DATA RECONSTRUCTION

5.1 Data Samples

After triggering and removal of bad data 1, RunIIb34 has 3.7 fb−1 of data. 2 The

purpose of the offline data reconstruction is to convert detector energy measurements into

higher level objects such as electrons, jets, and other energy sums; the characteristics of these

objects are used to select candidate events. The raw data has already been filtered by the

DZero triggers, the highest level of which is the single electron trigger. We further process

events that have passed this final trigger to derive useful quantities to characterize events.

Some quantities characterize the electron candidates(s) in the event: Energy and momentum

measurements of the electron candidate(s), shape and spatial characteristics of the detector

signals, and association with a charged particle track. Other quantities characterize the full

event: Scalar Energy sums and momentum sums (equivalent to missing energy).

None of these quantities can be measured perfectly, of course. The electron energy

deposited in the calorimeter is not perfectly isolated from the hadronic recoil energy, and both

of these quantities may be modified by FSR (Section 3.1). Besides the collision of interest,

every event has additional contributions from pileup (other proton-antiproton interactions)

and the spectator particle interactions. In addition, the energy from all these products are

modified by detector response and detector noise. With the exception of the Dead Material

Correction (Chapter 6), these effects are modeled by the Fast MC (Chapter 7). As RunIIb12

had a much higher instantaneous luminosity than RunIIa, the W mass measurement from

that data required a great effort dealing with the effect of multiple interactions (pileup) as

1I.e. data taken at low energy, or during detector failure or beam malfunction.
2For comparison, RunIIa had 1.0 fb−1 of data, and RunIIb12 had 4.3 fb−1 of data.
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well as significant variation in calorimeter gain at high beam intensity. The measurement

with RunIIb34 data, taken at even higher luminosity, required similar techniques and effort.

5.2 Observables for Electron Identification

5.2.1 Preliminary Electron Energy and Momentum Measurements

In the CC, the measured raw electromagnetic energy Eraw
EM associated with an elec-

tron is defined as the energy contained in the electron reconstruction window, or “cone”,

i.e. the EM calorimeter cells whose centers are within 0.2 radians in the (φ, η) plane of the

center of the highest transverse energy tower.

In the CC, the measured raw total energy Eraw
Tot associated with an electron is defined

as the raw electromagnetic energy plus the energy in the hadronic calorimeter cells within

two “nearest neighbor” cells of the same highest transverse energy tower mentioned in the

previous paragraph.

The above two quantities are defined to test whether an electron passes the EMF

requirement (Section 5.2.2). If it passes, another quantity is defined, simply called the raw

electron energy Ee,raw. This quantity is equal to the raw electromagnetic energy plus the

energy in the first fine hadronic layer cells of the calorimeter, in the same window defined in

the previous paragraph.

The raw electron vector momentum is given by

~pe,raw = Ee,raw


sin θe · cosφe

sin θe · sinφe

cos θe

 (5.1)

The raw electron transverse energy (we refer to the electron energy and momemtum

interchangeably, since its mass is negligible) is defined as pe,raw
T = Ee,raw sin θe.

Corrected quantities ~pe and Ee will be obtained later in the reconstruction procedure

by applying the Dead Material Correction (Chapter 6).
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Figure 5.1: The electron reconstruction window, defined in the CC as the thirteen towers

whose centers are contained in a radius ∆R = 0.2 cone centered on the tower with the highest

transverse energy[6].

5.2.1.1 Electron Energy Window in the Endcap Calorimeter

Due to the geometry of the EC, the calorimeter cells are closer to the beam line

than in the CC. Therefore, the electron window has a more complex definition here. There

are two conditions. The first depends on the hottest cell in the cluster’s distance from the

beam axis and its depth in the calorimeter (because the density of calorimeter cells varies

with distance from the beam line). To be included in the electron cluster, an EC calorimeter

cell must satisfy

∆R̄ ≤ 1 +
64

2π
· rEC

rest

(5.2)

where rEC = 10 cm, rest =
√
x2

hot + y2
hot and ∆R̄ is measured in nearest-neighbor cells.

In addition (because a cell based count alone would result in a deformed cone), the cell

coordinate must satisfy √
(xhot − xproj)

2 + (yhot − yproj)
2 < rEC (5.3)
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where x, yproj = x, ycell × zhot

zcell
.

5.2.2 EM Energy Fraction

Electrons deposit nearly all of their energy in EM layers, therefore we expect the

electromagnetic energy fraction

fEM ≡ Eraw
EM (∆R < 0.2)

Eraw
Tot (∆R < 0.2)

(5.4)

to be close to one.

5.2.3 Electron Spatial Characteristics

5.2.3.1 H-Matrix Criterion

An important observable used in the identification of electrons is the H-Matrix

criterion which quantifies the degree to which the shower shape of an electron candidate

looks like that of an ideal electron shower.3 Detailed Monte Carlo simulations have been

shown to model electron showers correctly. From large number S MC generated electron

shower samples, an N-dimensional covariance matrix is built for N observables describing an

electron shower.

Mij = S−1

S∑
s=1

(xsi − x̄i)
(
xsj − x̄j

)
(5.5)

The inverse of this matrix H = M−1 is used with a candidate signal in the calorime-

ter, to calculate a quantity χ2
t whose inverse is a measure of how electron-like a cluster is.

χ2
t =

N∑
i=1,j=1

(
xti − x̄i

)
Hij

(
xtj − x̄j

)
(5.6)

To understand how χ2
t can describe how electron-like a cluster is, consider the effect

of the measurement of the i-th observable on the sum above. The closer it is to the “average”

3It is referred to as “EMID” in many publications, however we will always refer to it as H-Matrix in this
dissertation.



79

value, x̄i of the observable (relative to the variance of the observable, Mii), the smaller the

contribution to χ2
t . But, it does not have to be too close to the average for the cluster to get

a good score. If it and the j-th are different from the average in a way that is typical for

an electron cluster, the (i, j) and (j, i) elements of the sum will cancel the (i, i) and (j, j) to

some degree - the more typical the variation, the better the cancellation.

H-Matrix7 is built from: EM fractions in layers 1, 2, 3, and 4, shower energy

weighted RMS in the φ direction, logEraw
Tot , and zvtx

σz
. To pass the H-Matrix criterion in the

CC, we require that the electron satisfy H-Matrix7<12.

H-Matrix8 uses the same observables as H-Matrix7, plus the shower energy weighted

RMS in z. To pass the H-Matrix criterion in the EC, we require that the electron satisfy

H-Matrix8<20.

5.2.3.2 Electron Loose and Tight Track Matching

Since an electron is a charged particle, it is likely to leave a track in the CTD.

Tracks are constructed from SMT and CFT hits (see Section 2.3.1) and an (η, φ) direction

is obtained. Tracks are matched to electron candidates based on the difference between

the candidate cluster center and the expected position of the cluster based on the track

direction extrapolated to the third layer of the EM calorimeter. There are various ways to

form observables describing the positional difference:

∆θ = θcluster − θtrack (5.7)

∆η = ηcluster − ηtrack (5.8)

∆φ = φcluster − φtrack (5.9)

∆z = zcluster − ztrack (5.10)

A track is defined as satisfying the “loose track matching” criterion if the separation

of the cluster centroid and track satisfies ∆η < 0.05 and ∆φ < 0.05.

The track is defined as satisfying the “tight track matching” criterion if it has at
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least one SMT hit and

P (χ2) > 0.01 (or χ2 < 0.95) (5.11)

where the parameter χ2 is based on the angular difference between the tracker-determined

position of the electron and the calorimeter determined position:

χ2
TM ≡

(
∆φ

σφ

)2

+

(
∆z

σz

)2

(5.12)

where σφ and σz are the measured RMS widths of the ∆φ and ∆z distributions.

Matched tracks are required to satisfy ptrack
T > 10 GeV. This excludes low momen-

tum charged particles which are dominated by background and which would otherwise need

to be checked for a track match. A good track match implies that the track momentum and

the calorimeter cluster momentum are similar.

5.2.3.3 Isolation

Electron showers are narrow, therefore

fiso ≡ Eraw
Tot (∆R < 0.4)− Eraw

EM (∆R < 0.2)

Eraw
EM (∆R < 0.2)

≈ 0 (5.13)

The isolation requirement strongly rejects hadronic jets, which have a wider shower than

electrons. FSR and pileup can also cause an electron to fail the isolation requirement.

5.2.4 Calorimeter Fiducial Requirements

The North and South sides of the CC are divided radially into thirty-two modules,

each two cells wide, and therefore there is an inter-module crack every 2π
32

radians. The

position relative to the boundaries of the local module is given by φmod = mod
(
φ, 2π

32

)
. A

Full MC simulation of electrons was used to study the effect of the inter-module cracks on

the determination of the calorimeter cluster centers. The difference between the expected

location of an electron in EM3 as extrapolated from its track, φtrk
mod, and the location of

the associated calorimeter cluster, φEM
mod, is shown in Figure 5.2, and a clear bias towards
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Figure 5.2: Average discrepancy between tracker-based (extrapolated to EM3 layer) φtrk and

calorimeter-based φEM measurements, in units of the calorimeter module width, as function

of φtrk
mod[6].

the centers of the cells for the cluster centroid can be seen. In addition, if electrons fall

too close to the cracks, they are unlikely to be reconstructed, as can be seen from the φmod

electron-reconstruction efficiency, determined from collider data and shown in Figure 5.3.

A correction is applied during track-matching to compensate for the relatively small

bias in the φ measured from the calorimeter cluster. The sharp drop in efficiency near the

calorimeter cracks could create a dangerous η-dependent bias, and the small fraction of

electrons near the cracks which are reconstructed have poorly measured energy. Therefore,

we impose the following requirements on the electron location:

0.1 < φmod < 0.9 (5.14)

The only restriction on η is that it must fall within the CC (η < 1.05) or the EC

(1.5 < η < 2.3).
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Figure 5.3: Electron reconstruction efficiency as a function of (tracker-based) φtrk
mod. Note

the steep drop in efficiency near the module boundaries. Due to this drop in efficiency, we

include only events where electrons satisfy 0.1 < φmod < 0.9[6].

5.2.5 Vertex Reconstruction

An accurate vertex determination is crucial to an accurate determination of trans-

verse hadronic recoil momentum (but not for electron transverse momentum, which is cal-

culated using the individual track direction). To reconstruct the vertex (production point)

zvtx of the W boson, a first attempt is made using the D0 primary vertex algorithm. This

method uses a Kalman filter algorithm with the charged particle tracks to identify a vertex.

However, there maybe be additional pp̄ collisions producing charged particles detected by

the tracker, so the primary vertex chosen by the online vertexing algorithm may not be the

one corresponding to the W or Z boson production. Thefore, during reconstruction, when

the electron(s) from the W or Z decay have been identified and associated with track(s),

the point of closest approach to the beam line (or average of two points of closest approach
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in the case of the Z boson) is compared with the D0reco primary vertex. If they agree to

within 2 cm, the more accurate D0reco primary vertex is used. If they disagree, the point of

closest approach (or average) is the most accurate option, and is used. For both the W and

Z bosons, we require |zv| < 60 cm.

5.3 Energy and Momentum Measurements Used for Analysis

During the initial reconstruction, candidate electrons are required to satisfy Eraw
T >

1.5 GeV, fEM > 0.9, and the loose track-matching requirement, ∆R < 0.2.

After we have selected W → eν and Z → ee candidate events (Section 5.4), we

switch to working with the quantity Ee,raw which we defined in Section 5.2.1. We use this

quantity with FH1 included in order to fully contain the up to 10% leakage from the elec-

tromagnetic shower. After the dead material correction is applied to the electron energy

(Chapter 6), this corrected energy is defined as Ee.

In this analysis the direction of the electron is defined as the direction of the matched

track:

θe = θtrack (5.15)

φe = φtrack (5.16)

The electron corrected vector momentum is given by

~pe = Ee


sin θe · cosφe

sin θe · sinφe

cos θe

 (5.17)

The transverse energy is defined as peT = Ee sin θe.
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5.3.1 Raw Missing ET and Recoil Reconstruction

The raw missing energy vector in the transverse plane is calculated by taking the

negative vector sum of cell energies.

~/E
raw

T = −
∑
i

Eraw
i sin θi


sin θe · cosφe

sin θe · sinφe

cos θe

 = −
∑
i

(
~Eraw
T

)
i

(5.18)

The sum is over all calorimeter cells that were read out, except cells in the CH

and ICD, since they would introduce undesirable noise. φi and θi are the azimuth and polar

angle of the center of cell i with respect to the primary vertex.

The recoil transverse momentum, ~uraw
T , for a W/Z boson event is the vector sum

of calorimeter energies outside of the electron reconstruction window. We calculate it by

taking the difference between the transverse energy imbalance (negative missing transverse

energy) and the electron transverse momentum. For W boson events, this is:

~uraw
T = −~/Eraw

T − ~praw
T (5.19)

while for Z boson events, it is:

~uraw
T = −~/Eraw

T − (~praw
T )e1 − (~praw

T )e2 (5.20)

We do not apply a hadronic energy scale correction. The interaction of hadrons

with the dead material, and the distribution of hadronic energy in the calorimeter, is more

complicated than that of electrons. Therefore, the hadronic response of the detector, about

65% on average for the D0 detector with W/Z bosons produced at the Tevatron, is instead

modeled in the fast MC (Section 7.4). Therefore, we set

~uT ≡ ~uraw
T (5.21)
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5.3.2 Scalar Transverse Energy Reconstruction

The scalar transverse energy (SET) is defined as the scalar sum of the transverse

energies of all calorimeter cells except CH and ICD

SET =
∑
i

Eraw
i sin θi (5.22)

excluding cells in the electron reconstruction window, defined in Section 5.2.1. This quantity

is strongly correlated with the instantaneous luminosity.

5.3.3 Corrected Missing Transverse Energy Reconstruction

The corrected ~/ET is calculated from ~uT and corrected ~peT .

~/ET = −~uT −
∑
e

~peT (5.23)

The effect of this calculation is to apply the dead material correction to the contribution of

energy deposited in the calorimeter in the electron window, which would otherwise contribute

(as it does in the raw vector sum) to the MET calculation. However, the MET still has a

contribution from missed hadronic recoil energy which is not corrected for (and is instead

modeled in fast MC), as noted in section 5.3.1. In Z → ee events, the imperfect response of

the detector to hadronic energy is the only source of MET.

5.4 Event Selection Summary

W and Z boson events are selected with the following requirements:

• Vertex requirement:

– |zv| < 60cm

• Electron requirements:
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– id= 10 or ±11 4

– fEM > 0.9, fISO < 0.15

– H-Matrix7 < 12 in CC and H-Matrix8 < 20 in EC (EC electrons are only used

for “tag and probe” type efficiency studies using Z events)

– In calorimeter fiducial region in η and φ

– pT > 25 GeV

– The associated track must have at least one SMT hit, pT > 10 GeV and a good

track match (track match probability P (χ2
TM) > 0.01).

• Z → ee candidate selection requirements:

– At least one electron passes requirements of all three trigger levels.

– Both electrons in CC: |ηdet| < 1.05 (Z events in “tag and probe” type efficiency

studies may have one EC electron, with 1.5 < |ηdet| < 2.3)

– uT < 15 GeV

– 70 < mee < 110 GeV

• W → eν candidate selection requirements:

– The electron passes requirements of all three trigger levels.

– ~/ET > 25 GeV

– Electron |ηdet| < 1.05

– uT < 15 GeV

– 50 < mee < 200 GeV

4These ids indicate that a cluster satisfying the isolation, EMfraction, and pT criteria has been found using
EMAnalyze[29], or a cluster satisfying at least the isolation criterion has been found using SEMReco[30].



87

In RunIIb34, there are roughly 50K Z → ee candidates with both electrons in the

CC, and roughly 1.5 M W → eν events with the electron in the CC. These Z candidates are

used to determine the EM calibration, and the W candidates to determine MW .
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Chapter 6

DEAD MATERIAL CORRECTION TO THE ELECTRON
RESPONSE

The full material simulation, GEANT, described in Section 4, does not quite simulate

electron showers at the precision necessary for an accurate W mass measurement. In addition,

the FullMC simulation does not have a perfect model of the detector material in front of the

calorimeter. In total, there are of 3.7 radiation lengths (X0) of material at normal incidence,

before the CC: 0.2X0 from the inner detector, 0.9X0 from the solenoid, 1.3X0 from the

preshower detector (1.0X0 of which is due to the preshower detector lead), and 1.3X0 from

the cryostat walls and support structures. This is called “dead material” because it causes

charged particles to radiate but does not measure the shower energy. As a result, the CC

does not sample the full shape or energy content of the particle shower. As can be seen in

Figure 6.1, an ηphys-dependent fraction of the beginning of the shower is not detected. There

is also a significant non-linear dependence on the energy of the showering particle, as shown

in Figure 6.5.

To account for this loss of signal, we can either simulate the effect of the dead

material in the FastMC, or apply a correction to the electron energy during the reconstruction

procedure for collider data samples. The effect was well-modeled for the RunIIa analysis,

and, despite the addition of increased pileup in RunIIb and the addition of an inner silicon

tracking layer (the SMT, which only added ≈ 0.003X0), it has not changed enough since

then to re-derive the correction, as shown in Figure 6.2. In addition, we would like the

reconstructed data to be as similar as possible as to the FullMC (which does not include

the extra Dead Material), so that the FastMC simulations of FullMC and data can also be

similar. Therefore, it is easiest to apply the correction during the reconstruction procedure,
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Figure 6.1: Mean shower profile of simulated 45 GeV electrons in the CC, at (normal) inci-

dence η = 0 (left) and (non-normal) incidence η = 1 (right). The depths of the dead material

and calorimeter layers are indicated as measured along the shower axis.

Figure 6.2: Comparison between RunIIa and RunIIb for the mean and variation in the three

EM layers of the calorimeter[6].

and not waste computing resources by including it in the FastMC.

There are two main parts to the Dead Material Correction. The first is a set

of correction functions derived by simulating the effect of a concentric copper cylinder in

an improved FullMC simulation, the second is a residual correction applied to the energy
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bin 0: |ηphys| < 0.2

bin 1: 0.2 ≤ |ηphys| < 0.4

bin 2: 0.4 ≤ |ηphys| < 0.6

bin 3: 0.6 ≤ |ηphys| < 0.8

bin 4: 0.8 ≤ |ηphys|

Table 6.1: Definition of bins in electron |ηphys|.

measured in each layer of the calorimeter. The correction is derived from a Z → ee event

sample, generated with a version of the FullMC which has an improved shower description

relative to the default GEANT) simulation1 This was done for the Run IIa (1 fb−1) analysis

and revalidated for RunIIb12; it is revalidated again for RunIIb34, as seen in Figure 6.2.

6.1 Tuning the Thickness of the Copper Cylinder

We start the tuning procedure by examining the fractions of energy (EMF) de-

posited by Z → ee electrons in the first three electromagnetic layers of the CC, EM1, EM2,

and EM3. The energy deposited in EM4 and FH1 is negligible and is not used in the tuning.

Because the electron energy loss in each layer depends on angle of incidence (compare the

two plots in Figure 6.1), we divide the Z electron sample into categories based on angles of

incidence of the two electrons. To minimize kinematic biases, each electron is categorized

based on the angle of incidence of both electrons in the event, and leading and subleading

electrons are treated equally. There are five ηphys bins (see Table 6.1), or fifteen possible

categories for a given event, because there are two electrons per event (see Table 6.2).

The ratio of data to FullMC mean EMF per layer, per category, are plotted in

Figure 6.3 (left). We can see significant disagreement between data and FullMC. Specifically

1The improvements are described in detail in [43]. They require an 80x increase in computing power, and
therefore are only used for determining the required amount of dead material and layer-dependent gains.
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Category Combination of ηphys bins

10 0 - 0

11 0 - 1

12 0 - 2

13 0 - 3

14 0 - 4

15 1 - 1

16 1 - 2

17 1 - 3

18 1 - 4

19 2 - 2

20 2 - 3

21 2 - 4

22 3 - 3

23 3 - 4

24 4 - 4

Table 6.2: Definition of ηphys categories for Z → ee events.

the EMF in EM1 is too low in the FullMC, and the EMF in EM3 is too high in the FullMC.

This is the effect one would expect if the layers start to sample energy from the showers in

Figure 6.1 later in the shower development than is simulated in the standard FullMC. We also

see no significant intra-layer dependence on the ηphys categories; therefore a longitudinally

symmetric cylinder is an appropriate choice for modeling the dead material. (Though there

is an ηphys dependence on amount of material traversed, the relative increase is uniform.)

We wish to find the thickness of the copper cylinder which maximizes the agree-

ment between a high-quality FullMC simulation and data for the EMFs in all layers and
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Figure 6.3: The ratio between the EMF in each layer for Z → ee events in data vs. FullMC,

for each of the fifteen categories of ηphys, before (left) and after (right) the additional material

has been added to the simulation. The mean EMF ratio for each layer is shown as a horizontal

line.

categories. To do this, we simulate Z → ee events using the improved GEANT model with a

range of thicknesses of the simulated copper cylinder. From these simulations, we create a

parameterized model of the mean EMF and its fluctuations around the average as function

of the copper thickness (measured in nX0). Using this parametrization, we form a χ2 dis-

criminant based on the difference (in all categories) between the EMF in the simulations,

and the EMF in the data:

χ2 =
∑
i

∑
j

[
fEML
ij − f̄EML

i

σEML
ij

]
(6.1)

where fEML
ij and σEML

ij are the data/FullMC ratio and uncertainty of the mean energy fraction

of layer i for electrons in category j, and f̄EML
i is the mean of the energy fraction in all

categories for layer i. The value of nX0 that minimizes χ2 is the optimal value. To validate

our result, we also check that the χ2 minimization, applied separately for each layer, results

in thickness values that agree with the full optimized result. The results of the minimization

procedures are shown in Figure 6.4.
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Figure 6.4: Left, the χ2 discriminant (based on the difference between improved FullMC and

data for EMFs in layers and η-bins) as a function of the thickness of the copper cylinder.

The optimal value of the thickness and its one-σ uncertainty is shown. Right, the results of

the χ2 minimization process for the individual layers, showing agreement with the result for

minimizing χ2 simultaneously for all three layers[6].

6.2 Applying the Correction

Figure 6.3 (right) shows the EMF data/FullMC ratios for Z → ee events at the

optimized thickness of the copper cylinder. We can see that the agreement is still not perfect.

We interpret the small residual deviations as layer-dependent gain factors, and correct for

these in the data reconstruction procedure, to bring the data into agreement with the FullMC.

Once we have determined the best thickness for our simulated copper cylinder,

we derive correction functions to be applied in the reconstruction procedure with a single-

electron FullMC simulation. We derive separate correction functions for data and FullMC,

using the standard GEANT detector simulation for the FullMC correction and the improved

material model (which matches data more closely) for the data correction. The correction

functions are ηphys and peT dependent and are derived by comparing the truth and recon-

structed values of the electron energies. Figure 6.5 shows an example of some of the functions
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as measured for the FullMC sample.

Figure 6.6 shows the EMF data/FullMC ratios for W events simulated with stan-

dard GEANT with the correction functions applied, divided into the same ηphys bins (since

there is only one electron per W event) we used to categorize the Z events. Since this

sample has higher statistics, we see non-negligible deviations from unity that we could not

deduce from the limited, high-precision, Z sample. To be precise, though the EMF ratio in

all five ηphys bins averages to unity - confirming that the mean thickness of the cylinder is

correct - it is likely that there is some η dependence not accounted for by the longitudinally

uniform cylinder. However, correctly optimizing the dead material correction beyond our

simple cylindrical model would be too resource intensive, so we will account for these higher

order corrections with our FastMC tune, described in detail in Chapter 7.3.3.

The systematic uncertainty in the W boson mass due to modeling error is de-

termined by calibrating FastMC toy models to FullMC simulations with the copper layer

thickness varied up and down by its one-σ uncertainty (as seen in Figure 6.4, left), and

measuring the resulting variation in mW .
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Figure 6.5: A few examples of the correction functions applied to the energy measurement of

reconstructed electrons in collider data in order to correct for energy loss in upstream dead

material, as a function of electron praw
T , for various values of ηphys
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Figure 6.6: The ratio between the EMF in each layer for W → eν events in data vs. FullMC,

for each of the five electron ηphys bins, after the additional material has been added to the

simulation and the intra-layer calibration factors has been applied. The mean EMF ratio for

each layer is shown as a horizontal line, with the yellow band indicating the combination of

systematic and statistical uncertainty in the mean. (a), (b), and (c) correspond, respectively,

to EM layer 1, 2, and 3.



97

Chapter 7

DETERMINATION OF FAST SIMULATION PARAMETERS

In order to create a large number of templates for the W mass measurement, we

need to be able to quickly create large samples of simulated events. Simulating the physics of

the decay of the vector boson with a given initial transverse momentum (described in Section

4.3) does not require large computing sources, so we use the same generator to create sets of

events for both the FullMC and FastMC simulations. However, simulating the interaction of

the decay products with the detector, is very resource intensive, because it requires simulating

particle showers in the detector and calculating the energy deposit in each calorimeter cell.

(Because of this, the “reconstruction” process is applied in the same way for both collider

and FullMC data.) We need a way to simulate the results of the reconstruction procedure,

which gives us simplified observables such as reconstructed energy and momentum sums.

The FastMC must therefore transform the generator level “truth” values into sim-

ulated reconstruction values. From the generated true values of the electron and W boson

transverse momentum (Section 4.3), simulated initial vertex position (Section 7.1), simu-

lated final state radiation (FSR) (Section 7.3.1), contributions from the underlying event

described by Minimum Bias events (MB) (Section 7.4.2), and energy levels in the detector

described by Zero Bias events (ZB) and InstLumi (Section 7.4.2), it must provide us with

simulated values of the reconstructed electron pT and reconstructed hadronic recoil uT , from

which the additional measurement observables, reconstructed W boson transverse mass mT

and reconstructed transverse momentum imbalance ~/ET , are calculated. A schematic of these

energy values are shown in Figure 7.1. The FastMC must also simulate the inefficiencies of

the reconstruction procedure (Section 7.2), by “failing” to reconstruct the event at the same

rate, and with the same dependences on event variables, as the reconstruction procedure
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Detector simulation

geant-based detector simulations are not fast nor flexible enough to describe
the detector response with the precision needed for this measurement.
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10 / 29

Figure 7.1: Schematic of transverse quantities W → eν events with more details than Figure

3.1. These details include energy from FSR, spectator particle interactions, and other pp̄

events.

fails to reconstruct the event from collider data or FullMC. This is necessary to get accurate

template shapes with which we measure the mass from collider data, as described in Section

3.2.

We create two main versions of a FastMC simulation that we use to measure a

W mass. The first, which we will call the “GEANT FastMC”, is “tuned” (by adjusting its

parameters) to match the FullMC sample as well as possible. The second, which we will

call the “data FastMC”, is tuned to match the collider data sample as well as possible. The

GEANT FastMC is not used to measure the real W mass in collider data, but is instead used

to test the accuracy of our method.

For this test, we treat the FullMC sample as mock data, and use the GEANT FastMC

to measure the W mass from this simulated sample, using the technique described in Chapter

3. If we can get back an accurate measurement of the mass used to simulate the FullMC W
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events, we have achieved “MC closure”, and we trust that our method can be used to get an

accurate measurement of the W mass from the collider data.

If we achieve MC closure, we can use the second version of the FastMC to measure

the physical W mass from the collider data. Its base tune is derived from FullMC, but,

because the FullMC simulation is different enough from collider data that it cannot be used

to measure the W mass at the precision we require, we make adjustments, based on collider

data measurements, to more accurately simulate W events in the collider data.

Understanding correlations between sensitive observables is important to accurately

model these observables. As we tune the models, we ensure an optimal parametrization by

comparing distributions of observables from the FastMC to the same distributions in the

FullMC or collider data. It is important to derive the parametrizations for the various steps

of the FastMC simulation with respect to the order in which they are applied, because the

parametrization of a specific step depends on the characteristis of the sample to which it is

applied, and those characteristics depend on which steps have already been applied. The

parameterizations are presented here in roughly the same order in which they are applied.

7.1 Primary Vertex Parametrization

The longitudinal coordinate of the primary vertex, zvtx is used (along with ηphys) to

calculate ηdet, and the FastMC must therefore accurately simulate its distribution. For the

FullMC and the GEANT FastMC, the beam shape is modeled by the convolution of a Gaussian

bunch length in z with center z0 = 0 and width σz = 25 cm, and a Lorentz distribution set

by the accelerator β∗ functions in transverse directions x − y with center at x0 = y0 = 0.

For the data FastMC, the longitudinal shape parameters are determined from the vertex

distribution of a sample of randomly triggered beam crossings.

7.2 Electron Efficiency Parametrization

The electron (event) efficiency for a specific requirement, or “cut”, with respect

to a defined base sample, is defined as the fraction of electrons (events) in the sample that
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pass the cut. The various selection cuts we apply to electrons and events to get the final

sample of candidate events have been described in Chapter 5. If the selection cut is based

on observables that the FastMC does not simulate, such as the detailed distribution of

calorimeter energy in the case of the H-Matrix cut, or the difference between track based

and calorimeter based position in the case of the track-matching cuts, we need to simulate

the dependence of the cut’s efficiency on relevant kinematic, geometric, and environmental

observables. If the selection cut is based on an observable that the FastMC does simulate,

the efficiency is implicit and does not need to be simulated.

As one example of an efficiency dependence, the probability for an electron to pass

the trigger has a strong correlation with the electron energy. However, the inefficiency1 of a

single selection criterion may have multiple sources, which in turn may have dependencies

on multiple correlated variables. For example, the electron identification (H-Matrix) cut,

which is based on the electron shower shape as described in Section 7.3.5, depends on vari-

ables including electron pT , ηphys, and ηdet, which are strongly correlated with each other.

To avoid double-counting the efficiency dependence on correlated variables, we measure it

simultaneously for the correlated variables. Somewhat counterintuitively, by “measure si-

multaneously” we mean we split the sample into bins of all correlated variables and measure

the efficiency individually in all those bins, wheareas to measure the efficiency dependence

on a single, uncorrelated variable, we measure the efficiency in bins of that variable only.

We usually simulate the efficiency of a cut on an electron or event by choosing

a random number between zero and one, and keeping the event if the random number is

below the value of that efficiency at the value of the dependent variable for that electron or

event. Since the modeled efficiency has some dependence on electron or event observables,

this has the effect of shaping the distribution of that observable for the electrons or events.

In some cases, when the dependent variable is chosen randomly from a distribution and has

1“Inefficiency” and “efficiency” are essentially interchangeable terms in this note. We always use “effi-
ciency” to describe the curves used in simulating whether an electron or event passes or fails a certain
criterion, but when we discuss sources of this effect, we often say “inefficiency”.
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not yet been determined, such as for the ∆u‖ efficiency described in Section 7.4.1, we can

avoid discarding events by re-simulating the dependent variable until the electron or event

passes the cut simulated by the random number process. This is equivalent to adding an

extra dimension to the distribution from which the stochastic variable is selected, multiplying

the distribution by the efficiency in that dimension. The average magnitude of the electron

efficiency does not affect the final distributions apart from the statistical sample size, so

when measuring the efficiency dependencies, we often normalize the efficiency shape to have

its maximum value at one.

Because of correlations between an electron or event surviving a given cut and the

value of other observables for that electron or event, the characteristics of the base sample

relative to which the efficiency is measured affect the shape of the efficiency. Therefore, the

form of the efficiencies depend on the order in which they are to be applied, and must be

measured accordingly. In determining the efficiencies, we make an assumption that they are

factorizable, that is, that the dependence on some variables can be measured independently

from the dependence on others. This is not perfectly true, and can result in double-counting,

an effect mitigated by final “residual” corrections.

The efficiencies can depend on electron or event level observables. For the GEANT

FastMC that is used to test for closure, the electron selection efficiencies are measured from a

FullMC sample of Z → ee events. However, as the FullMC is not identical to the collider data,

we must measure the (small) differences in efficiencies and apply these residual corrections

in the data FastMC in order to accurately simulate the data. When measuring efficiencies

from collider data, we need some way to exclude the background (non-signal events) from

our efficiency measurement.

There are three main tactics we use when measuring efficiency for this analysis: The

“tag-and-probe” method involves identifying signal Z → ee events by finding an electron that

satisfies some criterion, for example passing a trigger, and testing whether the other electron

passes or fails the criterion for which the efficiency is being measured. The tag-and-probe

method is sometimes used on FullMC in order to match the efficiency measurement on
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collider data. The “background-subtraction” method involves splitting events which may or

may not be signal events into groups of passing or failing events. The groups are placed into

histograms in some observable in which it is possible to subtract the background using a

template. It is not possible to say for sure which events signal and which or not, but it is

possible to estimate the number of signal events which pass, or fail, the cut. These numbers

are then used to calculate the efficiency. The “background-subtraction” method is used to

determine residual corrections to the H-Matrix and track-matching efficiencies for data, as

described in Section 7.2.8.

We can measure efficiencies in data via the tag-and-probe and/or background sub-

traction method when we have enough statistics, or for final corrections, by taking the ratio

of FullMC or collider data vs. FastMC distributions of the dependent variable. The “ra-

tio” method is used for small residual efficiency corrections,2 and is essentially a reweighting

method. The distribution for the dependent observable is compared between data (GEANT)

FastMC and collider data (FullMC), and any difference between the shapes, which shows up

as a ratio that is not completely flat, are interpreted as the efficiency to be applied. These

efficiencies are named according to their dependent variable, e.g. the u‖ and electron-φ

efficiencies.

The overall efficiency can be written as the product of the following terms:

ε = εtrig(peT ,L) · εFSR(X,∆R, ηphys, p
e
T ,L) (7.1)

·εhmatrix(ηphys, p
e
T ) · εtrk,loose(zvtx, ηphys, p

e
T ) · εtrk,tight(zvtx, ηphys, p

e
T )

·εφ(φe) · εSET(SET, peT , ηdet,L, u‖) ·R1(SET,L, ηdet, zvtx, p
e
T ) ·R2(u‖)

Each term in the above expression will be described in the following sections.

2It can adjust for efficiency dependence that was missed, or double-counted.
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7.2.1 Trigger Efficiency

There were two triggers used in RunIIb34, a 25 GeV and a 27 GeV trigger.3 For a

given event, if both triggers are live, then the trigger with the lowest pT threshold is con-

sidered the “active” trigger (because any trigger with a higher threshold will have negligible

effect on the sample) for that event. Because the energy measured at the trigger level is

different than the energy measured during offline reconstruction, there is a “turn-on” in the

efficiency as a function of reconstructed pT , where the efficiency rises from an initial low level

at the threshold pT , to unity as the reconstructed pT increases.

The trigger efficiency εtrig is derived from data Z → ee candidate events, using the

tag-and-probe method. The tag electron is allowed to be in the CC or the EC (because

the neutrino in W → eν events can be in the CC or the EC), and is required to satisfy all

selection requirements, including passing the trigger. The probe electron is required to be

in the CC, and must satisfy all selection requirements, except passing the trigger. The rate

at which the probe electron passes the trigger, relative to the other selection requirements,

is the trigger efficiency, εtrig.

The trigger efficiency is measured as a function of reconstructed electron pT . It

is measured separately for RunIIb3 and RunIIb4, for the two trigger thresholds, and for

InstLumi<3 and InstLumi>3. Note that the measurement of the trigger efficiency was redone

in attempt to fix the problem of disagreement between RunIIb3 and RunIIb4 discussed in

Chapter 10 and shown in Figure 10.1. A small difference was found in the slope between the

first and second attempt, but this change was not enough to fix the disagreement.

7.2.2 FSR Efficiency

In this analysis, we define Final State Radiation (FSR) as the process by which

the outgoing electron radiates one or more photons before interacting with any material4,

3The 27 GeV was used when InstLumi rose above about 5, in order to limit the number of recorded events.
4i.e. it does not include Bremsstrahlung, which is accounted for in the Dead Material Correction described

in Chapter 6.
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Figure 7.2: Efficiency turn-ons for the 25 GeV and 27 GeV triggers derived from data Z → ee

events. Left column is RunIIb3, right column is RunIIb4. Top row is the 25 GeV trigger

at InstLumi<3, center row is the 25 GeV trigger at InstLumi>3, bottom row is the 27 GeV

trigger at InstLumi>3. NOTE: This figure is from the author’s own work. At the time of

writing, it has not been approved by the D0 collaboration for general public use beyond this

dissertation.
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which can affect the electron energy measurement. The FSR photon energy can be partially

or totally absorbed by dead material in front of the calorimeter. If the FSR photon reaches

the calorimeter, it might fall entirely outside the electron cone, in which case its energy

will not be included in the electron energy measurement, but will instead contribute to the

hadronic recoil energy measurement. If it instead falls inside the electron cone, it can change

the shape of the electron’s energy deposit in the calorimeter, affecting the shower-shape

based identification, track-matching, and isolation of the electron. If it falls on the edge, a

combination of all these effects can occur.

The effect of FSR energy loss on the reconstructed electron energy is discussed in

Section 7.3.1. The inefficiency in electron identification, track-matching, and isolation due

to FSR is modeled in the FastMC via the FSR efficiency. It is parametrized as a function

of electron true energy, electron incidence angle (ηphys), the fraction of energy carried by the

leading photon (X), InstLumi, and electron-photon separation, defined as

∆R(e, γ) =

√
[φphys(e)− φphys(γ)]2 + [ηphys(e)− ηphys(γ)]2 (7.2)

The FSR efficiency is derived by comparing two FullMC samples. The first is a

simulation of electrons with kinematics matching those from W → eν decays and FSR

turned on. The second is the same sample, but with the FSR photons removed and their

energy added back to the electron, equivalent to turning off the FSR. Both samples have ZB

turned on, which is the same ZB as in the main FullMC simulation.

Figure 7.3 shows the dependence of the FSR efficiency on energy fraction X and

∆R, for a single ηphys, InstLumi, and peT bin: The first three plots show the dependence on X

in the lowest ∆R bins. Here, the photon is close to electron, modifying the shower shape to

decrease its recognition by the H-Matrix criterion as an electron shower. The photon energy

can also modify the calorimeter-based estimation of the electron position which degrades the

quality of the track match.

The last three plots show the dependence on X in the highest ∆R bins. Here, the

photon is well outside the electron reconstruction window, where it does not interfere with
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shower shape and track-matching, except when X is very large. In that case, the energy of

the electron has been lowered to levels that the reconstuction algorithm is not well-equipped

to deal with, and the electron is not reconstructed.5

The rest of the plots correspond to the “transition region” (intermediate ∆R bins).

Here, the cluster isolation requirement is important. Most of these plots show, in addition to

the monotonic decrease related to track-matching and shower shape requirements, two dips

at X ≈ 0.25 and X ≈ 0.75, separating three ranges of X. The lower bump in X corresponds

to the range where the photon, despite being in the isolation region, is of such low energy

that it does not make electron fail isolation cut. The bump at intermediate X corresponds

to the range where the electron and photon are identified as a single large cluster, so that

neither trigger the isolation cut. The small bump at high X corresponds to the range where

the photon energy is high enough that the FSR is mistaken for the electron by the clustering

algorithm and the electron energy is low enough that the isolation criterion is not failed.

A decrease in FSR efficiency with increasing X can still be seen in these plots, as track-

matching tends to veto high X photon clusters when ∆R is not small, and track-matching

and shower shape requirements tend to veto the oddly shaped clusters at intermediate X[46].

7.2.3 Preselection, EM Identification (Hmatrix) Efficiency, and Track-Matching Efficien-

cies

The requirements for preselection, H-Matrix, and loose and tight track-matching,

are described in detail in Section 5.2.3.1 and Section 5.2.3.2. The efficiencies for these

criteria, including track-reconstruction efficiency, are determined as described in the following

sections, and are modeled individually in the FastMC.

5It would also be excluded by the lower limit on the electron pT .
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Figure 7.3: Electron identification efficiency as a function of X, the fraction of electron

energy carried by the leading photon, measured from FullMC samples. For discussion, see

Section 7.2.2. This is only a subset of the FSR efficiency dependence measurements, in bins

with 0.1 < |ηphys| < 0.3, 3 < InstLumi < 3.5, 37.5 < peT < 45 GeV, and ∆R specified by

the label on each plot[20]. NOTE: This figure is from a D0 internal note. At the time of

writing, it has not been approved by the D0 collaboration for general public use beyond this

dissertation.



108

7.2.3.1 Preselection Efficiency

The preselection efficiency can be measured from FullMC or data Z → ee events

with a tag-and-probe method. The events are first selected by requiring an identified elec-

tron (which must pass the trigger, in data) with a loosely matched track, and a second track

with pT > 12 GeV, limited nearby track energy, and extrapolated track position in the EC

or CC region, with invariant mass of the EM cluster and track between 70 and 110 GeV.

The efficiency is the fraction of events where the second track loosely matches an EM cluster

with pT > 15 GeV. The dependence of this efficiency on ηdet is found to be indistinguishable

from unity in the fiducial region, and there are no other relevant dependences (i.e. the peT de-

pendence of the preselection criteria occurs only outide the measurement range). Therefore,

this efficiency does not need to be simulated.

7.2.3.2 H-Matrix Efficiency

The efficiency for a single electron to pass the H-Matrix requirement is parametrized

as a two-dimensional function of electron peT and incident angle ηphys, because the ability of

the H-Matrix technique to recognize the shape of an electron shower depends strongly on the

energy and angle of incidence of the electron. The H-Matrix efficiency is measured relative

to the preselection efficiency. First, the ηphys dependence is determined from from a sample

of FullMC Z → ee events which have passed the preselection efficiency, by measuring the

fraction of these events that pass the H-Matrix requirement. Then, the peT dependence of

the full H-Matrix efficiency, including EMF and isolation requirements, is measured from a

sample of FullMC single-electron events.

7.2.3.3 Loose Track-Matching Efficiency

The loose track-matching efficiency is parametrized as a three-dimensional function

of InstLumi, zvtx, and ηphys. InstLumi affects the track-matching in two ways: pileup in

the calorimeter can cause a mismeasurement of the cluster position, and a large number of
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track hits can cause an incorrect determination of the track position. zvtx and ηphys together

describe the angle of incidence within, and distance from z = 0 the electron passes through,

the tracker and calorimeter, both of which affect the quality of the track match. The loose

track-matching efficiency is measured relative to the H-Matrix efficiency, described in the

previous section. It is measured with a tag-and-probe method using a sample of FullMC

Z → ee events where both electrons pass the H-Matrix requirements, and at least one (the

tag) passes the loose track-matching requirement. The efficiency is then the fraction of probe

electrons which pass the loose track-matching requirement.

7.2.3.4 Tight Track-Matching Efficiency

Whereas the wider ∆R cone of the loose track-matching efficiency has a significant

probability of contamination by luminosity-dependent pileup in the calorimeter, there is no

significant InstLumi dependence found for the tight track-matching efficiency. Thus, the

tight track-matching efficiency is parametrized as a two-dimensional function of zvtx and

ηphys, and is measured relative to the loose track-matching efficiency. It is measured with a

tag-and-probe method on FullMC Z → ee events, in the same way the loose track-matching

efficiency is measured. Figure 7.4 shows the tight track-matching efficiency for the RunIIb4

sample.

7.2.3.5 Additional pT Dependence of Loose and Tight Track-Matching Efficiency

There is an additional dependence of the loose and tight track-matching efficiencies

of the track reconstruction efficiency on peT that was not included in the parametrization

described in the previous two sections. This dependency is measured from a FullMC single

electron sample, in order to have a good range of energies that is not limited by the kimatics

of a Z → ee sample. Because the shape of the peT dependence varies with ηphys, it is

parametrized as a two-dimensional function ηphys and peT . The peT dependence is derived in

bins of ηphys, as shown in Figure 7.5, and the efficiency in each ηphys bin is normalized so the

efficiency at peT = 45 GeV is one. This roughly removes the ηphys dependence that is already
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Figure 7.4: RunIIb4 Tight Track-Matching efficiency dependence on ηphys and zvtx. Note the

drop of efficiency as electrons get closer to the North and South boundaries of the tracker and

calorimeter[20]. NOTE: This figure is from a D0 internal note. At the time of writing, it has

not been approved by the D0 collaboration for general public use beyond this dissertation.

included in the H-Matrix and track-matching efficiency models. A perfect normalization

is not possible, since the peT distribution in the single electron sample does not match the

kinematics of Z events, but normalizing at pT = 45 GeV, near the Jacobian edge, is a good

first approximation, which will be corrected by the residual efficiency corrections.

7.2.4 Scalar Et Dependent Efficiency

The Scalar Transverse Energy (SET) efficiency model describes the efficiency de-

pendence on underlying energy contamination from spectator particle interactions (MB),

pileup from other pp̄ interactions (ZB), and the hadronic recoil from the vector boson in the
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Figure 7.5: Additional pT Dependence of Loose and Tight Track-Matching Efficiency, in bins

of ηphys. Note that the curves are normalized to the same value at peT = 45GeV in order

to preserve the ηphys that has already been derived[20]. NOTE: This figure is from a D0

internal note. At the time of writing, it has not been approved by the D0 collaboration for

general public use beyond this dissertation.

interaction of interest. In the earliest measurement using RunIIa data, the dependence was

sufficiently parametrized as a function of the SET and the peT , which have opposite effects on

the efficiency. The SET reflects average background energy which, as it increases, degrades

electron reconstruction based on cluster isolation and shower shape, whereas the higher the

pT of an electron, the easier it is to see against the background. In RunIIb, the luminosity

increased to high enough values to modify the calorimeter gains significantly, which also

affects identification. The high luminosity also means higher statistics, which makes possible

a higher precision measurement if we also decrease the systematic uncertainty of our model

correspondingly. Therefore we also allow a dependence on u‖, the hadronic recoil relative to
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the electron direction. A high recoil is correlated with a highly boosted boson, and electrons

which travel opposite the direction of the recoil are highly boosted as well, with high pT and

high reconstruction efficiency, but electrons which travel opposite the direction of the boost,

in the same direction as the hadronic recoil, have low pT and low reconstruction efficiency.

Therefore, In RunIIb, the SET efficiency model is now parametrized as a five-

dimensional function of SET, peT , ηdet, InstLumi, and u‖. It is derived separately for W and

Z events as a function of these five variables from FullMC samples with the uT upper limit

relaxed from 15 GeV to 30 GeV. The strongest dependence of the (so-called) SET efficiency

is on the SET and the peT , where larger values of SET decrease the efficiency and larger

values of peT increase the efficiency. Essentially, the efficiency depends most strongly on the

ratio SET/peT . Therefore, the SET efficiency is parametrized as a function of this ratio, in

bins of the other variables.

The tuning is done in two steps: First, a reweighting is applied in the FastMC to

make the distribution of the ZB contribution to the SET (SETZB) versus the truth peT agree

with the same distribution in FullMC. We do not use the total value of the SET and the

reconstructed value of the peT , because they are contaminated by underlying energy, and to

tune based on these observables would result in overcorrection and a bias. However, the

dependent variables in the parametrization must be the final simulated observables, so for

the second step, we create a parametrization based on the ratio between the (total value of

the) SET and the reconstructed peT . The second step is performed separately in bins of peT ,

ηdet, InstLumi, and u‖. For each bin in this four-dimensional set, we create a polynomial

parametrization of the ratio between the SET/peT distributions in the reweighted FastMC

and the original FullMC. Then we normalize the parametrized curve to have average value

of unity and multiply it by overall ratio for each (peT , ηdet, InstLumi, and u‖) bin.

7.2.5 U‖ Efficiency

While the SET dependent parametrization described in the previous section is a

good model of the inefficiencies arising from the overall magnitude of the underlying energy,
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it does not fully describe the dependence of efficiency on the distribution of underlying

energy, most importantly, the relative distribution of the hadronic recoil energy and the

electron energy. When the hadronic recoil is close to the electron, it significantly affects

the reconstruction and the identification efficiency of the electron. Therefore, we model an

additional correction to the efficiency which depends on the “u-parallel” variable u‖, which

is the projection of hadronic energy on the direction of the electron momentum, defined by

u‖ = ~uT · ~p
e
T

peT
(7.3)

The u‖ efficiency is modeled as a slope with a turn-on (or “kink-point”)[13] at

slightly positive u‖. In addition, we are experimenting with an additional slope and kink-

point to model some dependence at negative u‖. It used to be measured with a tag-and-probe

method performed on a sample of FullMC Z → ee events, but this method overestimates

the pure u‖, because there are significant correlations with pT and SET. In addition, the

u‖ efficiency is slightly different for Z → ee than for W → eν events. Therefore, we use

the “ratio method”, modeling an efficiency measured from the ratio between the FastMC

(without the u‖ efficiency simulated) and the FullMC or collider data. The discrepancy prior

to the correction is shown in Figure 7.6. The u‖ efficiency is measured from the data W → eν

sample in four bins of InstLumi. The determination of the correction parameters is shown

in Figures 7.8 and 7.10. Figures 7.9, 7.11, and 7.7 show the same ratios calculated after the

efficiency has been applied.

7.2.6 φ-mod Efficiency

The φ-mod efficiency does not need to be simulated because of the calorimeter

fiducial requirements, described in Section 5.2.4.

7.2.7 Electron φ Efficiency

The electron φ-dependent efficiency is due to imperfections such as dead tracker

pixels and dead calorimeter cells. There is also an overall sinusoidal effect due to the difference
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Figure 7.6: Data/FastMC ratio vs. u‖, before correction. RunIIb3 is left, RunIIb4 is right.

InstLumi<4 is left, 4<InstLumi<999 is right. Full InstLumi range is bottom. NOTE: This

figure is from the author’s own work. At the time of writing, it has not been approved by

the D0 collaboration for general public use beyond this dissertation.
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Figure 7.7: Data/FastMC ratio vs. u‖, after correction F applied. RunIIb3 is left, RunIIb4 is
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This figure is from the author’s own work. At the time of writing, it has not been approved

by the D0 collaboration for general public use beyond this dissertation.
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Figure 7.8: Data/FastMC ratio vs. u‖, before correction. RunIIb3 is left, RunIIb4 is right.

InstLumi<2 is top row, 2<InstLumi<4 is bottom row. NOTE: This figure is from the

author’s own work. At the time of writing, it has not been approved by the D0 collaboration

for general public use beyond this dissertation.

in readout time between the top and bottom of the detector. Because we do not expect any

significant correlation between electron φ and other variables, this efficiency is derived by

dividing the sixtyfour-bin φ distribution in W → eν data or FullMC by the distribution from

the corresponding FastMC distribution, to get a value for each φ module. It is shown for

RunIIb4 in Figure 7.12.
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Figure 7.9: Data/FastMC ratio vs. u‖, after correction F applied. RunIIb3 is left, RunIIb4 is

right. InstLumi<2 is top row, 2<InstLumi<4 is bottom row. NOTE: This figure is from the

author’s own work. At the time of writing, it has not been approved by the D0 collaboration

for general public use beyond this dissertation.

7.2.8 Residual Corrections to the H-Matrix and Track-Matching Efficiencies

We have determined the dependences of the H-Matrix and Track-Matching efficien-

cies on electron pT , SET, InstLumi, electron ηdet, and ηphys in the FullMC Z → ee sample, as

described in Section 7.2.3. These are used in the GEANT FastMC, and also form the basis for

the data FastMC. However, the efficiency dependence in the collider data are found to have

non-negligible differences from those in the FullMC. Therefore, we must determine these

differences and add a modification to the FastMC, in the form of parameterized correction
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Figure 7.10: Data/FastMC ratio vs. u‖, before correction. RunIIb3 is left, RunIIb4 is right.

4<InstLumi<6 is top row, 6<InstLumi<999 is bottom row. NOTE: This figure is from the

author’s own work. At the time of writing, it has not been approved by the D0 collaboration

for general public use beyond this dissertation.

functions which are applied in the same manner as efficiencies, using random numbers. The

base sample we use to determine the efficiency of the three cuts is a sample of events in

collider data which have satisfied the following criteria:

Base selection criteria applied to Z → ee events for the H-Matrix efficiency study:

• The event has at least two reconstructed electrons. If more than two, we take the

leading two according to pT (e).
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Figure 7.11: Data/FastMC ratio vs. u‖, after correction F applied. RunIIb3 is left, RunIIb4

is right. 4<InstLumi<6 is top row, 6<InstLumi<999 is bottom row. NOTE: This figure is

from the author’s own work. At the time of writing, it has not been approved by the D0

collaboration for general public use beyond this dissertation.

• The invariant mass, Mee, is between 60 and 130 GeV.

• Recoil pT (uT ) satisfies uT < 30 GeV.

• Both electrons do not fall in Phi Cracks (calorimeter inter-module gaps in φ).

• Both electrons satisfy pT (e) > 25 GeV.

• Both electrons satisfy EMF>0.9.
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Figure 7.12: Electron φ efficiency used in GEANT FastMC, determined from the ratio of the

φ distributions of FullMC and FastMC. It looks “noisy” because each point corresponds

to a single φ-module, and the efficiency depends in part on peculiarities to the individual

modules[20]. NOTE: This figure is from a D0 internal note. At the time of writing, it has

not been approved by the D0 collaboration for general public use beyond this dissertation.

• Both electrons satisfy ISO<0.15.

• Electrons can be either in CC or in EC. If in EC, it must pass the H-Matrix criterion.

• Pass: this electron is in CC, passes H-Matrix, its reconstruction window does not

contain dead cells, and the other electron passes the trigger.

• Fail: this electron is in CC, passes H-Matrix, its reconstruction window does not

contain dead cells, and the other electron passes the trigger.

Base selection criteria applied to Z → ee events for the loose track-match efficiency study:
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• The event has at least two reconstructed electrons. If more than two, we take the

leading two according to pT (e).

• The invariant mass Mee is between 60 and 130 GeV.

• Recoil pT (uT ) satisfies uT < 30 GeV.

• Both electrons do not fall in Phi Cracks (calorimeter inter-module gaps in φ).

• Both electrons satisfy pT (e) > 25 GeV.

• Both electrons satisfy EMF>0.9.

• Both electrons satisfy ISO<0.15.

• Both electrons pass the H-Matrix criterion.

• Electrons can be either in CC or in EC.

• Pass: this electron is in CC, passes the loose track-matching criterion, its reconstruc-

tion window does not contain dead cells, and the other electron passes the trigger.

• Fail: this electron is in CC, fails the loose track-matching criterion, its reconstruction

window does not contain dead cells, and the other electron passes the trigger.

Base selection criteria applied to Z → ee events for the tight track-match efficiency study:

• The event has at least two reconstructed electrons. If more than two, take the leading

two according to pT (e).

• The invariant mass Mee is between 60 and 130 GeV.

• Recoil pT (uT ) satisfies uT < 30 GeV.
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• Both electrons do not fall in Phi Cracks (calorimeter inter-module gaps in φ).

• Both electrons satisfy pT (e) > 25 GeV.

• Both electrons satisfy EMFraction>0.9.

• Both electrons satisfy ISO<0.15.

• Both electrons pass the H-Matrix criterion.

• Both electrons pass the loose track-matching criterion.

• Electrons can be either in CC or in EC.

• Pass: this electron is in CC, passes tight-track-match criterion, and its reconstruction

window does not contain dead cells; and the other electron pass trigger.

• Fail: this electron is in CC, fails tight-track-match criterion, and its reconstruction

window does not contain dead cells; and the other electron pass trigger.

Note that we include events where one electron is in the EC to more closely match

the kinematics of W → eν events. However, we only measure the efficiency of electrons

which are in the CC. We do not allow the electron being tested to have dead cells, as this

would predispose it to failing any of the cuts, and in the case of the pT dependent efficiency,

place the electron in the wrong efficiency bin, due to mismeasurement of the pT .

The residual correction is determined simultaneously for zvtx and ηphys for the H-

Matrix and the tight track-matching efficiencies. For the loose track-matching efficiency, it

is necessary to determine a three-dimensional zvtx, ηphys, and InstLumi correction due to

correlations. We have found that no ηdet or peT correction is needed. In this dissertation,

we present the calculation of the dependence of the H-Matrix and loose and tight track-

matching efficiency correction on the correlated SET and InstLumi observables, but with
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the InstLumi dependence of the loose track-matching efficiency correction removed, because

it is already included in the three-dimensional zvtx, ηphys, and InstLumi correction to the

loose track-matching efficiency.

7.2.8.1 Problems with the Traditional “Tag-and-Probe” Method

Unlike the FullMC sample, which is pure signal, the collider data is contaminated

by background, and we do not have access to the true values of the observables in the

collider data. Therefore, we need some other way of separating signal from background. We

cannot use the traditional version of the “tag-and-probe” method here, because it results in

a bias. This bias is illustrated in Figure 7.13, which shows the efficiency to pass electron

ID, measured in FullMC from every electron in the sample (red), and measured only from

electrons in an event where the other electron passes electron ID (blue). Above the Jacobian

edge, the efficiencies have the same dependence on electron true pT . Below the Jacobian edge,

they deviate from each other, for the following reason: In the “tag-and-probe” method, an

electron is a probe - is tested for passing the electron ID - only if it has a partner electron

which is a tag - passes electron ID. when the probe electron has low pT , it is likely that the

tag electron is highly boosted, having a high pT in the opposite direction of the recoil. This

means that the probe electron is likely to be contaminated by the recoil, and likely to fail

electron ID due to its own low pT . If we treat all electrons equally, the partner electron is

not required to pass electron ID, and a smaller fraction of the low-pT electrons which are

tested will be so contaminated by recoil that they fail electron ID. This effect is accounted

for in the recoil model and the u‖-dependent efficiencies; to avoid double-counting, it must

not be included in this part of the efficiency model.6

6It is true that the effect of the double-counting is not quite as large as implied by Figure 7.13, because
we would actually be correcting based on the ratio between the efficiency in collider data and FullMC.
However, there are differences in the recoil model between data and FullMC, and some portion of those
differences would be double-counted.
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Figure 7.13: Illustration of the bias in the efficiency measured by the traditional tag-and-

probe method. See 7.2.8.1 for discussion[41]. NOTE: This figure is from a D0 internal note.

At the time of writing, it has not been approved by the D0 collaboration for general public

use beyond this dissertation.

7.2.8.2 Alternative “Tag-and-Probe” Method with Background Subtraction

Since we cannot safely identify signal events by tagging electrons with the electron

ID requirement, we need another way to determine how many events in a given bin, which

pass or fail a given cut, are signal. We do not need to identify the specific signal events,

only count them, and we can use a “background-subtraction” method for this purpose.

This method requires creating normalized templates which describe the shape of the signal

(Section 7.2.8.4) and background (Section 7.2.8.3) distribution in a given observable, in this

case, the invariant mass Mee of the candidate electrons. We then find the best fit to the
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distribution of the following parametrized function

F (x;N, f) = N · [f · S (x) + (1− f) ·B (x)] (7.4)

where S (x) is the signal template, B (x) is the background template, f is the best-fit estimate

of the fraction of the distribution that is signal, and N is the integral of the parametrized

function. N is allowed to float to within 10% of the integral of the distribution to allow the

fit more freedom to optimize f . S (x) contains two additional floating parameters (a “shift”

and a “smear”) which are simultaneously determined with f and N in the fit of F (x;N, f).

The role of these parameters in the form of S (x) is described in Section 7.2.8.4. The shape

B (x) is determined first in a separate fit, described in Section 7.2.8.3.

The signal templates are created using FullMC or FastMC samples. When we

use the FastMC, it can be the GEANT version or an earlier tune of the data version; the

subtle differences between the two tunes are negligible for the determination of this efficiency

correction. However, in some cases we find that the FullMC provides a better model of

the failing signal distribution, because the FastMC is tuned to model the distributions for

electrons which pass all cuts whereas the FullMC simulates both passing and failing electrons.

To estimate the shape of the passing and failing signal spectrum in the dependent

variable Mee, we use a data sample with a relaxed set of selection requirements, particularly,

we remove the selection requirements of the cut whose efficiency we are trying to measure.

This results in a data sample that includes signal electrons which pass the cut, signal electrons

which fail the cut, and background. Then, since we cannot identify whether individual

electrons are signal electrons or not, we use a template method to estimate the number of

signal electrons passing or failing a given selection cut.

7.2.8.3 Creating Templates for Background Subtraction

The background template for a specific bin is derived from collider data in that

bin with selections applied to exclude signal events. It will most likely also exclude some

background events, but this is acceptable since we need the shape of the background spec-



125

trum, but not its magnitude, for our template. The selection criteria applied to the data

samples to select background events are similar to the selection criteria for the full sample,

but with the EMF criterion removed. For the H-Matrix background, both electrons must

fail the loose track-matching requirement. For the loose track-matching background, both

electrons must fail the H-Matrix criterion and fail the tight track-matching criterion. For

the tight track-matching background, both electrons must fail the Hmatrix criterion. The

full set of cuts used to select the backgrounds for the H-Matrix, Loose Track-Matching, and

Tight Track-matching efficiencies are:

Base selection criteria applied to Z → ee events to select pure background for H-Matrix

efficiency study:

• The event has at least two reconstructed electrons. If more than two, take the leading

two according to pT (e).

• The invariant mass M(ee) is between 60 and 130 GeV.

• Recoil pT (uT ) satisfies uT < 30 GeV.

• Both electrons do not fall in Phi Cracks (calorimeter inter-module gaps in φ).

• Both electrons satisfy pT (e) > 25 GeV.

• Both electrons satisfy EMFraction > 0.9 .

• Both electrons satisfy ISO < 0.15 .

• Both electrons can be either in CC or EC. There is no requirement for both electrons

to be in CC at the same time.

• Both electrons fail loose-track-match criterion.
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• Both electrons fail tight-track-match criterion.

• Pass: this electron is in CC, HMx7<12 , and its reconstruction window does not

contain dead cells. Other electron must pass trigger.

• Fail: this electron is in CC, HMx7>12 , and its reconstruction window does not

contain dead cells. Other electron must pass trigger.

Base selection criteria applied to Z → ee events to select pure background for loose-track-

match efficiency study:

• The event has at least two reconstructed electrons. If more than two, take the leading

two according to pT (e).

• The invariant mass M(ee) is between 60 and 130 GeV.

• Recoil pT (uT ) satisfies uT < 30 GeV.

• Both electrons do not fall in Phi Cracks (calorimeter inter-module gaps in φ).

• Both electrons satisfy pT (e) > 25 GeV.

• Both electrons satisfy ISO < 0.15 .

• Both electrons fail H-Matrix criterion.

• No EMFraction criterion for both electrons.

• Pass: this electron is in CC, pass loose-track-match criterion, and its reconstruction

window does not contain dead cells. Other electron must pass trigger.

• Fail: this electron is in CC, fail loose-track-match criterion, and its reconstruction

window does not contain dead cells. Other electron must pass trigger.
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Base selection criteria applied to Z → ee events to select pure background for tight-track-

match efficiency study:

• The event has at least two reconstructed electrons. If more than two, take the leading

two according to pT (e).

• The invariant mass M(ee) is between 60 and 130 GeV.

• Recoil pT (uT ) satisfies uT < 30 GeV.

• Both electrons do not fall in Phi Cracks (calorimeter inter-module gaps in φ).

• Both electrons satisfy pT (e) > 25 GeV.

• Both electrons satisfy ISO < 0.15 .

• Both electrons fail H-Matrix criterion.

• Both electrons pass loose-track-match criterion.

• No EMFraction criterion for both electrons.

• Pass: this electron is in CC, pass tight-track-match criterion, and its reconstruction

window does not contain dead cells. Other electron must pass trigger.

• Fail: this electron is in CC, fail tight-track-match criterion, and its reconstruction

window does not contain dead cells. Other electron must pass trigger.

These background requirements are identical to the requirements used in the RunIIb12

analysis, with the exception of the requirement that the other electron passes the trigger.

This requirement was found to be necessary to properly fit to the full sample at low Mee.
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Once the background is selected, it is fit with an ad-hoc template function consisting

of the sum of a gaussian and a tenth order polynomial:

B(x) = p0 · e
− (x−p1)2

2p22 +
13∑
i=3

pi · xi−3 (7.5)

where p0 to p13 are the parameters allowed to float in the fit. After fitting, the template is

then normalized to one.

7.2.8.4 Creating Templates to Model the Signal with the “Kernel Estimation Procedure”

The signal template for the background subtraction procedure is derived from either

a FastMC or FullMC sample of Z → ee events.7 The Monte Carlo samples do not perfectly

describe the signal in collider data, because the energy resolution and response of the detector

is not perfectly modeled as a function of the efficiency dependent variables. Therefore, we

use a modified version of the “Kernel Density Estimation Method”, described in detail in

[39] and [27] where we include a shift and smearing parameter that we allow to float. The

shift and smearing parameters are applied as follows:

The Monte Carlo sample for the signal template is put into a histogram of 1 GeV

bins in Mee . This histogram is converted into a function where every Mee bin is replaced by

a Gaussian function with peak position equal to the bin center, magnitude equal to the bin

content, and width equal to 1 GeV . Parameters are added to allow the peak to shift and

the Gaussian to widen, while keeping the magnitude (i.e. the number of Z → ee events) the

same. Thus the function representing the signal spectrum template is

S(x; s, σ) =
1

N

m∑
i=1

ni√
2π(hi + σ)2

e
− [(x−s)−ti]

2

2(hi+σ)2 (7.6)

hi =
1

2
· (4

3
)

1
5 ·
√

∆xi

3
√

2
·
√
N

ni
(7.7)

7The fast Monte Carlo sample was originally used for the signal template in all cases, because it contains
residual data corrections and should in theory match the data signal shape better. However, it was found
that PMCS does not describe electrons which fail cuts, particularly the loose track-matching cut, as well
as full Monte Carlo does, so for those data cuts, full Monte Carlo was used for the signal template.
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Figure 7.14: Illustration of the signal template with the effect of “smearing” by 5 GeV and

“shifting” by 3 GeV shown[41]. NOTE: This figure is from a D0 internal note. At the time

of writing, it has not been approved by the D0 collaboration for general public use beyond

this dissertation.

where the ∆xi is the bin width of the ith bin. The form of this template function is such

that it is automatically normalized to one[41][2].

7.2.8.5 Calculating the Estimated Signal in an Efficiency Bin

The signal and background templates are normalized and fit to the data spectrum

with the Root MINUIT fitter. For fitting stability, the overall magnitude of the data spectrum

is allowed to float between 0.9 and 1.1 times the magnitude of the input data histogram.

The signal fraction is the coefficient of the signal template in Section 7.4. The estimated
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signal count is calculated via:

n = Neff − keff · (1− f) ·Nfit . (7.8)

keff =
Nbkg

eff

Nbkg
fit

, (7.9)

σ2
keff

=
(Nbkg

fit )2 ·Nbkg
eff + (Nbkg

eff )2 ·Nbkg
fit

(Nbkg
fit )4

=
keff

Nbkg
fit

· (1 + keff) , (7.10)

where Nbkg
eff or Nbkg

fit is the number of background in the pure background histogram.

Therefore, the error of n+ or n− is given by:

σ2
n = Neff + k2

eff · (1− f)2 ·Nfit + k2
eff ·N2

fit · σ2
f + (1− f)2 ·N2

fit · σ2
keff
. (7.11)

The background subtraction procedure is performed once for passing electrons, and

once for failing electrons, in all bins of the variable whose efficiency dependence we are

measuring.

7.2.8.6 Deriving the Correction for the Data Efficiency

To determine the necessary correction to the data FastMC, we must also measure

the FullMC efficiency in the same bins we used to measure the efficiency from collider data.

This is a much easier task, since the sample is all signal, and we do not need to perform

a background subtraction. The efficiency measured from collider data is divided by that

measured from the FullMC sample, and the resulting values are converted to a polynomial

function to modify the efficiency applied in the FastMC. As usual, we conserve efficiency

by scaling the overall efficiency shape to never be larger than one. Figure 7.15 shows the

efficiency correction for the correlated dependent variables SET and InstLumi, for RunIIb3

and RunIIb4.
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Figure 7.15: Ratio between data efficiency and FullMC efficiency vs. SET and InstLumi

(2D “Lego” plot). Residual efficiency correction fit to the ratio and applied in data FastMC

(black 2D curve), with upper (red) and lower (blue) 68% confidence intervals of the curve.

NOTE: This figure is from the author’s own work. At the time of writing, it has not been

approved by the D0 collaboration for general public use beyond this dissertation.

7.2.8.7 Systematic Uncertainty Due to Efficiency Correction

The estimated residual corrections contain an inherent uncertainty due to the lim-

ited statistics of the data sample, as well as the fact that a polynomial function may not be

a perfect model of the dependence. The uncertainty is measured by the covariance matrix

from the fit, which describes the uncertainties of the individual parameters, as well as their

correlations. The uncertainties can be visualized in various ways. For example, Figure 7.16

shows the SET (upper row) and InstLumi (lower row) dependent factors of the efficiency

parameterization in black. The plots also show the same curve with the parameter of the

first order (red), second order (green), and third order (blue), varied up and down by their

uncertainty. However, the variation is misleadingly large in this visualization, because the

correlations described by the covariance matrix are not accounted for.

Figure 7.15 shows the confidence intervals of the parametrized function. The con-

fidence interval at a given point for our parametrized function is the amount of uncertainty
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Figure 7.16: The SET (upper row) and InstLumi (lower row) dependence of the residual

efficiency correction (black), with p1 (red), p2 (green), and p3 (blue) varied up and down by

one σ. RunIIb3 left, RunIIb4 right. NOTE: This figure is from the author’s own work. At

the time of writing, it has not been approved by the D0 collaboration for general public use

beyond this dissertation.

in the value of the function given the uncertainty in the value of the parameters. Therefore,

the standard 68%8 confidence interval is calculated via

(δF (x, y))2 =
∑
i,j

∂F (x, y)

∂pi
Cij

∂F (x, y)

∂pj
(7.12)

To properly describe our confidence in the measurement of the W mass, we need

8To get a different confidence level, the above equation is multiplied by a factor that depends on the
degrees of freedom of the fit and desired confidence level.
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to calculate the systematic uncertainty due to uncertainty in the parameters in our model.

The uncertainty in the W mass due to all the parameters in a single residual correction

is the product of the W variations with the covariance matrix that came from the fit of

the parametric function for the measured residual correction of the data efficiency. The

calculation is described by the following equation:

δMW

δpi
Cij

δMW

δpj
(7.13)

where Cij is the (i, j)th element of the covariance matrix, and δMW

δpi
and δMW

δpj
describe the

dependence of the value of the W mass on the ith and jth parameters. The dependence

of the W mass on the nth parameter is determined by taking a series of measurements of

the W mass, using FastMC samples as pseudodata, and with the parameter varied up and

down in steps of 1
2
σn, where σn =

√
Cnn is the uncertainty in the nth parameter. As can be

seen in Figure 7.17, the slope is determined by a linear fit to the W mass measurement as

a function of δpn. The calculation described in Equation 7.13 is performed for the W mass

measurement for each of the three measurement observables.

In order to get the pure dependence of the W mass measurement on the parameters,

we must remove the effect of statistical variation between the samples. To accomplish this,

we generate all the pseudodata samples simultaneously, and apply the 5N (where N is the

number of parameters) variations of the efficiency to each event as multiplicative weights

instead of using random numbers. Then, the only difference between the samples is due

to the variation in the efficiency, and we can disregard the statistical uncertainty in the

individual measurements when performing the linear fits.

We have performed this calculation by using templates generated from the central

values of the parameters of the fit, and varying the parameters to generate multiple samples

of pseudodata, because this is analogous to the effect we wish to measure, the dependence

of the outcome of our measurement of the W mass on the “true” value of the parameters.

However, to first order, we have verified that we can get the same value by using the central

values of the parameters of the fit to generate a single sample of pseudodata, which can
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be seen in Figure 7.18. The samples generated by varying the parameters are then used to

generate the templates, and the same linear fit is done as before, now varying the templates

used to measure the W mass points instead of varying the pseudodata. The fact that these

calculations give roughly the same result is useful, because if we want to check that the

our uncertainty calculation from pseudodata is similar to that which we get from data, we

can only use the method where we vary the templates (having only access to a single data

sample). The calculation performed on the data in this manner can be seen in Figure 7.19.

7.3 Electron Response Parametrization

The electron response describes the relationship between the true value of the elec-

tron energy and the value that is read out of the detector. An overall scale (multiplicative

factor) and resolution (“smearing” factor) are determined, and there is also an angular de-

pendence to this response. However, not all the effects are purely due to calorimeter response;

there is an effect due to electron energy loss to FSR, there is an effect of the electron energy

reconstruction technique, which simply counts all the energy in a “cone” around the electron

cluster in the calorimeter and may not get it all, and which counts extra energy not due

to the electron. The following subsections describe the techniques used to model all these

effects.

7.3.1 Photon Radiation Effects

The parametrization of the inefficiency caused by FSR was described in Section

7.2.2. Here we describe the simulation of the effect of FSR on the reconstructed electron

energy. First, production of zero, one, or two FSR photons is simulated at generator level.

Production of three or more FSR photons has a negligible contribution. The same two

FullMC samples as were described in Section 7.2.2 are used.

Energy loss due to FSR photons outside the electron window is modeled as a func-

tion of pT , ηphys, ∆R, and X, where X is the fraction of electron energy carried by the

photon, and ∆R is as defined in Equation 7.2.



135

)σ(
i

 pδ
-1 -0.5 0 0.5 180300

80350

80400

80450

80500

80550

mT pmcs fit W mass variation, run3

setp1
setp2
setp3
lumip1
lumip2
lumip3
orig

0.03,3.72)±W mass, corr (syst,stat): 80419.00 (1.35
: 1.35)σ±(syst from 

W mass, orig (stat): 80419.19 (2.23)

error bars are statistical only

mT pmcs fit W mass variation, run3

)σ(
i

 pδ
-1 -0.5 0 0.5 180300

80350

80400

80450

80500

80550

mT pmcs fit W mass variation, run4

setp1
setp2
setp3
lumip1
lumip2
lumip3
orig

0.41,3.58)±W mass, corr (syst,stat): 80419.00 (2.07
: 2.07)σ±(syst from 

W mass, orig (stat): 80421.42 (2.17)

error bars are statistical only

mT pmcs fit W mass variation, run4

)σ(
i

 pδ
-1 -0.5 0 0.5 180300

80350

80400

80450

80500

80550

pT pmcs fit W mass variation, run3

setp1
setp2
setp3
lumip1
lumip2
lumip3
orig

0.04,3.87)±W mass, corr (syst,stat): 80418.99 (1.75
: 1.75)σ±(syst from 

W mass, orig (stat): 80419.23 (2.32)

error bars are statistical only

pT pmcs fit W mass variation, run3

)σ(
i

 pδ
-1 -0.5 0 0.5 180300

80350

80400

80450

80500

80550

pT pmcs fit W mass variation, run4

setp1
setp2
setp3
lumip1
lumip2
lumip3
orig

setp1
setp2
setp3
lumip1
lumip2
lumip3
orig

0.52,3.71)±W mass, corr (syst,stat): 80418.99 (2.55
: 2.54)σ±(syst from 

W mass, orig (stat): 80421.39 (2.25)

error bars are statistical only

pT pmcs fit W mass variation, run4

)σ(
i

 pδ
-1 -0.5 0 0.5 180300

80350

80400

80450

80500

80550

MET pmcs fit W mass variation, run3

setp1
setp2
setp3
lumip1
lumip2
lumip3
orig

0.28,4.19)±W mass, corr (syst,stat): 80419.00 (4.05
: 4.05)σ±(syst from 

W mass, orig (stat): 80418.72 (2.51)

error bars are statistical only

MET pmcs fit W mass variation, run3

)σ(
i

 pδ
-1 -0.5 0 0.5 180300

80350

80400

80450

80500

80550

MET pmcs fit W mass variation, run4

setp1
setp2
setp3
lumip1
lumip2
lumip3
orig

setp1
setp2
setp3
lumip1
lumip2
lumip3
orig

1.38,4.10)±W mass, corr (syst,stat): 80419.00 (5.58
: 5.56)σ±(syst from 

W mass, orig (stat): 80431.01 (2.48)

error bars are statistical only

MET pmcs fit W mass variation, run4

Figure 7.17: The central values and variation (by varying the pseudodata) of the W boson

mass in pseudodata with the parameters from the SET-InstLumi dependent efficiency cor-

rection. Top row is mT based measurement, middle row is peT based measuerment, bottom

row is MET based measurement. Left column is RunIIb3, right column is RunIIb4. NOTE:

This figure is from the author’s own work. At the time of writing, it has not been approved

by the D0 collaboration for general public use beyond this dissertation.
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Figure 7.18: The central values and variation (by varying the template) of the W boson mass

in pseudodata with the parameters from the SET-InstLumi dependent efficiency correction.

Top row is mT based measurement, middle row is peT based measuerment, bottom row is

MET based measurement. Left column is RunIIb3, right column is RunIIb4. NOTE: This

figure is from the author’s own work. At the time of writing, it has not been approved by

the D0 collaboration for general public use beyond this dissertation.
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Figure 7.19: The central values and variation (by varying the template) of the blinded W

boson mass in collider data with the parameters from the SET-InstLumi dependent efficiency

correction. Top row is mT based measurement, middle row is peT based measuerment, bottom

row is MET based measurement. Left column is RunIIb3, right column is RunIIb4. NOTE:

This figure is from the author’s own work. At the time of writing, it has not been approved

by the D0 collaboration for general public use beyond this dissertation.
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The relationship between the difference in electron reconstructed energy due to the

radiated photon and the true amount of energy carried by the photon is described by κ:

κ = −E
no FSR
reco − Ereco

Eno FSR
true − Etrue

(7.14)

= −E
no FSR
reco − Ereco

X · Eno FSR
true

(7.15)

where Eno FSR
reco is what the reconstructed electron energy would be if the electron had not

undergone FSR, and Eno FSR
true is what the true electron energy would be if the electron had

not undergone FSR. That is, the denominator is the true energy of the radiated photon, and

the numerator is the reconstructed energy of the radiated photon.

The plots in Figure 7.20 show κ dependence in agreement with the following ex-

pectations: At high ∆R, we expect κ = −1 since the photon falls entirely outside of the

electron reconstruction window. At large values of X and intermediate ∆R, that is, when the

photon is close enough and of high enough energy that the cluster is reconstructed around

it, we expect κ ≈ 0 since the energy remaining to the electron is much less than the photon

energy in the denominator. At low ∆R, when the electron and the photon are approximately

collinear, we expect negative values of κ, the magnitude of which depends on X: at high X,

dead material losses are less significan, since the photon loses energy slower than the electron,

and the numerator is close to 0, but at low X, dead material losses are more significant and

the numerator is larger. The numerator in this case represents the magnitude of the FSR

energy that survives after traveling through the dead material, and hence κ is the fraction

of the FSR energy that survives.

If an electron passes the FSR efficiency cut, its energy loss via FSR is simulated by

combining the true post-FSR energy of the electron with the true energy of the FSR photon

multiplied by κ. This preliminary value of the reconstructed electron energy (called “FSR

photon merged”) will be modified by additional response parametrizations at a later stage.
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Figure 7.20: Fraction of FSR photon energy κ that is lost by the electron as a function of

photon energy fraction X in bins of ∆R. Dependence is discussed in Section 7.3.1. This is

only a subset of the FSR response measurements, corresponding to the bin with 0.1 < |η| <
0.3, 3 < InstLumi < 3.5, and 37.5 < peT < 45 GeV[20]. NOTE: This figure is from a D0

internal note. At the time of writing, it has not been approved by the D0 collaboration for

general public use beyond this dissertation.
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Figure 7.21: Left: Value of the Z boson mass determined from collider data for each ηdet

category, before ηdet-dependent gain constants have been applied. Right: The ηdet-dependent

gain constants, derived as described in Section 7.3.2[21]. NOTE: This figure is from a D0

internal note. At the time of writing, it has not been approved by the D0 collaboration for

general public use beyond this dissertation.

7.3.2 Dependence of the Calibration on Detector η

The energy responses of the the towers at different ηdet values are not exactly the

same. Therefore we calibrate the FastMC to the calorimeter with five gain parameters

corresponsing to the five ηdet categories. We optimize the gain parameters by maximizing

the agreement between the known value of the Z mass and its value measured from data

(using FastMC templates derived with those gain parameters), for all fifteen samples each

corresponding to one of the ηdet categories in Table 6.2.

7.3.3 Energy Response and Resolution

After the effect of FSR on the electron energy is simulated, as described in Section

7.3.1, the next step is to simulate the energy response and resolution of the detector. The
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reconstructed electron energy is calculated via

E = REM (E0)⊗ σEM (E0) + ∆E (7.16)

where E0 is the FSR photon merged true electron energy (Section 7.3.1), E is the recon-

structed energy, REM (E0) is the calorimeter response (Section 7.3.3.1), σEM is the electron

energy resolution (Section 7.3.3.2), and ∆E is the term correcting for electron reconstruction

window effects (Section 7.3.5).

7.3.3.1 Response

The energy response of the EM calorimeter for electrons is modeled as

REM (E0) = α · (E0 − Ē0

)
+ β + Ē0 (7.17)

where α and β are the scale and offset of the calorimeter response to electrons, and Ē0 ≡
43 GeV is the mean transverse energy of electrons in Z → ee events. α and β are determined

separately for FullMC and data using the standard samples of FullMC and data Z → ee

events. The constant Ē0 has no physical interpretation; its purpose is to improve the stability

of the fit to determine the model parameters.

If the FSR simulation is perfectly accurate, the electron response parameters will

not include any contribution from FSR. However if it is poorly simulated, the missing depen-

dence may be partially absorbed by the scale and/or the offset. Likewise, at this stage, the

underlying event, other pp̄ interactions, and energy loss in upstream material have already

been simulated by the MB/ZB model and the dead material correction. The scale and offset

are intended to adjust for small imperfections in earlier components of the model, and we

therefore expect α ≈ 1 and β ≈ 0. These approximations are confirmed by the measurement.

The calorimeter response parameters, α and β are determined by using a log-

likelihood method9 to maximize the agreement between FastMC templates, generated with

9This is a computationally intensive method requiring a parametrization of each bin’s dependence on α
and β. See [15] for more information.
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a range of values for α and β, and FullMC or data of the two-dimensional distribution of

mreco
Z and f recoZ , two quantities which describe the dependence of the Z mass pole shape on

the electron energies. The significance of mreco
Z , is obvious: it is the reconstructed mass of

the Z boson, measured by calculating the dilepton center-of-mass from the electron energies

and their opening angle:

mreco
Z = mee =

√
2Ee1Ee2 (1− cosω) (7.18)

The meaning of fZ is more obscure, so we will first define it and then describe its

significance:

fZ =
(Ee1

0 + Ee2
0 ) · (1− cosω)

mZ

(7.19)

The parameter fZ is sensitive to the opening angle and the energy of the electrons,

and is therefore a good variable for describing the kinematics of the decay.10 The dependence

of the mee peak position on fZ is sensitive to β. This can be shown by taking the following

Taylor expansion of mee, using the fact that α− 1� 1 and β � Eei :

mee =
√

2
(
α · (Ee1

0 − Ē0

)
+ β + Ē0

) (
α · (Ee2

0 − Ē0

)
+ β + Ē0

)
(1− cosω) (7.20)

=
√

2
(
αEe1

0 + β + (1− α) Ē0

) (
αEe2

0 + β + (1− α) Ē0

)
(1− cosω) (7.21)

≡
√

2 (αEe1
0 + β′) (αEe2

0 + β′) (1− cosω) (7.22)

= α ·
√

2Ee1
0 E

e2
0 · (1− cosω) + β′ · (Ee1

0 + Ee2
0 ) (1− cosω)√

2Ee1
0 E

e2
0 · (1− cosω)

+O (β′2) (7.23)

= αmZ + β′ · (Ee1
0 + Ee2

0 ) (1− cosω)

mZ

+O (β′2) (7.24)

= αmZ + β′fZ +O (β′2) (7.25)

where β′ = β + (1− α) Ē0, and mZ is the truth value of the Z boson mass. Note that this

expansion is only to illustrate the relationship between the fit parameters, α and β, and the

dependent variables of the distribution used for the fit, mee and fZ ; Equation 7.18 is the one

10In principle one could derive the scale and offset from the mZ distribution only, but this variable is not
sensitive enough given the available statistics. One could also use a 3D distribution, substituting e.g. ηe1

and ηe2 for fZ , but this would severely decrease the statistics per bin, as well as increase the computational
intensity of the fit.
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used to calculate the reconstructed Z boson mass variable that is used for tuning. Also note

that the Taylor expansion leads to an expression for fZ that depends on the true electron

energies; we tune α and β using f reco
Z which behaves very similarly.

To account for the dependence of the response on luminosity, particularly at high

lumonsity due to anomalous currents described in Section 2.3.6.5, α and β are determined

in four InstLumi bins, separately for RunIIb3 and RunIIb4. Their best fit values and their

covariance can be seen in Figure 7.22.

7.3.3.2 Resolution

The energy resolution of the EM calorimeter for electrons is modeled as

σEM (E0)

E0

=

√
C2
EM +

S2
EM

E0

+
N2
EM

E2
0

(7.26)

where CEM , SEM , and NEM are the constant, sampling, and noise terms for the EM calorime-

ter.

The sampling term does not have the “textbook” (sin θ)−
1
2 form, due to the sig-

nificant amount of upstream material in which early parts of the electron showers are lost.

After a very intensive study[54], the following functional form was determined, dependent

on the electron energy and incident angle:

SEM =

(
S1 +

S2√
E0

)
· e

Sexp/ sin θ

eSexp
(7.27)

where

Sexp = S3 − S4/E0 − (S5/E0)2 (7.28)

In the FullMC simulation, CEM and NEM are both negligible. Therefore the sampling term

SEM can be determined independently from the distribution of the ratio of reconstructed to
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Figure 7.22: One-σ contours for the energy scale α and offset β derived from the template

fit to the (MZ ,fZ) distribution, in FullMC (top) and data (bottom) for RunIIb3 (solid lines)

and RunIIb4 (dashed lines)[20][21]. NOTE: This figure is from a D0 internal note. At the

time of writing, it has not been approved by the D0 collaboration for general public use

beyond this dissertation.
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truth energy in a FullMC simulation of single electrons. The parameters Si are found to be:

S1 = 0.152035 (7.29)

S2 = 0.151266 (7.30)

S3 = 1.39247 (7.31)

S4 = 1.45474 (7.32)

S5 = 10.3506 (7.33)

with negligible errors.

These parameters are used in both the GEANT and data FastMC. A small adjustment

to the sampling resolution will be made for both data and FullMC, and is described in Section

7.4.5.

Detector noise is relatively small at the Z and W decay energies and most of it

is included in the Soft Recoil model described in Section 7.4.2. Any residual effects are

negligible and therefore we can also set the noise term NEM = 0 in data.

The constant term CEM is extracted by comparing the width of the reconstructed

Z mass peak to its true width. As stated above, in FullMC it is found to be negligibly small,

(0.29± 0.08) %, but in the data it is found to be

CEM = (2.00± 0.07) % (7.34)

The difference between FullMC and data is due to the fact that the constant term

arises mainly from cell-to-cell gain variations which are not simulated in FullMC. However,

the term is still kept in the FastMC for the FullMC closure test, in order to absorb any small

“missing energy smearing”[42].
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7.3.4 Angular Resolution

The electron angular resolution is modeled in FastMC using two “smearing” pa-

rameters:

ηsmear = ηgen ⊗ ση (7.35)

φsmear = φgen ⊗ σφ (7.36)

where ση and σφ are the η and φ resolutions of the tracking system. ση and σφ are measured

in FullMC to be ση = 2× 10−3 and σφ = 0.4 mrad.

7.3.5 Electron Window Effects

The electron reconstruction window is a cone of radius 0.2 in (η, φ). Of course,

the boundary of this cone is not perfectly respected by the electron(s) and hadronic recoil

of a W → eν (Z → ee) decay. Some of the electron energy might fall outside of the edge

of the cone, and energy from the underlying event, including the hard recoil, can fall inside

the cone’s boundaries. Therefore, we need the electron energy bias term, ∆E, to account

for energy in the electron cone which comes from sources other than electron and FSR

photons, and energy outside the electron cone which comes from the electron. This term

includes contributions from the hard recoil, spectator parton interactions, and additional

pp̄ interactions. Zero-suppression effects are also included implicitly. Note that since ∆E

describes energy leakage across the electron window boundary, which affects the energy

budget on both sides, it is related to the hadronic recoil energy bias, ∆u‖, which we describe

here and discuss in Section 7.4.4.

To model ∆u‖, we examine the energy deposition in “empty windows” of W → eν

events. An “empty window” is a region bounded by the shape of an electron reconstruction

cone pointed in a random direction which does not overlap with the actual electron recon-

struction. We create libraries of these energy deposition values as a function of the SET,

InstLumi, u‖, ηphys, and ηdet of the event. Then, from the libraries, we create a histogram
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of the energy deposition for each bin of SET, InstLumi, u‖, ηphys, and ηdet. We do this

separately for FullMC and data. During the simulation, ∆u‖ is determined by randomly se-

lecting an energy deposition value from the histogram corresponding to the SET, InstLumi,

u‖, ηphys, and ηdet of the current event. A fraction of the events, the ∆u‖ “zero-fraction”,

will not have any contribution in the “empty window” and the histograms reflect this.

In addition to its magnitude, we also need to model the effect of ∆u‖ being so large

that it prevents our reconstruction procedure from identifying the electron. This efficiency

is determined, using the wmass CAEPfilter samples described later in this section, in bins

of peT and ηphys, as a function of the ratio ∆u‖/p
e
T , and applied using an iterative stochastic

method.11

To model ∆E, we need a way to convert from the ∆u‖ which is subtracted from the

recoil to the ∆E which is added to the electron. The two values are not equivalent, because

the electron energy is corrected for dead material energy loss while the hadronic recoil energy

is not, and also because zero-suppression affects large concentrated energy deposits such as

∆E differently than it affects diffuse background energy such as ∆u‖.

Three closely related FullMC samples are used. The first is just the “full sam-

ple” of complete W → eν events. The other two are created simultaneously using the

wmass CAEPfilter package. The “electron only” sample contains only the electron and FSR

photons, and the “no electron” sample contains everything else, specifically the hard recoil,

spectator parton interactions, and additional pp̄ interactions. All three versions are run

through the full detector simulation, and are passed through the standard reconstruction

procedure, including noise suppression. Then for individual events, the electron energy bias

calculated via

∆E = E2 − E1 (7.37)

where E1 is the pure electron signal (including FSR) measured in the “electron only” sample,

and E2 is the energy deposition in the “full sample”, both measured in the electron window

11See slide 7 of [40] more details.
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only. The recoil energy bias ∆u‖ is likewise measured from the “no electron” sample.

From these measurements, we can relate ∆E and ∆u‖ to each other. For non-zero

∆u‖, ∆E is determined via the parametrized function

∆E = p0 + p1 · ∆u‖
sin(θ)

(7.38)

where p0 and p1 are determined from fits to the ∆E vs. ∆u‖ distribuion, measured indi-

vidually in bins of ηphys, p
e
T , u‖, InstLumi, and SET. We validate our model by comparing

the ∆E dependence on InstLumi, SET, electron energy, ηdet, and ηphys in the Fast and the

FullMC.

7.4 Hadronic Recoil Parametrization

Accurate modeling of the Hadronic Recoil is crucial to determining the /ET and mT

distributions. The true momentum of the hadronic recoil from the production of a W or Z

boson is expected to be exactly opposite that of the boson produced. However, the measured

quantities do not exactly balance each other, due to the low response and large fluctuations

of the calorimeter. In addition to the “hard” component of the recoil (defined as the true

recoil) there are overlaid “soft” components which are included in the measurement of the

hadronic energy.

The hadronic recoil is an umbrella term covering everything other than the decay

products of the vector boson: the hard recoil of the spectator partons left over from the

proton-antiproton collision that produced the vector boson, the collisions of other proton-

antiproton collisions. It is modeled as having four components, which will be discussed in

subsequent sections: Hard recoil (Section 7.4.1), soft recoil (Section 7.4.2), and electron

window effects, the last of which is split up into non-FSR related leakage of electron or recoil

energy across the electron window boundary (Section 7.4.3), and leakage out of the electron

window due to FSR (Section 7.4.4).

~uT = ~uHard
T + ~uSoft

T + ~uElec
T + ~uFSR

T (7.39)
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FastMC toy model for RunIIb4, as a function of electron ηdet (top left), electron ηphys (top
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SET (bottom right)[20]. NOTE: This figure is from a D0 internal note. At the time of

writing, it has not been approved by the D0 collaboration for general public use beyond this

dissertation.
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7.4.1 Hard recoil model

The hard recoil is the part of the hadronic response that balances the boson mo-

mentum, modified (“smeared”) by the detector response and resolution:

~uHard
T = ~qsmeared

T (~qT ) (7.40)

where ~qT = −~pZT is the true recoil vector and ~uT is smeared recoil vector. It is parametrized as

a function of the true hadronic recoil from the vector boson, ~qT = −~pT (W/Z), the luminosity,

and SET. The parametrization function f (~qT ) is derived from a sample of FullMC Z → νν

events with Minimum Bias turned off, and with a Zero Bias overlay. Since the neutrinos

deposit no energy in the detector, all energy other than ZB energy is due to the recoil

of the Z boson. The Zero Bias overlay is necessary because of the significant effect of

pileup modifying the measured fractional energy response to hadronic recoil, shown in Figure

7.24. Specifically, a cell with pure hard recoil energy and ZB energy contributions that are

each below the zero suppression level may surpass the zero suppression level when the two

contributions are combined, an important effect which would be lost if the hard recoil energy

were simulated alone. We require the Z → νν events to satisfy |ην | < 1.3 to match the

kinematics of Z → ee events.

To obtain the parametrized model for the detector response to the hard recoil,

we use a technique called “ZB/MB cell-by-cell subtracted reconstruction”.12 A sample is

generated in FullMC, where each event corresponds to an event in the FullMC Z → νν

sample, but only has the ZB of that event, and not the boson decay. For each event, the

simulated cell-energies for the ZB-only event are subtracted from the simulated cell-energies

for the Z boson decay. The difference is then the effective contribution to calorimeter energy

measurement from the Z boson decay. Histograms created from the ZB subtracted event

sample are then used to model the detector’s response and resolution to the hadronic recoil

energy, as well as the hard recoil contribution to the SET.

12It is somewhat confusingly referred to as the “single neutrino subtraction” in many references, because
the easiest way to generate a ZB sample is to simulate single neutrino events. (The neutrino has no
significance or effect on the sample.)
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Figure 7.24: Fractional energy response of hadronic recoil in FullMC Z → νν events, mea-

sured relative to transverse momentum of Z vector boson. With (red, dotted) and without

(blue, solid) ZB overlay[20]. NOTE: This figure is from a D0 internal note. At the time of

writing, it has not been approved by the D0 collaboration for general public use beyond this

dissertation.

Our procedure for modeling the detector response models the response resolution

with three sets of probability density functions (PDFs) which describe the correlation be-

tween the true recoil, ZB SET, ∆φ, and uT/qT . A single histogram is generated for each

pZT -InstLumi bin. Two examples can seen in Figure 7.25. To simulate the response for a

given event, we select the histogram with the appropriate pZT and InstLumi, and take the

horizontal cross section of the histogram at the appropriate ZB SET. This cross section serves

as a PDF from which the uT/qT is randomly selected.

Once the response has been determined, the recoil angular (φ) resolution is modeled

in a similar way, using 2D histograms of ∆φ/π vs. uT/qT , each corresponding to a bin of

pZT and φ. Two examples can be seen in Figure 7.26. Now a vertical cross section of the

histogram, at the value of uT/qT which was just selected, is used as the PDF from which a
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Figure 7.25: Examples of histograms which describe the correlation between ZB SET and

uT/qT , and which are used to select random values of uT/qT for events[20]. NOTE: This

figure is from a D0 internal note. At the time of writing, it has not been approved by the

D0 collaboration for general public use beyond this dissertation.
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Figure 7.26: Examples of histograms which describe the correlation between ∆φ/π and

uT/qT , and which are used to select random values of ∆φ for events[20]. NOTE: This figure

is from a D0 internal note. At the time of writing, it has not been approved by the D0

collaboration for general public use beyond this dissertation.

value of ∆φ is randomly selected.
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Figure 7.27: Examples of histograms which describe the correlation between uT and SET−uT ,

and which are used to select random values of SET− uT for events[20]. NOTE: This figure

is from a D0 internal note. At the time of writing, it has not been approved by the D0

collaboration for general public use beyond this dissertation.

Finally, the contribution to the SET due to the (vector) hard recoil must be simu-

lated. Again, we use 2D histograms, now describing the correlation between uT and SET−uT ,

in bins of pZT . Two examples can be seen in Figure 7.27. A horizontal slice at the appropriate

uT gives the PDF from which the value of SET− uT is randomly selected.

So far, this model is determined using FullMC generated samples. After some fine

tuning, described in Section 7.4.5, it can be applied to FullMC or collider data[14].

7.4.2 Soft recoil model

The soft recoil model describes the energy contribution from the spectator partons,

also called the “underlying event”, or Minimum Bias (MB), and additional energy in the

detector from other proton-antiproton interactions from the current or previous events, which

is also called “pileup” and is the main contributor to the Zero Bias (ZB). It also includes a

contribution from detector noise. It cannot be modeled from first principles; therefore we

build MB and ZB event libraries from which we can look up the soft recoil contribution to
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our simulated events. For FullMC, underlying event energy is modeled using a library of

MB events generated in FullMC with ZB overlay, with the ZB subtracted using the “ZB/MB

cell-by-cell subtracted reconstruction” procedure described in Section 7.4.1. For data, we

use collider MB events which are triggered by an inelastic reaction, and which have at most

one PV. For both data and FullMC, the energy contribution from other pp̄ interactions is

modeled using a lookup table for the /~ET (i.e. the vector sum of transverse momenta) from

ZB events recorded in non zero-suppressed mode, selected from collider data with the ZB

trigger requirement. The library (indexed by run number) of these events is used both in the

Full and FastMC, so that the luminosity profiles of the Full and FastMC are identical, and

very similar to the luminosity profile of the collider data (but not exactly the same, since

different ZB events are not used to measure the W mass).

For both data and FullMC, the MB events also need to be reweighted so that the

SET spectrum (sum of hard, ZB, and MB components) in the FastMC simulation matches

the SET spectrum of the FullMC generated Z → νν events. The reweighting is performed

by adding the MB events to the library based on the MB SET to some (non-zero) power.

A fraction of events, the MB “zero-fraction”, in the library will also have no contribution

from MB, due to there being no inelastic collisions in the event. The values of the power

and the MB zero-fraction are varied until maximal agreement (via the χ2 method) between

the Fast and FullMC is achieved. The χ2 dependence on these two parameters for RunIIb3

and RunIIb4 can be seen in Figure 7.28.

Some effects, such as detector noise and soft interactions without a primary vertex,

will be included in both the ZB and the MB model. To remove the effect of this double-

counting, we “de-weight” the MB contribution with the ad-hoc multipurpose correction

factor αMB. It is “multipurpose” because it is also used to remove the double-counting of

detector noise and soft interactions without a primary vertex, and to fine-tune the soft recoil

resolution. αMB is determined simultaneously with some other fine-tuning parameters, using

width of the η imbalance of Z → ee events, as described in Section 7.4.5.

After rescaling of the MB library and determination of αMB, the soft recoil momen-
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Figure 7.28: RunIIb3 (left) and RunIIb4 (right) χ2 distributions used to find the best values

of the zero-fraction and the MB SET power. These values are used when building the MB

library[20]. NOTE: This figure is from a D0 internal note. At the time of writing, it has not

been approved by the D0 collaboration for general public use beyond this dissertation.

tum contribution to an event is simulated in the FastMC with the following parametrization,

~uSoft
T = −√αMB · /~E

MB

T − /~E
ZB

T (7.41)

7.4.3 Electron Window Effects (non-FSR leakage)

The contribution to the hadronic recoil energy measurement from electron window

effects is modeled as

~uELEC
T =

∑
e

[−∆u‖ · p̂T (e) + ~pLEAK
T

]
(7.42)

where the first term in the sum is the hadronic energy that falls in the electron reconstruction

window and is therefore not counted in the recoil measurement, and the second term is the

electron energy that falls outside the electron reconstruction window and is therefore included

in the recoil measurement. The determination of ∆u‖ was discussed in Section 7.3.5, and

p̂T (e) is the direction of the smeared electron[32].

The second term is the electron energy that leaks outside the electron reconstruction
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window, and is therefore included in ~uT even though it is not part of the recoil. The electron

energy leakage is parametrized as a function of peT and ηdet, and determined from a single

electron FullMC simulation. The cases with and without in-cone FSR photons are treated

separately, since in-cone FSR almost doubles the leakage rate. Out-of-cone FSR contributions

to ~uT are discussed in the next section.

7.4.4 Electron Window Effects (FSR leakage)

The FSR contribution to the reconstructed transverse recoil,

~uFSR
T =

∑
γ

~pT (γ) (7.43)

is FSR energy that falls outside the electron window and is therefore not included in electron

energy measurement, but is included in the recoil measurement. This contribution to the

recoil energy has been studied with a FullMC simulation of single photon events with a

ZB overlay, with the “ZB/MB cell-by-cell subtracted reconstruction” procedure described in

Section 7.4.1 applied. The FSR “leakage” out of the electron window and into the hadronic

recoil region is interpolated from a 4D “histogram”13 in the photon pseudorapidity ηphys (γ),

photon true energy in the transverse plane pT (γ), the fraction of the electron’s energy carried

by the photon X, and the event SET. The probability that the FSR photon will be lost

entirely is interpolated from a 2D “histogram” in pT (γ) and ηphys (γ).

7.4.5 Fine-tuning the Recoil Model

The hard recoil model described so far is based on simulations of the recoil from

simulated neutrino events. However, for our FullMC and collider data, the response and

resolution are slightly different due to the underlying event and additional energy typical

of a vector boson production and decay. To account for the differences in the recoil from a

massive vector boson, we fine-tune the model with the following correction.

13Not a histogram in the statistical sense, but an array of values stored in the same software structure we
use for histograms.
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The component of the hadronic recoil in the direction of the vector boson momen-

tum,

uνν‖ = uννT cos (∆φ) (7.44)

is modified via

uHARD
‖

qT
=
(
r0 + r1e

−qT /τHAD
)〈uHARD

‖

qT

〉
+ σ0

(
uνν‖
qT
−
〈
uHARD
‖

qT

〉)
(7.45)

while the perpendicular component of the hadronic recoil,

uHARD
‖ = uννT sin (∆φ) (7.46)

is not modified.

In the first term of the correction to the parallel part of the recoil, r0 is the “relative

scale” and r1 is the “relative offset” which is important at low values of the recoil momentum

relative to the exponential term τHAD. The form of this part of the correction was determined

by comparing a FullMC pure recoil (Z → νν without ZB overlay) sample with a FullMC

Z → ee sample. In the second term, σ0 is a relative sampling term used to adjust the hadronic

energy resolution. The mean values,

〈
uHARD
‖
qT

〉
, are determined from the histograms shown

in Figure 7.26.

The parameters of this ad-hoc model are tuned using the mean and width of two

diagnostic variables, described first in Section 3.6. The first, the η imbalance,

ηimb = [~uT + ~pT (ee)] · η̂ (7.47)

is the discrepancy (or “imbalance”) between the directly measured recoil of the Z boson and

its transverse momentum as measured from the two electrons, projected onto the inner bi-

sector of the angle between the two electrons, η̂. The second is the perpendicular component

of the imbalance,

ξimb = [~uT + ~pT (ee)] · ξ̂ (7.48)

The hard and soft recoil contributions are modeled independently, however they

have correlations, mainly due to noise suppression, that must be correctly modeled in the
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FastMC simulation. The multi-purpose parameter, αmb, introduced in Section 7.4.2, also

provides a “de-weighting” effect to remove double-counting of effects present in both the

hard recoil and the MB.

We simultaneously tune all five parameters (r0, r1, τHAD, σ0, and αMB) by creating

high statistics templates of the ηimb distribution from FastMC samples generated with a

range of values of for all the parameters. We create two χ2 statistics, one for the mean of

the η imbalance in ten equally weighted smeared pT (ee) bins, and one for the RMS width

of the η imbalance in the same ten bins. We fine-tune the response parameters (r0, r1,

τHAD) by minimizing the χ2 for the mean of the η imbalance and fine-tune the resolution

parameters (σ0, and αMB) by minimizing the χ-square for the width of the η imbalance. This

tuning is done separately for FullMC and data. The comparisons between the FullMC and

GEANT FastMC are shown in Figure 7.29. As usual, we place a 30 GeV upper limit on recoil

magnitude during tuning.

The best fit values for the RunIIb3 GEANT tuning of the FastMC are found to be σ0 =

1.00497±0.01531, αMB = 1.15512±0.02085, r0 = 1.01104±0.002575, r1 = 0.40043±0.05896,

and τHAD = 3.47072± 0.31335.

The best fit values for RunIIb4 GEANT tuning of the FastMC are found to be σ0 =

1.00087± 0.01359, and αMB = 1.26481± 0.01786, r0 = 1.01239± 0.002464, r1 = 0.329769±
0.09765, and τHAD = 3.41273± 0.32878.

The complete correlation matrix, used for systematic error estimation, for the

RunIIb3 GEANT tuning of the FastMC is:

σ0 αMB r0 r1 τHAD

σ0 1 −0.6084 0.3086 −0.005799 −0.1888

αMB −0.6084 1 −0.0952 −0.1444 0.09492

r0 0.3086 −0.0952 1 −0.05547 −0.4877

r1 −0.005799 −0.1444 −0.05547 1 −0.4851

τHAD −0.1888 0.09492 −0.4877 −0.4851 1

The complete correlation matrix, used for systematic error estimation, for the
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Figure 7.29: RunIIb3 (left two plots) and RunIIb4 (right two plots) FullMC vs. FastMC

comparison (first and third) and difference (second and fourth) of the mean (top) and width

(bottom) of the η imbalance for the ten pT (ee) bins used for fitting[20]. NOTE: This figure

is from a D0 internal note. At the time of writing, it has not been approved by the D0

collaboration for general public use beyond this dissertation.
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RunIIb4 GEANT tuning of the FastMC is:

σ0 αMB r0 r1 τHAD

σ0 1 −0.533 0.3172 0.105 −0.2118

αMB −0.533 1 −0.07399 −0.4181 0.3105

r0 0.3172 −0.07399 1 0.09593 −0.4152

r1 0.105 −0.4181 0.09593 1 −0.7885

τHAD −0.2118 0.3105 −0.4152 −0.7885 1

The best fit values for RunIIb34 data (parameters were derived for combined runs

to take advantage of combined statistics) tuning of the FastMC are estimated in preliminary

studies to be σ0 = 1.10558, and αMB = 0.646, r0 = 0.984521, r1 = 0.647967, and τHAD =

5.10032.

7.5 Bias in W Mass from Tuning with Z Events

As can be seen in Figure 7.30, the electrons produced in W boson decays and the

electrons produced in Z boson decays occupy different bands in η vs. electron energy space.

Therefore, if flaws in the energy loss correction lead to a mismeasurement of the energy scale

(which is tuned with FullMC and data Z boson events), a bias in the W mass will result.

We quantify the size of this bias with the following calculation.

First, we compare the fractional discrepancy between truth and reconstructed elec-

tron energy for simulated W → eν and Z → ee events, and take the difference, shown in

the lower plot of Figure 7.31. The FastMC is tuned to model this translation from truth to

reconstructed energy for Z events, therefore any differences between the two distributions

illustrate the inability of the Z-tuned FastMC parametrization to correctly model W events.

The upper plot in Figure 7.31 is the true electron energy distribution of W → eν events.

The convolution of the lower plot with the upper plot applies the disrepancy in the lower

plot to the upper plot, modifying the true electron energy distribution to what it would look

like if it were only modified by the “energy scale mistake”. The W mass derived from the
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Figure 7.30: Mean and one-σ boundary of electron energy vs. η distribution for lower energy

W → eν (black, solid) and higher energy Z → (red, dashed) events. Because of the different

distributions for the W and Z electrons, we must determine the systematic uncertainty from

measuring the W mass from templates tuned with Z events. [7]

convolved energy distribution is compared with the W mass derived from the unmodified

energy distribution, and the difference is a measure of the bias in the W mass resulting from

using Z events in the tuning process. This bias, of order 5 MeV, is included in the systematic

uncertainty due to the electron energy loss model.
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Figure 7.31: True energy distribution of W → eν electrons (top). Difference between the

fractional discrepancies between truth and reconstructed electron energy for simulated W →
eν and Z → ee events (bottom). The difference between the relationship of the reconstructed

to the truth electron energy ofW vs. Z events is a measure of the bias in theW mass resulting

from the use of Z events to tune the measurement templates. [7]
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Chapter 8

BACKGROUNDS

There are three non-negligible sources of background in the W → eν event sample:

QCD multi-jet (mostly di-jet), “heavy lepton” W decays (W → τν → eννν), and di-lepton

Z boson decays (almost entirely Z → ee). These types of events pass the selection cuts at a

rate high enough to affect the shape of the distributions used to measure the W mass, and

we must therefore account for these events by predicting and subtracting their contribution

to the mT , peT , and /ET histograms. The QCD and Zee background are determined from

collider data, while the decay of background τ leptons must be simulated in FullMC.

8.1 Z → ee Background

Z → ee decays mimic W → eν decays when one electron is misidentified - usually

because it landed in ICD region - and the mismeasurement results in substantial MET

(because the ICD region is excluded from MET measurement).

To estimate the background contribution by Z → ee events we use the “ABCD”

method: assuming the probability that an electron will have a reconstructed track is inde-

pendent of the probability that an electron will have a reconstructed jet, we can use the

expected relationship between the number of electrons with both a track and a jet, the num-

ber of electrons with a track but no jet, the number of electrons with a jet but no track,

and the number of electrons with neither a track nor a jet to predict 1) the independent

probabilities and 2) the number of electrons with neither a track nor a jet.

We extract Z → ee candidates directly from the W → eν data sample by selecting

events that have one good electron and a second object which is a jet. This does not select

all of the Z → ee events that look like W → eν because some W → eν candidates that are
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truly Z → ee events will not satisfy these criteria: we must correct for the Z acceptance

and the efficiency to detect an electron as an EM object, a jet, or a track. In addition, QCD

events can mimic Z → ee events (which mimic W → eν events), and these events must be

subtracted. Therefore, the contribution to background by Z → ee events can be written as

N(Z → ee) =
NZ→ee(e, jet)−NQCD(e, jet)

εjet × A(e, jet)
(8.1)

where NZ→ee(e, jet) is the number of Z → ee events that look like (e,jet) pairs, NQCD(e, jet)

is the number of QCD events that look like (e,jet) pairs (and also like Z → ee events), ε is

jet-finding efficiency with respect to a track-based sample (i.e. probability of finding a jet

where there is a track), and A(e, jet) is acceptance of the invariant mass window cut (see

below) for the (e,jet) pairs.

We use the jet-finding efficiency with respect to tracks (as opposed to the track-

finding efficiency with respect to jets), because there are more tracks reconstructed than

there are jets, and therefore more tracks without jets than jets without tracks. This in turn

gives better statistics for the “failing” contribution, to which the efficiency is most sensitive,

in the denominator of the efficiency calculation (Equation 8.6).

Most often, the second object is in the ICD region, corresponding to a large contri-

bution to the missing energy (because this region is not included in the definition of MET

(Section 5.3.1). In this region, EM objects are always track based and their efficiency with

respect to tracks is 100%. Therefore, we must use jets as our second object.

By design of the selection requirements, the fraction of QCD events in the (e,jet)

sample is negligible, so NQCD(e, jet) can be omitted, i.e.

N(e, jet)−NQCD(e, jet) = NZ→ee(e, jet) ≈ N(e, jet) (8.2)

so that we have

N(Z → ee) =
N(e, jet)

εjet × A(e, jet)
(8.3)

Because we have to apply mass cuts to strongly exclude non-Z events, the jet-

finding efficiency that we can measure is not exactly εjet, which is the efficiency to find a jet
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at any invariant mass of the (e, jet) pair given a track at any invariant mass of the (e, track)

pair. What we measure instead is the efficiency ε′jet to find a jet in the jet mass window 1

given that we have found a matching track in the track mass window :

ε′jet = εjet × A(e, jet)/A(e, trk) (8.4)

Therefore, we write

N(Z → ee) =
N(e, jet)

ε′jet × A(e, trk)
(8.5)

where A(e, track) is acceptance of the invariant mass window cut (see below) for the (e,track)

pairs. We measure ε′jet by taking the ratio of the sizes of the two populations shown in Figure

8.1:

ε′jet =
NZ→ee(e, jet + track)

NZ→ee(e, track)
(8.6)

where NZ→ee(e, jet + track) is the number of Z → ee events that pass both the jet-based

and track-based selection, and NZ→ee(e, track) is the number of Z → ee events that pass the

track based selection.

The selection requirements for (e,track) Z → ee events in the W → eν sample are:

• ∆φ(e, track) > 2.5

• ptrack
T > 25 GeV

• 1.0 < |ηdet (track)| < 1.5

• ∣∣zDCAtrack − zrecoPV

∣∣ < 1 cm

• track and electron have opposite charge

1At the time of writing, it is not clear to the author whether the EM object corresponding to the jet must
also lie in the track mass window. If this is the case, the jet and track requirements have been selected
such that the numerator in the following equation is still εjet ×A(e, jet). See [22] for more information.
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Figure 8.1: The numerator (magenta, plotted as a function of jet-based invariant mass) is the

number of (e,jet) Z → ee pairs that also satisfy the (e,track) requirements. The denominator

(blue, plotted as a function of track-based invariant mass) is the number of (e,track) Z → ee

events. Note that the measured jet- and track-based invariant masses are not necessarily the

same - this is the reason that the magenta “numerator” curve - the distribution of (e,jet)

Z → events - is not sharply cut off at 70 GeV; it would be, if the track-based invariant mass

were plotted instead of the jet-based invariant mass[22]. NOTE: This figure is from a D0

internal note. At the time of writing, it has not been approved by the D0 collaboration for

general public use beyond this dissertation.

•
∑

∆R<0.4

ptrack
T < 4 GeV

• 70 GeV < minv(track, electron) < 110 GeV

Selection requirements for (e,jet) Z → ee events in the W → eν sample:
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• ∆φ(e, jet) > 2.5

• pjet
T > 20 GeV

• 1.0 <
∣∣ηdet(jet)

∣∣ < 1.5

• Jet ID selections: jetEMFrac<0.5, jetCHFrac<0.15, ntracks <10, 2<jetN90<25, jetHCR<6

• NpT>8 GeV
jets ≤ 4

• ∆R(jet, track) < 0.3

• 60 GeV < minv(track, electron) < 110 GeV

Non-ICD (e,jet) and (e,track) events in W → eν sample are negligible[22].

The uncertainty in the Z → ee background is determined by measuring the W mass

with the background increased and decreased by its standard deviation. The uncertainty

contribution from the Z → ee background determination is quoted as half the variation in

the W mass.

8.2 Multijet Background

The QCD background is measured in collider data. Multijets can pass the W → eν

cuts if one jet is mis-identified as an electron and another jet is mismeasured so that the

event appears to have a large MET.

If the efficiency with which W → eν events in the loose sample pass the tight track-

matching cut (εtW ) is known, and the efficiency, or “fake-rate”, with which QCD events pass

the track-matching cut (f t
QCD) is known, then the number of true W → eν events can be

determined via the matrix method[22]:

N l = N l
W +N l

QCD (8.7)

N t = εtN l
W + f tN l

QCD (8.8)
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where N l
W is the number of W → eν candidates passing the loose requirement, N t

W = εtN l
W

is the number of W → eν candidates passing the tight requirement, N l
QCD is the number

of QCD candidates passing the loose requirement, and N t
QCD = f tN l

QCD is the number of

QCD candidates passing the tight requirement. For simplicity, in this section only, we define

ε ≡ εt and f ≡ f t.

Solving the system of equations above results in

N l
W =

N t − f ·N l

ε− f (8.9)

N l
QCD =

ε ·N l −N t

ε− f (8.10)

and

N t
W = ε ·N l

W = ε ·
(
N t − f ·N l

ε− f
)

(8.11)

N t
QCD = f ·N l

QCD = f ·
(
ε ·N l −N t

ε− f
)

(8.12)

where the numbers after the tight selection are the quantities we are interested in. In order

to propagate uncertainties we must transform to the statistically independent quantities

N1 = N l −N t and N2 = N t. Then,

∆N t
W =

((
∂N t

W

∂ε

)2

∆ε2 +

(
∂N t

W

∂f

)2

∆f 2 + (8.13)

(
∂N t

W

∂N2
1

)2

∆N2
1 +

(
∂N t

W

∂N2
2

)2

∆N2
2

)1/2

∆N t
QCD =

((
∂N t

QCD

∂ε

)2

∆ε2 +

(
∂N t

QCD

∂f

)2

∆f 2 + (8.14)

(
∂N t

QCD

∂N2
1

)2

∆N2
1 +

(
∂N t

QCD

∂N2
2

)2

∆N2
2

)1/2

where ε and f are determined using similar techniques as described in Section 7.2.3,2 and

described in more detail in [22] and [46]. ∆Ni =
√
Ni when statistics satisfy Ni & 25.

2The efficiencies used for subtracting the background are measured with fewer dependent variables than
the efficiency used for signal modeling.
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The fake rate f is measured from an “EM+JET” sample, composed of dijet events

where one jet is misidentified as an electron. These events are skimmed from RunIIb34 data

by requiring an EM cluster that satisfies H-Matrix and loose track-matching requirements

(see Sections 5.2.3.1 and 5.2.3.2), and is back-to-back with a jet passing the following JET

ID requirements:

• jetN90>1

• pjet
T >20GeV

• 0.05<jetEMFrac<0.95

• jetCHFrac<0.4

• jetHCRatio<10.

• jetTracks>0

• ηdet <0.8 or (ηdet >1.5 and ηdet <2.5)

The fake rate is the fraction of these events where the “EM cluster” is found to

have a track satisfying the tight track-matching requirement. In the RunIIa analysis, it was

sufficient to use a constant fake rate because the strongest dependency, on pT , was negligible

compared to the statistical fluctuations of the background sample, and in the RunIIb12

analysis, a 1D dependence on pT was used because the next strongest dependence, on ηdet,

was negligible in comparison.

The pT dependence is the most important for QCD background shape and fraction,

because the kinematic spectrum shape is used to measure W mass. In the RunIIb34 analysis,

we find that the fake rate and electron efficiency strongly depend on ηdet and zvtx, but

because there is not strong correlation of zvtx with the background shape, we have tried to

parameterize the fake rate and electron efficiency as a function of only pT and ηdet. However,
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we have found that we need to consider not only the dependence on ηdet and pT , but also

on φ, due to a non-negligible difference in tracker performance in the top and bottom of the

detector. This variation with φ is due to the failure of more and more tracker modules over

time.

8.3 W → τν → eννν Background

Some of the electrons from W boson decays did not come directly from a W → eν

decay, but instead came from the process W → τν → eννν. These could in principle be

treated as signal with different kinematics than the W → eν electrons, but since the number

of τ events we detect is relatively small and they have a poor mass resolution due to the

subsequent decay to three leptons, we simplify the analysis by treating them as a background.

W → τν background is estimated with generated events processed by a FastMC

simulation. W → τν decays are generated with RESBOS. Hadronic τs which can fake W → eν

events are negligible and so these are not simulated. In RunIIa, the W → τν decays were

generated by PYTHIA,3 but the boson pT spectrum shape was narrower than seen in data.

RESBOS, the more complete simulation, was found to have a broader spectrum shape, as seen

in Figure (8.2).

After being generated by RESBOS, τ leptons are passed to TAUOLA which simulates

their decay to electrons and neutrinos. PYTHIA assumes uniform polarization of the τ , which

is results in an incorrect angular distribution of the decay products, an extreme example of

which can be seen in Figure 8.3. Therefore, we always use TAUOLA to decay the τ particles.4

To determine the number of background τ particles we expect to see in a given

sample, we need to measure the relative acceptance of τ vs. e events,

A ≡ nτ
ne

(8.15)

3In RunIIa, they were also processed with the full detector simulation “d0gstar”.
4Other analyses have fixed this problem used reweighting of the pT spectrum, which is not acceptable for

this analysis, as it has a non-negligible effect on important distributions such as boson η.
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Figure 8.2: Comparison of the W boson pT spectrum simulated by PYTHIA (red) vs.

RESBOS+TAUOLA (green). The latter was found to better match the spectrum shape measured

at the Tevatron. NOTE: This figure is from a D0 internal note. At the time of writing, it has

not been approved by the D0 collaboration for general public use beyond this dissertation.

where nτ is the number of W → τν → eννν events in the sample, and ne is the number of

W → eν events in the sample. Then,

nτ =
NPASS
W→τν→eννν

Ngen
W→τν→eννν

· L · σW · BR (W → τe) · BR (τ → eνν) (8.16)

and

ne =
NPASS
W→eν

Ngen
W→eν

· L · σW · BR (W → eν) (8.17)

where NPASS
W→τν→eννν and NPASS

W→eν were derived from FastMC simulations of one billion W → eν

events and 651 million W → τ events, and Ngen
W→τν and Ngen

W→eν are the numbers of simulated

events (which passed the generator level cuts) that were simulated with the FastMC. L is

the integrated luminosity for the sample in question, σW is the cross-section to produce a W
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Figure 8.3: Example of the effect of neglecting to simulate, as seen in the standard version

of PYTHIA (red), vs. simulating, as seen in PYTHIA+TAUOLA (black) and RESBOS+TAUOLA,

(green), the polarization of the τ . NOTE: This figure is from a D0 internal note. At the

time of writing, it has not been approved by the D0 collaboration for general public use

beyond this dissertation.

boson at the Tevatron, and BR means “branching ratio”. Then,

nτ
ne

=
NPASS
W→τν→eννν
NPASS
W→eν

· Ngen
W→eν

Ngen
W→τν→eννν

· BR (W → τν) · BR (τ → eνν)

BR (W → eν)
(8.18)

The branching ratios are:

BR (τ → eνν) = 17.83± 0.04% (8.19)

BR (W → τν) /BR (W → eν) = 1.046± 0.023% (8.20)

and thefore we have:

BR (τ → eνν) · BR (W → τ)

(W → eν)
= 18.65± 0.04% (8.21)
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From these calculations, we expect the mT , peT , and MET distributions to respec-

tively contain 1.722%, 1.701%, and 1.716% of W → τν events. These fractions apply to both

the FullMC and collider data, since by design the FullMC has the same InstLumi profile as

the data.

The τ background uncertainty comes from two main sources: uncertainty in the

the W mass used to simulate the τ background, and uncertainty in the branching ratio for

the W → τν decay. The W mass affects the τ background by changing the kinematic shape

of background, which also affects the relative acceptance and thus the overall contribution

of the background. However, the uncertainty from both these sources is negligible, by the

reasoning in the following paragraphs.

The dependence of the τ background fraction on the input mass in RunIIb34 is

shown in Figure 8.4. It also shows the change in the τ background fraction due to varying

the branching ratio up and down by the uncertainty quoted in Equation 8.21. We see that a

change of about 0.1 GeV in the mW used for the τ background results in less than a 0.01%

change in the size of the τ background, which is of a similar magnitude to that found in the

RunIIb12 analysis.

In studies done for the RunIIb12 analysis, it was found that changing the mW used

to generate the τ background by 4 GeV (and but leaving the input W mass for the FastMC

the same) resulted in less than a 3 MeV change in the fitted mW . If we assume that the

default W mass in RESBOS (80.419 GeV) is within 40 MeV of the true W mass, we expect

a maximum error of 0.003 MeV from the kinematic shape, which is negligible compared to

other uncertainties in this measurement[22].

A larger uncertainty is due to the branching ratio. There is a 0.04% uncertainty in

the size of the τ background due to the uncertainties in the branching ratios quoted above.

This is at most an order of magnitude larger than the uncertainty due to the input W mass

to the τ background, and is therefore also considered to be negligible.
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Figure 8.4: The dependence of the τ background fraction on the input W mass to the τ

model. The black line comes from using the central value of the branching ratio, the red

lines come from varying the branching ratio up and down by the uncerta. Horizontal axis

is Mt in GeV, vertical axis is W → ντ background fraction[47]. NOTE: This figure is from

a D0 internal presentation. At the time of writing, it has not been approved by the D0

collaboration for general public use beyond this dissertation.
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Figure 8.5: Dependence of W mass measured from the three measurement observables on

the value of the input W mass used to determine the τ background[22]. NOTE: This figure

is from a D0 internal note. At the time of writing, it has not been approved by the D0

collaboration for general public use beyond this dissertation.
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Chapter 9

MEASURING THE W MASS FROM A FULL MC SAMPLE

An important step in the measurement of the W mass is to test that our measure-

ment technique is accurate. To do this, we perform our measurement technique on FullMC

samples, treating them as mock data, with the reconstrucion proceeding in exactly the same

way as it does with collider data. If the result of our measurement of the boson mass agrees

with the value used in the simulation, we trust the accuracy of our measurement. We measure

both the W and Z boson masses, with differences in success between the two measurements

being due to errors in the translation from efficiencies and responses measured from electrons

with Z → ee kinematics to simulation of electrons with W → e kinematics.

9.1 Z Boson Closure Test

Since the main tuning of the FastMC was performed using Z → ee events, an

important first step in testing for closure is to confirm that the FastMC can accurately

simualte Z → ee events. Therefore, we compare the FullMC and FastMC versions of some

important distributions in the Z → ee sample. Figures 9.1 and 9.2 show the comparisons

between FullMC and FastMC of the distributions of the Z mass (top left), the Z pT (top

right), the electron pT (bottom left), and the hadronic recoil (bottom right), for RunIIb3, and

RunIIb4, respectively. We see good agreement, both visually and from the χ2/ndf values.

We then perform a measurement of the Z mass using our measurement strategy,

with the invariant mass of the decay electrons, Mee, as our observable. The results are shown

in Table 9.1 and Figure 9.3. We see good agreement in all InstLumi bins and for the full

InstLumi range with the input value of 91.188 GeV. Therefore our FastMC passes the closure

test for simulation of Z → ee events and the measurement of the Z boson mass.
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Figure 9.1: RunIIb3 comparisons between FullMC and FastMC of the distributions of the Z

mass (top left), the Z pT (top right), the electron pT (bottom left), and the hadronic recoil

(bottom right). Note the good χ2 agreement[20]. NOTE: This figure is from a D0 internal

note. At the time of writing, it has not been approved by the D0 collaboration for general

public use beyond this dissertation.
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Figure 9.2: RunIIb4 comparisons between FullMC and FastMC of the distributions of the Z

mass (top left), the Z pT (top right), the electron pT (bottom left), and the hadronic recoil

(bottom right). Note the good χ2 agreement[20]. NOTE: This figure is from a D0 internal

note. At the time of writing, it has not been approved by the D0 collaboration for general

public use beyond this dissertation.
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L Z mass RunIIb3 Z mass RunIIb4

All L 91.191± 0.005 91.194± 0.004

0 < L < 2 91.188± 0.014 91.191± 0.016

2 < L < 4 91.190± 0.006 91.187± 0.006

4 < L < 6 91.189± 0.009 91.190± 0.008

L > 6 91.191± 0.013 91.193± 0.010

Table 9.1: Result of the fit of the Z mass in bins of InstLumi. The input Z mass value is

91.188 GeV. RunIIb3 and RunIIb4 fit values are in good agreement with the input value.

NOTE: This figure is from a D0 internal note. At the time of writing, it has not been

approved by the D0 collaboration for general public use beyond this dissertation.

9.2 W Boson Closure Test

Next, we test the ability of the FastMC to accurately simulate W → eν events. We

compare the distributions of the three measurement observables: the transverse W mass, mT

(Figure 9.4), the electron transverse momentum, pT (Figure 9.5), and the missing transverse

energy, /ET (Figure 9.6), between FullMC and FastMC, for RunIIb3 and RunIIb4. The

comparison is shown in the top half, and the χ2 distribution is shown in the bottom half, of

each figure. There is good agreement for all three measurement observables.

Finally, we perform measurements of the W mass using our measurement strategy,

for both runs, in each measurement observable. The results are shown in Tables 9.2 and 9.3,

and in Figure 9.7. We see good agreement in all InstLumi bins and for the full InstLumi

range with the input value of 80.450 GeV. Therefore our FastMC passes the closure test for

simulation of W → eν events and the measurement of the W boson mass.
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Figure 9.3: Results from measuring the Z mass from the Full MC Z → ee RunIIb3 (left)

and RunIIb4 (right) samples, in bins of InstLumi and for the full InstLumi range. The

vertical line shows the input Z mass value of 91.188 GeV[20]. NOTE: This figure is from a

D0 internal note. At the time of writing, it has not been approved by the D0 collaboration

for general public use beyond this dissertation.

9.3 Monte Carlo Closure

Because our FastMC is able to model both Z → ee and W → eν events well, and

we are able to measure the correct mass of the boson that was simulated, we trust that our

technique can, in principle, be used to measure the W mass from collider data. Of course,

accurate measurement of the W mass from the data requires that the modifications we have

made to our FastMC tune to model collider data are correct. In the next and final chapter,

we discuss the status of the measurement in collider data.
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Figure 9.4: RunIIb3 (left) and RunIIb4 (right) comparison (top) and difference (bottom)

plots of the transverse W mass[20]. NOTE: This figure is from a D0 internal note. At the

time of writing, it has not been approved by the D0 collaboration for general public use

beyond this dissertation.

L mT pT (e) MET

All L 80.451± 0.006 80.450± 0.006 80.439± 0.008

0 < L < 2 80.446± 0.018 80.457± 0.019 80.421± 0.021

2 < L < 4 80.454± 0.009 80.454± 0.009 80.444± 0.011

4 < L < 6 80.454± 0.012 80.442± 0.011 80.443± 0.016

L > 6 80.416± 0.018 80.439± 0.016 80.418± 0.026

Table 9.2: Result of the MC closure test for RunIIb3, in bins of InstLumi and for the full

InstLumi range. The input W mass value is 80.450 GeV. NOTE: This figure is from a D0

internal note. At the time of writing, it has not been approved by the D0 collaboration for

general public use beyond this dissertation.
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Figure 9.5: RunIIb3 (left) and RunIIb4 (right) comparison (top) and difference (bottom)

plots of the transverse W electron momentum[20]. NOTE: This figure is from a D0 internal

note. At the time of writing, it has not been approved by the D0 collaboration for general

public use beyond this dissertation.

L mT pT (e) MET

All L 80.454± 0.006 80.452± 0.006 80.448± 0.008

0 < L < 2 80.460± 0.021 80.476± 0.021 80.431± 0.024

2 < L < 4 80.463± 0.009 80.459± 0.008 80.457± 0.011

4 < L < 6 80.454± 0.012 80.452± 0.011 80.424± 0.016

L > 6 80.434± 0.015 80.445± 0.013 80.467± 0.021

Table 9.3: Result of the MC closure test for RunIIb4, in bins of InstLumi and for the full

InstLumi range. The input W mass value is 80.450 GeV. NOTE: This figure is from a D0

internal note. At the time of writing, it has not been approved by the D0 collaboration for

general public use beyond this dissertation.
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Figure 9.6: RunIIb3 (left) and RunIIb4 (right) comparison (top) and difference (bottom)

plots of the missing transverse energy[20]. NOTE: This figure is from a D0 internal note. At

the time of writing, it has not been approved by the D0 collaboration for general public use

beyond this dissertation.
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Figure 9.7: Results from measuring the W mass from the Full MC W → eν RunIIb3 (left)

and RunIIb4 (right) samples, in bins of InstLumi and for the full InstLumi range. The

vertical line shows the input W mass value of 80.450 GeV[20]. NOTE: This figure is from a

D0 internal note. At the time of writing, it has not been approved by the D0 collaboration

for general public use beyond this dissertation.
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Chapter 10

DISCUSSION AND CONCLUSIONS

10.1 Uncertainties in the Current Measurement

We have not yet reached the point where we are ready to unblind (Section 3.3) our

measurement of the W mass from the RunIIb34 data. We have not achieved a satisfactory

FastMC model of the collider data, with significant discrepancies between the data and the

FastMC model, and between the RunIIb3 and the RunIIb4 versions of the FastMC models.

Because of these problems, which we discuss in Section 10.2, we do not have a final value of

the W mass to present in this dissertation.

However, there is a small amount preliminary information to share that is interest-

ing, namely the contributions to the W mass measurement uncertainty from a small subset

of the parameters of our model. These can give a sense of the amount by which this mea-

surement (if possible to complete) can increase the precision of the worldwide average of the

W mass measurement. Because the model is not finalized, these are estimates which may

be different from the final values of the uncertainties. Because in general we tend to wait

until we have a satisfactory model to perform the full uncertainty analysis, we do not have

estimates for all the components of the model.

The uncertainties that are available from the current measurement are the QCD

uncertainties, a subset of the recoil uncertainties, and the uncertainties due to the SET-

InstLumi dependent residual efficiency correction.

The uncertainty contribution from the recoil parametrization is calculated from

the five parameter covariance for the RunIIb3 data sample, and from the ten parameter

covariance matrix (because different parameters were used for each subset of data) for the

combined RunIIb34 data sample. The uncertainty contribution for the RunIIb4 data sample
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Source mT peT /ET

PDF 14.54 20.78 16.15

QCD (Boson pT ) 1.71 6.41 1.42

Table 10.1: Expected contribution from QCD model uncertainty to the combined RunIIb34

measurement of the W mass in each measurement observable[28]. NOTE: This figure is from

a D0 internal note. At the time of writing, it has not been approved by the D0 collaboration

for general public use beyond this dissertation.

Source mT peT /ET

RunIIb3 Residual Efficiency Correction 1.35 1.75 4.05

RunIIb4 Residual Efficiency Correction 2.07 2.55 5.58

Table 10.2: Estimated contribution to the uncertainty, from the SET-InstLumi dependent

residual efficiency correction, for individual RunIIb3 and RunIIb4 measurements of the W

mass in each measurement observable. NOTE: This figure is from the author’s own work.

At the time of writing, it has not been approved by the D0 collaboration for general public

use beyond this dissertation.

is not available at this time, and the uncertainties are only presented for the mT observable

based measurement. For RunIIb3 we estimate a 10.3 MeV contribution to the uncertainty,

and for the combined RunIIb34 measurement we estimate a 6.4 MeV contribution to the

uncertainty[33].[34]

The uncertainty contributions from the parameterization of the residual efficiency

correction for data as a function of SET and InstLumi, which are calculated as described in

Section 7.2.8.7, are shown in Table 10.2.

The expected statistical uncertainty in the measurements measured by the fitting

software, and verified as described in [44] and [37], are shown in Table 10.3.
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Source mT peT /ET

Statistical 17 17 20

Table 10.3: Estimated statistical uncertainty for the combined RunIIb34 measurement of the

W mass in each measurement observable[44][37]. NOTE: This figure is from a D0 internal

presentation. At the time of writing, it has not been approved by the D0 collaboration for

general public use beyond this dissertation.

The values that have just been presented can be compared with the uncertainties

from the RunIIb12 measurement, arranged in Table 10.4. They are all comparable in size,

providing some assurance that, in the absence or mitigation of the problems described in

Section 10.2, we can achieve a similar quality of measurement for the RunIIb34 data as for

the RunIIb12 data.

10.2 Current Status of the Measurement

There is currently a tension of about 80 MeV between our measurement of the W

mass performed on RunIIb3 data and RunIIb4 data, with RunIIb4 having the larger value.

There is actually about a 150 MeV tension between the value of the W mass measured from

data taken early and data taken late in the RunIIb4 data taking period, with the later value

being larger. We do not know the tension between the measurement and the world estimate

of the mass, because the measurement is blinded (to the same value for both RunIIb3 and

RunIIb4). In this section, we will discuss the possible reasons for this tension and the

implications for the completion of the measurement.

The problem can be seen in Figure 10.1. There is a noticable difference between

RunIIb3 and RunIIb4 in the peaks of the distributions of all three measurement observables,

when u‖ > 0. There is also a mysterious disagreement at low pT , which is visible in all

InstLumi bins, and was originally thought to be caused by the trigger efficiency simulation,

but this theory was disaffirmed by a close study of the trigger efficiencies, described in Section
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7.2.1. While the problem of disagreement at low pT is concerning, and ideally would be solved,

it is outside the range of the measurement, so is less of a problem than the disagreement at

the peak. This discussion therefore focuses only on the problem of the disagreement at the

peak.

The problem can be further localized to particular regions of the detector, namely

the top part, as can be seen by the splitting of the pT (e) distribution into electron φ bins as

is done in Figure 10.2. The effect is strongest in the top part of the detector, approximately

where π
2
< φ < π

2
.

When we take a closer look at the electron pT plot, as in Figure 10.1, we notice that

the “missing” events, indicated by the violet arrow, could conceivably have been “smeared”

(via a lower than expected resolution) into the region of higher electron pT , indicated by

the red arrow. In addition, we can further subdivide the RunIIb4 data by time, into an

“early” part, and a “late” part, as shown in Figure 10.3. The plot was initially used in a

study of calorimeter currents, however here it is simply used to describe the subdivision of

the RunIIb4 data.

Figure 10.4 shows the same plots which compare RunIIb3 and RunIIb4 data. How-

ever, now, the RunIIb4 data has been split into an early (left) and a late (right) sample. The

difference at the peaks is slightly more pronounced in late RunIIb4 data, and the smearing,

indicated by the violet arrow, becomes very noticeable in the late sample.

The problem is still visible when we combine u‖ > 0 and u‖ < 0 events, as in the

comparisons of the total electron pT (Figure 10.5), W transverse mass mT (Figure 10.6), and

electron φ (Figure 10.7). The deficit in events at the top of the detector can be seen in the

last plot to increase from the early to the late period in RunIIb4.

If the hypothesis that the difference between RunIIb3 and RunIIb4 is due to a

“smearing” of events away from the peak is correct, this loss in resolution could be caused by

the energy measurement, by the measurement of the direction, or both of these combined.

However, it is also possible that it is due to an electron pT -dependent inefficiency that is

not (yet) modeled. This inefficiency could be due to the H-Matrix cluster identification,
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The nagging doubt

p
T
(e)

Let's have a closer look at the p
T
(e) plot from 

slide 4 (it is shown again here).

Reminder of the normalisation procedure:
   - The IIb4 data at u

||
 <0 are normalised to the same

      surface as the IIb3 data.
   - The IIb4 data at u

||
 > 0 are normalised using

     the same factor (from u
||
 < 0).

So it looks like IIb4 is missing some events right
here at the peak.

But why would we have events, only at the peak 
(ignore the effect at very low p

T
 [below 27 GeV]),

that disappear due to some unidentified inefficiency ?
Isn't it possible that they got “smeared” somewhere
else, for example here ??

I have never mentioned this nagging doubt in presentations because I could not conceive any mechanism
that would lead to such a large smearing (degraded resolution) in p

T
(e).

In this set of slides, I will present such a mechanism.

DATA #1: Run IIb3
DATA #2: Run IIb4

2 < L < 4

Figure 10.1: A close look at the electron pT distribution, split into u‖ > 0 and u‖ > 0, and

compared between RunIIb3 and RunIIb4. There is a disagreement in pT between RunIIb3

and RunIIb4 when u‖ > 0 (black points vs. magenta line). The disagreement can also be seen

in the mT (left) and MET (right) distributions. Note there is also a mysterious disagreement

at low pT , which is visible in all InstLumi bins, and was originally thought to be caused by the

trigger efficiency simulation, but this theory was disaffirmed by a close study of the trigger

efficiencies, described in Section 7.2.1. NOTE: This figure is from a D0 internal presentation.

At the time of writing, it has not been approved by the D0 collaboration for general public

use beyond this dissertation.
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p
T
(e) in bins of electron phi (1/3)

DATA #1: Run IIb3
DATA #2: Run IIb4

2 < L < 4

p
T
(e)

0 < electron phi < 0.785

p
T
(e)

0.785 < electron phi < 1.570

p
T
(e)

1.570 < electron phi < 2.355
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p
T
(e) in bins of electron phi (2/3)

DATA #1: Run IIb3
DATA #2: Run IIb4

2 < L < 4

p
T
(e)

2.355 < electron phi < 3.140

p
T
(e)

3.140 < electron phi < 3.925

p
T
(e)

3.925 < electron phi < 4.710
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p
T
(e) in bins of electron phi (3/3)

DATA #1: Run IIb3
DATA #2: Run IIb4

2 < L < 4

p
T
(e)

4.710 < electron phi < 5.495

p
T
(e)

5.495 < electron phi < 6.280

Figure 10.2: The electron pT distribution, as in Figure 10.2, broken into φ bins. The second

through fourth plots show the most disagreement between RunIIb3 and RunIIb4. NOTE:

This figure is from a D0 internal presentation. At the time of writing, it has not been

approved by the D0 collaboration for general public use beyond this dissertation.
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Finer splitting in time
On the following slides, Run IIb4 will be split into smaller sub-samples (in time). The purpose of the present 
slide is to define these subsamples.

The plot shows the evolution of the current in one of the CAL HV modules that is connected to the CC-EM
readout section. Will not talk about CAL currents in this talk. But the splitting (IIb4aa, IIb4ab, …) that is
defined  in this plot will be used in the following. The alternative splitting “IIb4early” and “IIb4late” has been
defined in a different context and will also be used in the following.

Run IIb4lateRun IIb4early

Figure 10.3: Illustration of the splitting of RunIIb4 into an “early” and a “late” data tak-

ing period, for the purposes of investigating the evolution of spectrum shapes over time.

Evolution of the calorimeter currents over time are shown, but they are not relevant to the

current discussion. NOTE: This figure is from a D0 internal presentation. At the time of

writing, it has not been approved by the D0 collaboration for general public use beyond this

dissertation.

a tracker inefficiency, or some track-matching based effect.1 To try to pin down the cause

of the discrepancy in the late RunIIb4 sample, we make comparisons again of the pT (e)

distributions, but zoom a bit, and also look at the E(e) distribution as well, still with

1Such an efficiency dependence could conceivably have been seen in the author’s own studies in working
towards the residual efficiency correction. However, those studies were done before the problem was well
described. While the ratio between the data and FullMC efficiency was noisy, it did not show more obvious
pT dependence than in RunIIb12, when the dependence was considered unnecessary to model. Now that
we know of the need to split RunIIb4 into early and late samples, and azimuthally, we may be able to
more accurately describe the efficiency correction.
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IIb4early vs. IIb4late
Let's make the same plot as on slide 9, but separately for Run IIb4early and Run IIb4late.

p
T
(e) p

T
(e)

DATA #1: Run IIb3
DATA #2: Run IIb4early 2 < L < 4

DATA #1: Run IIb3
DATA #2: Run IIb4late 2 < L < 4

The loss of events in the peak region is more pronounced in IIb4late than in IIb4early.

And the excess of events here in IIb4late is very pronounced. 
The “smearing hypothesis” is very hard to dismiss for IIb4late.Figure 10.4: An enlarged view of the electron pT distribution, split into u‖ > 0 and u‖ > 0,

and compared between RunIIb3 and RunIIb4 early (left) and late (right). NOTE: This figure

is from a D0 internal presentation. At the time of writing, it has not been approved by the

D0 collaboration for general public use beyond this dissertation.

u‖ > 0, as seen in Figure 10.8. From the shape of the difference between RunIIb3 and

RunIIb4 in the E(e) distribution, we deduce that there is a slight energy shift. To get a

better sense of the energy scale difference between the two samples, we compare the Z mass

peaks, and see that there is a small scale difference, as indicated in the circled best fit values

in Figure 10.9. Figure 10.10 shows the electron pT and E distributions, as in Figure 10.8,

but with the energy scale of RunIIb4 late scaled up to match RunIIb3. We see that there is

still a problem with the pT distribution, but the E distribution does not appear to have any

problems, in particular, it does not appear more smeared in RunIIb4 late than in RunIIb3.

Therefore, we conclude that the primary problem is that there is something wrong with the

tracker measurements.

This is most likely due to failure of the tracker elements which increases during
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More IIb4early vs. IIb4late

p
T
(e) p

T
(e)

DATA #1: Run IIb3
DATA #2: Run IIb4early 2 < L < 4

DATA #1: Run IIb3
DATA #2: Run IIb4late 2 < L < 4

These plots show the total p
T
(e) distribution (summed over all u

||
) and the corresponding χ distributions.

This is one of the distributions that we use to fit the W boson mass. The fit range is 32 < p
T
(e) < 48 [GeV].

Spoiler: the fitted mass comes out O(150 MeV) higher in IIb4late than in IIb4early (with a very large significance compared 
to the “consistency” hypothesis.)

Figure 10.5: Comparison (top) and difference (bottom) plots of electron pT between RunIIb3

and RunIIb4 early (left) and late (right), with combined u‖ > 0 and u‖ < 0 events. The

discrepancy can still be seen, and it increases in the late RunIIb4 period. NOTE: This figure

is from a D0 internal presentation. At the time of writing, it has not been approved by the

D0 collaboration for general public use beyond this dissertation.

RunIIb4. This failure happens mostly in the upper portion of the tracker, which can be seen

via the φ-dependent discrepancies seen in electron pT , and which can also be seen in the

recoil uT measurements.
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More IIb4early vs. IIb4late

m
T

DATA #1: Run IIb3
DATA #2: Run IIb4early 2 < L < 4

DATA #1: Run IIb3
DATA #2: Run IIb4late 2 < L < 4

These plots show the total m
T
 distribution (summed over all u

||
) and the corresponding χ distributions.

This is another one of the distributions that we use to fit the W boson mass. The fit range is 65 < m
T
 < 90 [GeV].

Of course, the problem in IIb4late that we have seen on the previous slide is also reflected in m
T
.

m
T

Figure 10.6: Comparison (top) and difference (bottom) plots of event mT between RunIIb3

and RunIIb4 early (left) and late (right), with combined u‖ > 0 and u‖ < 0 events. The

discrepancy can still be seen, and it increases in the late RunIIb4 period. NOTE: This figure

is from a D0 internal presentation. At the time of writing, it has not been approved by the

D0 collaboration for general public use beyond this dissertation.

There are three options to proceed:

• Measure the W mass only from RunIIb3 data (possibly including early RunIIb4 data).

• Attempt to account for the tracker failure in our simulation (with a combination of

simulation and error estimation) and measure the W mass from both RunIIb3 and

RunIIb4 data.

• Do not continue with the analysis.

Discussions as to which is the best option are ongoing at the time of writing.
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More IIb4early vs. IIb4late

electron phi

DATA #1: Run IIb3
DATA #2: Run IIb4early 2 < L < 4

DATA #1: Run IIb3
DATA #2: Run IIb4late 2 < L < 4

These plots show the total electron phi distribution (summed over all u
||
) and the corresponding χ distributions.

In Run IIb4 we see a deficit of events at [part of] the top of the detector (1 < phi < 3).
The deficit is more pronounced in IIb4late than in IIb4early.

electron phi

Figure 10.7: Comparison (top) and difference (bottom) plots of electron φ between RunIIb3

and RunIIb4 early (left) and late (right). NOTE: This figure is from a D0 internal presen-

tation. At the time of writing, it has not been approved by the D0 collaboration for general

public use beyond this dissertation.

10.3 Summary

A template method has been used with D0 detector data from RunIIb34 to measure

the W boson mass based on distributions of three observables of the electron-neutrino decay

channel: the electron transverse momentum, peT , the W boson transverse mass, mT , and

the missing transverse energy corresponding to the neutrino transverse momentum, /ET . A

parametrized Fast Monte Carlo simulation to match the Full Monte Carlo simulation has

been created and verified by achieving Monte Carlo Closure. Progress has been made in

tuning a parametrized Fast MC simulation to match the collider data, however, at the time

of writing, we have not yet successfully achieved a W boson mass measurement from the

collider data.
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p
T
(e) for u

||
 > 0 in IIb4d

This plot shows a comparison of the p
T
(e) distribution

for u
||
> 0 in Run IIb3 and Run IIb4d (now the two 

distributions are normalised to the same surface), 
as well as the the corresponding χ distribution.

We are not learning much more on this slide compared
to previous slides, except that the problem is indeed
very significant in the IIb4d subsample.

p
T
(e)

Black: Run IIb3
Red: Run IIb4d 2 < L < 4

p
T
(e)

p
T
(e)

χ
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E(e) for u
||
 > 0 in IIb4d

This plot shows a comparison of the distribution
of electron energy for u

||
> 0 in Run IIb3 and Run IIb4d, 

as well as the the corresponding χ distribution.

In contrast to the p
T
(e) distribution on the previous

slide, no over-smearing is evident in Run IIb4.

The energy distributions in IIb3 and IIb4d do, however,
look like they are a little shifted w.r.t. each other.
Let's check the position of the Z peak (next slide).

E(e)

2 < L < 4

E(e)

E(e)

χ

Black: Run IIb3
Red: Run IIb4d

Figure 10.8: Comparison of the electron pT (left) and E (right) distributions between RunIIb3

and RunIIb4 (late), all with u‖ > 0, without the scale correction from the Z → ee dilepton

mass measurement applied. NOTE: This figure is from a D0 internal presentation. At the

time of writing, it has not been approved by the D0 collaboration for general public use

beyond this dissertation.
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Source mT peT /ET

Experimental:

Electron Energy Scale 16 17 16

Electron Energy Resolution 2 2 3

Electron Shower Model 4 6 7

Electron Energy Loss 4 4 4

Recoil Model 5 6 14

Electron Efficiencies 1 3 5

Backgrounds 2 2 2∑
Experimental 18 20 24

W Production and Decay Model:

PDF 11 11 14

QED 7 7 9

Boson pT 2 5 2∑
Model 13 14 17∑
Systematic 22 24 29

Statistical 13 14 15

Total 26 28 33

Table 10.4: Contributions to the uncertainty in the RunIIb12 measurement[6].
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Energy scale in IIb3 and IIb4d
Shown below are simple fits (Voigtian plus flat term) to the Z mass peaks in the two
samples. The errors are necessarily large, but there is an indication that the peak
position is a higher in IIb4d.

IIb3
2 < L < 4

IIb4d
2 < L < 4

Figure 10.9: Fits to the invariant Z mass from the RunIIb3 (left) and RunIIb4 (right)

Z → ee sample. A small difference in peak position between the two run periods can be

seen. NOTE: This figure is from a D0 internal presentation. At the time of writing, it has

not been approved by the D0 collaboration for general public use beyond this dissertation.
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E(e) and p
T
(e) after energy scale adjustment

p
T
(e)

2 < L < 4

p
T
(e)

p
T
(e)

χ

Black: Run IIb3
Red: Run IIb4d

E(e)

E(e)

E(e)

χ

Here we show the 
same plots as on 
slides 18 and 19,
except that the 
electron energies in
Run IIb4 have been
scaled down by a
factor of 0.9964 .

This factor does not
correspond to the 
central values of the
mass fits on the 
previous slides, but
is consistent with 
the fit results.

u
||
 > 0

Figure 10.10: Comparison of the electron pT (left) and E (right) distributions between

RunIIb3 and RunIIb4 (late), all with u‖ > 0, with the scale correction from the Z → ee

dilepton mass measurement applied. NOTE: This figure is from a D0 internal presentation.

At the time of writing, it has not been approved by the D0 collaboration for general public

use beyond this dissertation.
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