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Abstract

The top quark is by far the heaviest known fundamental gartiith a mass nearing that
of a gold atom. Because of this strikingly high mass, the togrkjinas several unique
properties and might play an important role in electrowsakraetry breaking—the mech-
anism that gives all elementary particles mass. Creatinguiapks requires access to very
high energy collisions, and at present only the Tevatrohdsslat Fermilab is capable of
reaching these energies.

Until now, top quarks have only been observed produced irspaa the strong interac-
tion. At hadron colliders, it should also be possible to &l single top quarks via the
electroweak interaction. Studies of single top quark potidn provide opportunities to

measure the top quark spin, how top quarks mix with otherkgpjand to look for new

physics beyond the standard model. Because of these imgrpsbperties, scientists have
been looking for single top quarks for more than 15 years.

This thesis presents the first discovery of single top quaokiyction. An analysis is per-
formed using 2.3 fb! of data recorded by the D@ detector at the Fermilab Tevatrdn Co
lider at centre-of-mass energys = 1.96 TeV. Boosted decision trees are used to isolate
the single top signal from background, and the single topsection is measured to be

o (pp—tb+ X, tgb+ X) = 3.7470% pbh.

Using the same analysis, a measurement of the amplitudeeo€KM matrix element
Vs, governing how top and quarks mix, is also performed. The measurement yields:
\ViofE| = 1.05%513, wheref is the left-handedVtb coupling. The separation of signal
from background is improved by combining the boosted denissiees with two other mul-
tivariate techniques. A new cross section measurementfsrpesd, and the significance
for the excess over the predicted background exceeds Saesthdeviations.
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Chapter 1
Introduction

To the best of our understanding, all observed physical ginema can be explained by
four fundamental interactions (forces). Our current tgemfrelementary particle physics,
the standard modelincorporates three of the four forces and can accuratedgrites all
experimental observations to date. Even though this madebben remarkably successful,
it is widely believed that it is a low energy approximationeafnore profound theory. Hints
of this theory are expected to be observed at the very higinesgies.

The Tevatron proton-antiproton collider, located at Féalmbutside Chicago, is currently
the world’s highest energy collider. It is the only particl@lider powerful enough to pro-
ducetop quarks The top quark is by far the heaviest fundamental partickénstandard

model. Because of its large mass, the top quark has severplaiproperties and could
provide hints for the origin of mass and physics beyond thaddard model. At the Teva-
tron, top quarks are predicted to be produced in pairs viattuag force, and singly via
the electroweak force. Top pair production was discovegethb D@ and CDF collabo-
rations in 1995. This thesis presents the first observati@teatroweak single top quark
production.

The outline of this thesis is as follows. Chapter 2 providelemtetical introduction and
motivation for the study of single top quark production. Thlowing chapter describes
the experimental apparatus, namely the Fermilab accetethtin and the D@ detector.
Chapter 4 explains how signals in the D@ detector are intergtte reconstruct the physics

1



CHAPTER 1. INTRODUCTION 2

objects created in the collision. The three subsequenttefsagiscuss the analysis. Chap-
ter 5 describes the various background processes, the impa¢Isingle top quark pro-
duction and the background components, and the eventiselegiplied. The systematic
uncertainties of the background estimation are also désrlikere.

Single top quark production is a rare process relative toatkgrounds. This analysis uses
boosted decision trees as a multivariate method to seangfie top quark events from the

background events. Chapter 6 explains how decision treesecaanstructed and used for
this purpose. Chapter 7 describes how the boosted decises dre created and applied to
the dataset, and how the cross section and the signal sgniicare determined using the
boosted decision tree output. The analysis results are auized in Chapter 8.



Chapter 2

Theoretical Background

2.1 The Standard Model

2.1.1 Matter Particles

All known fundamental particles are classified as eitherkgideptons or gauge bosons.
The quarks and leptons are spin-1/2 fermions and consthetbuilding blocks of matter.
They are grouped into three generations, where the lightesicles are found in the first
generation, and the heaviest in the third generation. Eadlergtion contains a charged
lepton, a charge-neutral neutrino, and an up-type and a-dygpenquark with charges2/3
and—1/3 respectively. Quarks carry colour charge and never appefea particles but
in bound states called hadrons. The properties of the quanttdeptons are summarized
in Table 2.1. For each particle in this table, there is an-patticle with exactly the same
mass, but opposite quantum numbers, such as electric ciadgsolour charge.

2.1.2 Particle Interactions

The quarks and leptons interact with each other via the exgshaf spin-1 gauge bosons.
There are three kinds of gauge bosons corresponding to ke ithteractions (forces) de-
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Quarks Leptons
Generation| Flavour | Charge Mass Flavour Charge Mass

| upu +2/3 | 1.5-3.3 MeV| electrone -1 0.511 MeV
downd -1/3 | 3.5-6.0 MeV| e neutrinov, 0 <22eV

| charmc | +2/3 1.27 GeV muon -1 105.7 MeV
stranges | -1/3 | 70-120 MeV | u neutrinoy,, 0 < 0.17 MeV

" topt +2/3 171.2 GeV taur -1 1.777 GeV
bottomb | -1/3 4.2 GeV T neutrinov;, 0 < 16 MeV

Table 2.1: Properties of the matter particles [1]. The magsetheu, d ands quarks are
estimates of the “current quark mass” at a 2 GeV scale inBescheme, and the masses
for the ¢ andb quarks are the “running quark masses” using the same sch&heetop
qguark mass is from direct observations in data.

scribed in the standard model. The photon is the gauge bosdinef electromagnetic inter-
action, which occurs between particles carrying electnarge. The massivi@’*, W~ and
Z" bosons mediate the weak force, and massless gluons aretieescaf the strong force
acting on patrticles with colour charge. The standard moldel predicts the existence of
the Higgs mechanism, which generates the mass for the elargrarticles. An overview
of all particles and their interactions is illustrated igyéie 2.1.

2.1.3 Gauge Theories

The standard model incorporates the gauge theories ofécg@ieak and strong interac-
tions. A gauge theory is a quantum field theory (QFT) whicimigriant under certain sym-
metry transformations. Massless gauge fields are intratlogelemanding the Lagrangian
for a gauge theory to be invariant undguge transformatiors-symmetry transformations
which depend on the space-time coordinate. Excitationasnig) of a gauge field represent
spin-1 gauge bosons that carry the force associated wittefde

The electroweak interaction belongs to $%(2);, x U(1)y gauge groupL here indicates
that the weak force only couples to left-handed particled,}a refers to the weak hyper-
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Leptons Quarks
e urt u, ct
Vo, Vi,V d s, b

Photon Gluons

Higgs Boson

Figure 2.1: lllustration showing all fundamental partecknd interactions described in the
standard model. The electromagnetic force is mediated éylhioton that couples to all
charged particles. Thé andZ bosons carry the weak force between left-handed particles,
and the gluon is the force carrier of the strong interactaomd couples to particles with
colour charge. The Higgs boson, which is part of the standardel but not yet observed,
couples to all massive patrticles.

charge. In an unbroken form, the electroweak gauge groupresgall of its bosons to be
massless. This is not the case in nature sifit@and Z bosons are known to have large
mass. In the standard model, particles acquire mass thithedtfiggs mechanispwhich
introduces a doublet of complex scalars whose self-intierabreaks the electroweak sym-
metry. This results in one physical scalar Higgs boson, visithe only elementary particle
predicted by the standard model that is not yet observed.

The standard model is the combination of the electroweaktanstrong interactions, which
forms theSU (3)¢ x SU(2), x U(1)y gauge group. The first term in this expression is the
gauge group for the strong force, and the subscripere refers to the colour charge.
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2.2 The Top Quark

2.2.1 Discovery

The top quark was predicted in 1977 when brgpiark was discovered at Fermilab [2]. The
b quark was observed to be a down-type quark, and since theythequires each quark
to have an isospin partner, the top quark was postulated ap-#ype quark. It can be
produced both via the strong interaction and via the eleadk interaction.

The top quark was discovered in 1995, 18 years aftemthaeark, by the D@ and CDF
Collaborations at Fermilab [3]. It was observed producedinspvia the strong interaction.
The Feynman diagrams for top pair production are shown inr€ig.2.

It took another 14 years before electroweak top quark pricmluevas discovered. This
thesis presents this observation.

Figure 2.2: Representative Feynman diagramg#f@roduction. The left diagram shows
qguark-antiquark annihilation, the right one shows glutumg fusion. Quark-antiquark an-
nihilation is the dominant production channel at the Texa(85%, 15% for gluon fusion).

2.2.2 Properties

Just like the other up-type quarks, the top quark partiegat both strong and electroweak
interactions and has spir/2 and charge 2/3e. However, it also exhibits several unique
properties. It has the largest mass of any elementary [mrits mass is approximately
that of a tungsten atom, nearly 40 times larger than the nfabe 6 quark andl0? times
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heavier than the up and down quarks. The large mass comes wéty short lifetime of
about0.4 x 10~2* s. This is shorter than the hadronization time scale &f0 x 10~ s,
which means that the top quark decays as a free particledoefatergoing fragmentation,
transmitting its properties cleanly to the decay products.

2.2.3 Decay

The top quark decays nearly exclusively tdlaand ab quark. In the standard model,
the branching ratid3(t — W) is greater than 0.998. Thequark from the top decay
will form a jet, but thel’ boson has many different decay modes. A top quark decay is
therefore categorized by the decay of thie which either decays to a lepton and a neutrino,
or to a quark-antiquark pair. All lepton flavours are kineicedty allowed, but the hadronic
decay is limited to the first two generations of quarks singe < m;. At leading order,

a hadronic decay is three times as likely as a leptonic deioag gjuarks comes in three
colours, and we geB(1WV — ¢¢') = 1/3 andB(W — (v) = 1/9 for a given quark/lepton
flavour (excepiV — tb as mentioned above). Higher order corrections slightlgrahis
symmetry. A summary of th#” decay modes is shown in Table 2.2.

Decay mode Branching ratio

W+ — v (10.80 + 0.09)%
W+ — ev (10.75 £ 0.13)%
W+ — v (10.57 £ 0.15)%
W+ — v (11.25 + 0.20)%

W+ — hadrons| (67.60 & 0.27)%

Table 2.2: Experimentally measured branching ratios ferdéxcay of a redll’ [1]. In the
analysis presented in this thesis, the combiB€d” — (v) is used for each lepton flavour
(see Table 5.4).
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2.3 Electroweak Top Quark Production

2.3.1 Introduction and Motivation

Electroweak top quark production is usually referred teiagle topquark production since
only one top quark is produced per event. Top quarks are medeiped in charged current
interactions via thél'tb vertex, which contributes by the factor

Viey" (1 — 2.1
o wY'(1—197) (2.1)

to the matrix element for single top quark production. As sute the single top quark
production cross section is directly proportionaltp|?. From a measurement of the cross
section, one can hence extrlgt,|, without any assumptions on the number of generations
in the standard model.

Single top quark production also offers opportunities talgrphysics beyond the standard
model, such as new exchange particles and flavour changugaheurrents. Further,
after isolating single top quark events, it is possible tasuge several of the top quark
properties, such as the spin polarization. Finally, singfequark processes produce the
same final state as the standard model Higgs boson prokiéss— 1Wbb as well as the
charged Higgs procesS™ — tb — Whb. The background model, and essentially all
analysis techniques developed for single top quark angslysen hence also be used for
Higgs searches.

Because of these interesting properties, single top quadugtion has been extensively
studied, see for example References [4, 5, 6, 7, 8, 9, 10, 11, 12

2.3.2 Production Modes

At hadron colliders, there are three single top quark prodoenodes, tha- andz-channel
exchanges of a virtudll’, and¢WW production. The next to leading order (NLO) cross
sections for these processes at the Tevatron are given ia Z&b

t-channel single top quark production is the dominant sit@pequark production mode at
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Process | Cross Section (pb
t-channel| 2.34 + 0.14
s-channel| 1.12 £ 0.06
tW 0.28 + 0.06

Table 2.3: NLO single top quark production cross sectionhatlevatron (1.96 Te\p
collider) form; = 170 GeV [13]. The corresponding NL@ production cross section is
7.9179C1 pb [14].

the Tevatron. In this process, a virtual, space-liKéoson (0%, < 0, whereQyy is theW
four-momentum) interacts withtequark from the proton sea. This process also has the alias
W g fusion, since thé quark originates from a gluon in the sea splitting int @air. The
most important Feynman diagrams techannel single top quark production are presented
in Figure 2.3. There is a-23 and a 2»2 diagram where the latter is a sub-process of the
former where the gluon splitting in the sea has been ignored.

Y
Q|
<)

Figure 2.3: The leading order22 (left) and 2-3 process (right) Feynman diagrams for
t-channel single top quark production. The left diagram islasst of the right.

The s-channel single top quark production is, at leading ordergrocesgg — tb which
is illustrated in Figure 2.4. In this process, the exchargigle is a time-likel/” boson
with Q%, > (my + my)?.

ThetW process produces top quark with an on-shEI(Q%, = m?,). The cross section
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|44 _
d b

Figure 2.4: Leading ordef-channel single top quark production.

for this process is very small at the Tevatron, and this pctidao mode is therefore ignored
in this analysis.

2.3.3 Measurement of V|

The Cabbibo-Kobayashi-Maskawa (CKM) quark mixing matrixatdses the relationship
between the quark mass eigenstaiéss, b)) and the weak eigenstaté¢g’, ', ') during
charge current interactions. Within the standard modeh witee generations, unitarity
of the CKM matrix gives

Vao|® + [Va|? + [Vi|? = 1. (2.2)

Since|V,,;| and|V,,| have been precisely measured, this implies a tight reistnion|V;,| [1]:
0.999090 < |V;| < 0.999177. (2.3)
However, if we do not assume three generations, then Equatibbecomes
Vas)* + Ve + Vi) + ... = 1, (2.4)
and the constraints di;,| change to [12]:
0.06 < |Vip| < 0.9994. (2.5)

As previously mentioned, the single top quark productiarssrsection is proportional to
|Vis|%. From a measurement of the single top quark production smsson, we can there-
fore extract a measurement|df,|. A measurement that differs significantly from the range
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specified in Equation 2.3 would be clear evidence for phyls&g®nd the standard model,
and could possibly indicate the existence of a fourth geiweraf quarks.

The first direct measurement pfy,| was presented in 2006 by the D@ Collaboration to-
gether with evidence for single top quark production [4,18]is analysis conducts a refined
measurement using a larger dataset, see Section 7.5.

2.3.4 Single Top Kinematics

Figure 2.5 shows various kinematic distributions for thalfstate particles produced s
andt-channel single top quark production (see Figures 2.3 af)d Phese distributions are
from the Monte Carlo samples used to simulate single top mahalysis. The modeling
of these samples is described in Section 5.4.2.

There are several characteristic kinematic features glesitop quark production that can
be seen in Figure 2.5. Theguark emitted from the top quark decay tends to be central and
has large transverse momentum. For the decay products dFtbheson, we see that the
lepton has a softer, spectrum than that of the neutrino. This occurs becauseréierped
direction of the lepton is anti-aligned with the top quarkedtion due to the VA nature of

the weak force, as further discussed in Section 2.3.5.bTdqweark produced in association
with the top quark int-channel single top production tends to have high rapidity l@w
momentum and is often not reconstructed in the analysis.lijhequark produced in the
t-channel has reasonably large, but its most distinguishing feature is the asymmetric
Q(¢) x n distribution, where)(¢) is the charge of the lepton in the event. This asymmetry
arises since the final state light quark produced duringein@) production most oftenis a

d (d) quark that moves in the same direction as the proton (antipy [12]. The light quark

n will hence tend to have the same sign as the charge of thenlémtm the top decay.

2.3.5 Polarization

As earlier discussed (Section 2.2.2), top quarks decay®défhey hadronize, transmitting
their properties cleanly to thB” boson and thé quark produced in the decay. In the
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Figure 2.5: Parton-level kinematic distributions for dengpp s-channel (left) and-channel
(right) from the single top Monte Carlo samples generatedeasribed in Section 5.4.2.
The py spectrum for each final state particle is shown in the top tbe,corresponding
n and Q(¢) x n spectra are shown in the middle and bottom rows respectivEhese
distributions were generated after parton showering wpbeap

standard model, th&/tb interaction is entirely left-handed, which means that k&rigp
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quark production is a source of highly polarized top qua&s [

The polarization of the top quarks becomes evident in thelangorrelations between the
decay products (see Figure 2.6). The lepton is preferablitemhin the same direction as
the top quark spin. The distribution of the anglebetween the lepton momentum in the
top rest frame, and the top polarization vector is given hy1 [:

F(6,) = %(1 + cos by). (2.6)

In this analysis, several of the features introduced by tolarzation are used to help
identify single top quark events, see Section 7.1.2.

2.3.6 New Physics

Measuring the single top quark production cross sectiod,the different angular distri-
butions is interesting as a test of the standard model, sotad a probe for several new
physics scenarios beyond the standard model [12].

New physics can affect the single top quark production csessions for the production
modes (b, tgb andtWW) differently. Thes-channel {b) is most sensitive to new, heavy
charged bosons. For instance the presence of a H&&bpson, or a charged Higgs boson
H*, would increase the measureadhannel single top quark production cross section. The
t-channel single top quark production would similarly be @amted by flavour-changing
neutral currents (FCNC). In the standard model, FCNC interastare forbidden. Repre-
sentative Feynman diagrams for single top production vigemannel exchange of a heavy
boson and &-channel FCNC process are shown in Figure 2.7.

Finally, physics beyond the standard model can alter thé\\$tructure of thell’tb cou-
pling. This would affect the top polarization, and henc@alagular distributions such as
F(6,) given in Equation 2.6.
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Figure 2.6: lllustrations of spin and angular correlationa top decay. Double arrows show
the preferred direction of the spin and single lines repretde direction of the momentum
in the rest frame of the parent particle. The top and antigoarks move to the left in
all cases, and the preferred spin direction is against (wsydahe direction of motion for
the top (anti-top) since it is a left-handed (right-handeal}icle. The two upper diagrams
show a top (a) and an anti-top (b) decaying to a transversahriped 1V, and the two
lower diagrams show the corresponding decays to longialigipolarizediV bosons. In
all cases, the charged leptdn (¢~) tends to have its spin aligned with the spin of the
top ¢ (t), and travel against the direction of the toff). This results in a softened lepton
momentum distribution as can be seen in Figure 2.5. (Figouetesy of [8])
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Figure 2.7: Left: Representative Feynman diagram for anoasadingle top quark produc-
tion via thes-channel exchange of a healiy’ or charged Higgs boson. Right: Diagram
for flavour changing neutral current single top quark praiduncvia thet-channel.



Chapter 3
Experimental Setup

In order to study the world’s smallest particles, it is neaeyg to build the world’s largest
machines. This chapter presents an overview of the Tevadtqmesent the world’s highest
energy collider, and the formidable D@ detector, in whiahphrticle collisions are studied.

3.1 The Accelerator Chain

The Tevatron, situated at the Fermi National Acceleratdrdratory near Chicago, is cur-
rently the world’s highest energy collider, with a centrentdss energy of 1.96 TeV. Itis a
circular, superconducting synchrotron in which protansafid anti-protonsg) circulate in
opposite directions and are brought together into cotisiothe BO and DO experimental
areas. In these areas, two general purpose detectors, CDB@mespectively, measure
the collision products.

An aerial view of Fermilab showing the accelerator fa@ktican be seen in Figure 3.1. A
400 MeV hydrogen ionf{ ~) beam is produced from hydrogen, accelerated by a Cockroft-
Walton accelerator followed by a 165 m linear acceleratdre &lectrons are stripped off
as the ions pass through a carbon fibre foil into the Boostectspiron ring. Here the
produced protons are accelerated to 8 GeV before beingieraed to the Main Injector
where the particles are accelerated to 150 GeV. The protanaraanged into a bunch

16
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Figure 3.1: Aerial view of Fermilab National Acceleratordaaatory showing some of
the facilities described in Section 3.1, and the locatiorthef D@ detector described in
Section 3.2.

structure and are delivered from the Main Injector to thealimn where the proton bunches
are finally accelerated to 980 GeV.

Proton bunches from the Main Injector are also used to pmdunti-protons. A proton
beam of 120 GeV is directed at a nickel/copper target. Thiepaatons produced are ac-
celerated to 8 GeV and accumulated. Once the number of eott#s is sufficiently large,
the anti-protons are passed to the Main Injector where theepecelerated to 150 GeV for
transfer into the Tevatron.

36 bunches of protons and equally many bunches of anti+psaice delivered to the Teva-
tron with a 396 ns bunch spacing. The 36 bunches in each beaorganized into three
super-bunches, separated by @s2gap. The beams are focused at the collision points, and
pp collisions occur during the bunch-crossings.
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3.1.1 Luminosity and Cross Sections

In particle and nuclear physics, collision rates are mesbur terms of the instantaneous
luminosity, L. The rate of an arbitrary physics procegss given by

7 = LO’X (31)
whereoy is the cross section of the process. The cross section isea aommonly
expressed in picobarn (pb), whese= 10°® m=2. It is usually desirable for a collider to
provide a high instantaneous luminosity in order to achiagher rates of rare processes
(like single top quark production). The instantaneous hosity often depends strongly on

time. A more useful quantity in many cases is therefore tme tindependenintegrated
luminosity

L= / Lat. (3.2)

Collider Run 1l Integrated Luminosity
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Figure 3.2: Integrated luminositg per week (green bins), and in total (blue dots), at
Fermilab from May 2001 to Dec 2008. This analysis uses data fkugust 2002 to August
2007, approximately weeks 65-330 in the plot. The exact rersare given in Table 5.1.
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The number of collisions which result in procescan now be expressed as
NX - LUx. (33)

The integrated luminosity hence has the unit of inverse,arsaally pb! or fo~!. The
instantaneous and integrated luminosities collected ahifab Run Il are shown in Fig-
ure 3.2. This analysis uses 2.3 thof data € = 2.3 fb™).

3.2 The D@ Detector

A sketch of the D@ detector [15] is shown in Figure 3.3. Thed&tr consists of four major
subsystems. Starting from the interaction point and mowurtgvard, these are: the central
tracking system, the preshower detector, the calorimatgithe muon system.

; n=0 n= 1
im Muon Scintilators |
B — i_ —
51— Muon Chambers | “

-5 |—

Figure 3.3: A simplified cross section view of the D@ detestioowing the different sub-
detectors [15].
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3.2.1 The D@ Coordinate System

The D@ coordinate system is a right-handed Cartesian systdnorigin in the geometric
centre of the detector. Theaxis lies in the horizontal plane pointing outwards frora th
centre of the Tevatron ring, theaxis points straight up, and theaxis is pointing along
the beam pipe in the direction of the outgoing proton beam.

Since the protons and anti-protons are coming in along-eas, the(x, y)-plane is usually
referred to as the transverse plane. The azimuthal aniglea particle is the angle between
the positivez-axis and the transverse momentum vegtere= (p,, p,) of the particle. The
polar angle) is the angle betweepiand the positive-axis. However, since the collisions
we want to study are boosted relative to each other along-thes, it is much preferred to
use the rapidity instead of the polar angle

The rapidity for a particle is (in natural units) defined by

1
y=35

E+p.

B, (3.4)

In

This quantity is additive. A Lorentz boost along thez-axis is equivalent to a boost with
rapidity y’ = arctanh((3’), and results iy — y + ¢'. This means that differences in rapid-
ity are invariant, and as a consequence, the shape of theshgylgy particle multiplicity
spectrumIN/dy is also invariant under a boost along thaxis. The energy, longitudinal
momentum and velocity of a particle can be expressed in tefwepidity as

E = \/p%+m2coshy, p,=+/p%+ m?sinhy, [, = tanhy. (3.5)

If the mass is small compared to the energy of the partialeg F, then we can approxi-
mate the rapidityy with the pseudorapidity

L 1P +p- ( 9)
=-In.=>——=—1In{tan= |, 3.6
(AT 2 3

and Equation 3.5 becomes

E =~ |p| = prcoshn, p,=prsinhny, v, = % = tanh 7. (3.7
p

As can be seen from the relations above, the pseudo-rapidita purely angular variable.
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A useful Lorentz invariant measure of the separation batviwe (massless) particles is

AR = \/(An)? + (A¢)? (3.8)

whereAn andA¢ are the separations between the particles in termsaofi¢ respectively.

3.2.2 The Central Tracking

Preshower
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}——————— Fiber Tracker - o
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Figure 3.4: Overview of the central tracking system at D@rdyuthe Run lla data taking
period. During the summer of 2006, an additional silicorelawas added closer to the
beam axis. The beam pipe was also replaced and the outeritroast Bl-disks removed in
the same upgrade.

The D@ central tracking system [15], illustrated in Figurd,3onsists of two tracking
detectors: a silicon microstrip tracker (SMT) surroundgdhe central scintillating fibre
tracker (CFT). It is built inside a 2 Tesla superconductintpisoid magnet with a mean
radius of 60 cm. This will bend the path of a charged particlier-¢ plane, and from the
radius of curvature the transverse momentum of the parxtarebe calculated according to

pr = Brk, (3.9

whereB is the magnetic field strength (2 T in this caseis the radius of curvature, arkd
is the constan®.3 GeV/(¢Tm).
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In this analysis, the tracking system is used to identify em@hsure the momentum of
electrons and muons, to determine the position of the pyinrderaction vertex, and to
identify jets originating fromb quarks. In order to perform these tasks accurately, it is
important to have high spatial resolution. The followingtsens describe how the tracking
systems have been designed in order allow for such preaiseasurements.

3.2.3 Silicon Microstrip Tracker

The basic unit of the SMT is called a wafer [15]. Silicon is Hutive material, and there is
a voltage applied across the wafer. A charged particle pas$isrough the wafer will create
many electron-hole pairs that will drift across the unit ayeherate an electronic signal.
The signal is amplified and read out in parallel microstripgrged on one of the wafer
surfaces. Two wafers can be arranged back-to-back with tbeostrips on each side at a
relative angle. This allows for stereo measurements of antqte hit.

An overview of the SMT with its barrel and disk structure i®8im in Figure 3.5. There
are six barrels that measure the ¢, z)-coordinates of central (low) tracks. There are
also twelve so-called F-disks between, and at the end ofdhreltsegments, and four large
“H-disks” in the forward region which can detect tracks with: || < 3.

During the Run lla run period (March 2001-March 2006), therddaconsisted of four
double sided layers. During the Run Ilb upgrade in spring @&2@&n additional layer was
added inside the existing barrel [16]. To allow for this, beam-pipe was replaced with a
thinner one. The two most forward H-disks were removed duadation damage. The
Run Ilb data taking period started in August 2006.

3.2.4 Central Fibre Tracker

The CFT [15] consists of eight concentric cylinders that eselthe SMT (see Figure 3.4).
The cylinder walls are made of two layers of closely spacéadtifiating fibres. The fibres
in one of the two layers are aligned with the beam axis, wiiéefibres in the other layer
are arranged at a three degree relative angle allowingdoesimeasurements to be made.
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Figure 3.5: The D@ Run lla silicon microstrip tracker withstg barrel segments, twelve F-
disks and four large H-disks. The two outermost H-disks weneoved during the Run IlIb
upgrade.

When a charged particle passes through a scintillating fédbsenall fraction of its energy
may excite molecules in the material that will emit visibtghtt during the subsequent deex-
citation. The photons will travel through the fibre and bdexdkd in “visible light photon
counters” (VLPCs) outside the detector.

3.2.5 Preshower Detectors

The central and forward preshower detectors consist ofie@idtors combined with scin-

tillating material, and are placed in front of the calorierst They are designed to identify
and measure the energy of particles that interact with maére reaching the calorime-
ters. This aids the identification of electrons and photsirsse they often start to shower
in the solenoid magnet, which alone accounts for about aeeaction length of material

in the central region.

3.2.6 The D@ Calorimeters

The D@ calorimeters [15, 17] are used to identify and meath@energy and direction of
electrons, photons, jets, muons and missing transversgyefie, and are hence crucial for
this analysis. There are three cryostats with nearly eqme) the central calorimeter and
the two endcap calorimeters (Figure 3.2.6). Each caloegmetivided in layers: innermost
there are four electromagnetic (EM) layers, followed byfthe and coarse hadronic layers.
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Figure 3.6: The D@ calorimeters.

The design of the EM layers is optimized for measurement of dbldwers produced by
electrons and photons. The third EM layer has increasedugnaty since this is where
maximum shower development is expected. Most EM showelsatilpenetrate into the
hadronic calorimeter, which is designed for good measunéofdradronic showers. Muons
only deposit a small amount of energy in the calorimeter, m@atrinos no energy at all.
Some energy will also be deposited in poorly instrumentgibres and hence give no or
little signal. This absence of measured energy results iromemtum imbalance in the
transverse plane. This imbalance is called the missingvese energyl .

The basic unit of the D@ calorimeters is a calorimeter cellictSa cell consists of an
absorber plate (U, Cu or Fe) followed by a gap filled with ligaigon. In the middle of
this gap is a G-10 board, with a 2.0 — 2.5 kV potential with eztpo the grounded absorber
plate. This potential difference induces a drift field asrthee liquid argon. As an incoming
particle interacts with the dense matter in the absorbée pdeshower of secondary particles
is produced. As they pass through the liquid argon, they®argon atoms, and negative
charge will drift towards the signal boards. This resultsisignal proportional to the
energy loss of the incoming particle. A schematic view of twaical calorimeter unit cells
is given in Figure 3.2.6. Several unit cells stacked on togaah other are read out together.
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Figure 3.7: Sketch of two calorimeter cells. Particles pexte these cells from the left.

Figure 3.8 shows a side view of the calorimeters. We can se@ayter structure, but also
that cells with the same (and¢) are arranged in “pointing towers”, i.e., the towers point
towards the centre of the detector (the interaction poi@élls have a size of aboutr x

A¢ = 0.1 x 0.1 except in the third EM layer where the granularity is doubled

3.2.7 Muon system

The D@ detector has a large muon system [15] outside theicedtar as can be seen in
Figure 3.3. The muon detection strategy relies on the pat@trpower of muons since they
do not undergo hadronic interactions but lose energy omlyutih ionization. A typical
high p muon deposits about 1.8 GeV of energy in the calorimeter. o&lnall hadrons
will be absorbed by the dense materials in the calorimeteitewnuons generally will pass
through both the calorimeter and the muon system. A chargdttle that penetrates the
muon system is therefore recognized as a muon.

The muon system consists of the wide angle muon spectroif\aviUS) covering the
central detector|| < 1), the forward angle muon spectrometer (FAMUS) covering

In| < 2 and a solid-iron magnet with at field of 1.8 Tesla. WAMUS andV4S each
consists of several layers of drift chambers and scintitlatvhere muons are detected. Due
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Figure 3.8: Side view of a quarter of the D@ calorimeters. [iies with numbers are lines
of constant). Cells are arranged into pointing towers along these lindserd are four
electromagnetic layers in all cryostats, three fine hadrtayiers in the central cryostat and

four in the end caps, and one coarse hadronic layer in theat@nyostat and three in the
end caps.

to the magnetic field, the path of the muons will be curved, tednuon momentum and
charge are determined from the curvature of the tracks. eltmesisurements are improved
by using additional information from the central trackinygt®m and the calorimeters.

3.2.8 Triggers

The collision rate at the Tevatron is 2.5 MHz, i.e., 2.5 roillievents per second. To read
out all detector signals produced by one event requires B58f Kata. There is no practical
technology available to collect and store data at this rateesmost events produced are

uninteresting events. Production of heavy mass resonaswesadl and”Z bosons or top
quarks, occur at a much lower rate.
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The D@ trigger system is designed to operate in this very bajlsion rate environment.
It is organized into three major levels:

Level 1
This trigger level is required to reduce the event rate frodnNHz to 1.4 kHz. The
trigger is hardware based, and receives input from the icadter, the muon system
and the luminosity system.

Level 2
The hardware Level 2 trigger has two stages and reduces tinéord kHz. The
first stage consists of several “preprocessors” that eadimeinformation from one
of the individual subdetectors to produce objects suchaksr; electrons, jets and
muons. The second stage makes a trigger decision based profiezties of these
objects.

Level 3
The final trigger level relies entirely on software that is an a dedicated computer
farm. The trigger has about 100 ms to make its decision, ashaces the rate to 50
events per second. There are algorithms performing closdfline reconstruction of
electrons, muons, jets and missifg. Events satisfying this trigger are stored and
transferred to full offline reconstruction.



Chapter 4

Event Reconstruction

This chapter describes how the detector subsystems arénusetdr to identify the physics
objects, such as jets and electrons, which are created fitwamdascattepp collision. Two
aspects of the event reconstruction are discussed: obmistruction and object identifi-
cation.

Object reconstruction starts with converting the raw detesignals to “hits” with a cor-
responding position and measured energy. The hits are hestered depending on their
position to form a basic physics object, meaning eithercktoa a calorimeter energy clus-
ter. From these basic physics objects, the final physicsctshbpge created, which in this
analysis are: electrons, muons, vertices, jets And For illustrations of hits and recon-
structed physics objects, see Appendix A.

During object identification, quality requirements arelggapto each object. The following
sections describe how the physics objects used in this siaye reconstructed, and what
object identification requirements are applied.

4.1 Tracks

Tracks are used to reconstruct many of the physics objeets insthis analysis, namely
electrons, muons, the primary vertex andts. As a charged patrticle traverses the tracking
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system, its path is bent by the magnetic field of the soleramd,small amounts of energy
are deposited along the particle trajectory in many of theking layers. The D@ tracking
algorithm reconstructs particle tracks from such hits stéinot an easy task since any given
event contains thousands of hits, and not all of them are thentard scatter collision, but
also from secondary collisions and electronic noise.

The D@ track reconstruction first constructs a list of traakdidates using two different
methods. The histogram track finding method (HTF) [18] isglolaen a Hough transforma-
tion which originally was used to find patterns in picturdsetain bubble chambers [19].
All possible combinations of two hits are created, and fahesuch combination, the angu-
lar direction and the curvatugefor the trajectory from the beam axis through both hits are
calculated. These quantities are filled in two dimensiomblgrams, and a peak is formed
for a track, since the track, and also all the pairs of hithefttack, have the same direction
and curvature. Fake track segments, created from electnoise, are spread uniformly in
these histograms.

The alternative algorithm (AA) [20] creates track seedsTiats in the silicon tracker and
forms roads. Hits along those roads in additional trackietgctor layers are added to the
track if they improve the overal® of the track fit. Compared to the histogramming method,
this method has a better efficiency for lgw tracks, and tracks from secondary vertices. It
is also less susceptible to fake tracks.

Finally, the tracks provided by these two methods are usedmsg to the global track
reconstruction (GTR). The tracks are here created, compieétted and smoothed using
a Kalman filter algorithm [21], resulting in the final set cdi¢cks in the event.

4.2 Primary Vertices

A precise determination of the primary interaction poirdreg the beam axis is important
for determining the direction of jets, muons and electrarg] also for identifying sec-
ondary vertices, which is crucial fértagging. The location of the primary vertex is close
to the geometrical centre of the detector in they)-plane, but the position can vary over
roughly one metre along the beam axis from event to event.
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The primary vertices of an event are reconstructed by mefaans adaptive primary vertex
algorithm [22]. This algorithm first determines the beamitms in the (z, y)-plane and

its width from ay? fit of all tracks. The beam axis is next divided into segmefitength

2 cm. The tracks withhy > 0.5 GeV, and at least two SMT hits that are pointing back to a
given segment are clustered. The tracks in each clustelti@e i a common vertex using
the Kalman filter technique [21]. After the initial vertextifity, the tracks with the highest
contribution to the vertex? (the “worst” tracks) are removed, and the vertex is refitted,
until the totaly? < 10.

The final vertex is calculated from the remaining tracks.hia ¢tase where more than one
vertex is found, the distributions of the tracks associated with each vertexuassl to
define a probability that each track originated at the paldicvertex [22]. The vertex with
the lowest probability of being a minimum bias vertex is stdd as the hard scatter vertex.

4.3 Calorimeter Clusters

Before using the measured energies in the calorimeter fecblgconstruction, it is neces-
sary to suppress noise. The procedure to deal with hot cellls that give a high measured
energy due to hardware problems), and energy mis-measnoteichge to electronic noise,
are briefly discussed below.

Each calorimeter cell is considered a massless object, ardsigned the four vector
(Eecen, Peenn), Where E is the measured energy apd;; is a vector of magnitudéeF..|
directed from the primary vertex to the centre of the cell.

Starting from the list of all calorimeter cells, the follavg selection criteria are applied:

a. Cell are required to fulfi| Ecen| > 2.50e1, Whereo. is the measured energy width
due to electronic noise.

b. Cells identified as hot cells by the NADA algorithm [23] are arad.

c. According to the T42 algorithm [24], all cells with..; > 4o are first selected.
Next, cells withE..; > 20. are selected if they have a neighbouring cell with
E.1 > 40.. All other cells are removed.
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Only the cells surviving this selection are used to recarcstihe calorimeter showers. For
computing time reasons, cells belonging to a given caldemtewer are first combined into
a tower object. Each tower points to the geometrical cerftteeodetector, and contains
both electromagnetic and hadronic layers as can be seegureR3.8. The four momentum
of a tower object (or any other cluster of cells or towers hsas a jet), is defined by the
four vector sum of the cells.

4.4 Electrons

The characteristic signature of an electron is a track iniher tracking system, and a
narrow and short shower in the electromagnetic sectionet#iorimeter. Electrons are
hence reconstructed using information from both the caleter and the central tracker.

Electromagnetic clusters (EM clusters) are reconstrubiednerging calorimeter tower
objects (Section 4.3) using a simple cone algorithm [25].lyQne energy deposited in
the electromagnetic part of the calorimeter is considerethb algorithm. Towers with
Er > 1.5 GeV are used as seeds, and an EM cluster is created by inglindiiowers in a
radius of AR = 0.2 (see Equation 3.8).

The following variables are used in this analysis to idgraifid assess the quality of an EM
cluster:

Electromagnetic fraction, fens = Frm/ Etotal
This is the ratio of the energlr\ deposited in the electromagnetic layers over the
total cluster energy:.:.;, which includes the hadronic layers. For an electron, this
fraction is expected to be close to one.

Isolation, fis
The isolation of an EM cluster is defined by
o Eriota(AR < 0.4) — Egy(AR < 0.2)
e Epm(AR < 0.2) '
Fiota (AR < 0.4) is the energy in a cone of radidsk = 0.4 around the EM cluster.
For a real, isolated electron, this energy should not be nharger than the central
electromagnetic energ¥pnm (AR < 0.2).

(4.1)
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H-Matrix x2
This quantity is constructed from seven variables that miegs¢he longitudinal and
transverse shower shape of the EM cluster, namely: the gaeqpsited in each of
the four EM layerslog,,(Erum), the primary vertex position, and transverse shower
width in the third EM layer. A7 x 7 covariance matrix is constructed using these
shower shape variables for simulated electrons that haae decurately modelled to
agree with observed shower shapes of test beam electrophsUy2athg this matrix,
X3 €an be calculated for any given EM cluster.

Track match x?
This is they? of the fit of the closest track with the centre of the EM clustiecan be
converted to a probability for the track to be associateth wie EM clusterP(x?),
which is what is used in this analysis.

Likelihood Ly
The electron likelihood [27] is defined such that real elmt$rtend to have values
close to 1, while fakes tend to have values close to 0. It ompfies to track-matched
electrons and is based on seven variables including botricedter and tracking
information.

The electron definitions used in this analysis are the faligw

Ultraloose electron
An ultraloose electron is required to hayey > 0.9, Y&y < 50, fio < 0.15 and
pr > 15 GeV. There are no requirements for a matching track. Thigrele defini-
tion is used for modeling the multijet background, see $eachi.4.6.

Loose isolated electron
In addition to the ultraloose requirements, a loose isdlatectron must have a track
match with a non-zerq? probability: P(x?) > 0. The matching track is required to
havep; > 5 GeV and be pointing back close to the primary vertéx{track, PV) <
1cm.

Tight isolated electron
A tight isolated electron must pass all the loose isolatedtedn requirements and in
addition haveCgy; > 0.85.
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45 Jets

A quark or gluon emitted from the hard scatter collision wilidergo a complicated process
that results in get—a spray of hadrons with a total momentum close to the momewfu
the emitted parton (Figure 4.1). Jets vary widely in shageparticle content, and deposit
energy both in the electromagnetic and hadronic layerset#iorimeter. All single top
events produce two or more jets. Accurate knowledge of trenjergies and their directions
is therefore very important.

The jets used in this analysis are reconstructed using thellRomproved Legacy Cone
Algorithm [28, 29] with cone sizéR = 0.5. The calorimeter tower objects, created as
described in Section 4.3, are first combined into preclastéradius 0.3 using the sim-
ple cone algorithm (same algorithm as for EM clusters). Bnsured that no preclusters
share any towers. The centre of each precluster, but alsoithmint between any pair of
preclusters, are used as seeds for the final jet reconstnuadgorithm.

For each such seed, a jet is created by including all towedtsma cone of siz&R around
the seed. The centre axis of the jet is calculated, and therjetlefined as the combination
of towers withinAR < ‘R of the new midpoint. This is repeated recursively until ka
cone is found. In the final step of the algorithm, overlapsveen jets are removed. Two
jets are merged if the shared energy is more than 50% of thrgyenéthe sub-leading jet.

parton level jet particle level jet calorimeter level jet

Figure 4.1: lllustration of the evolution of a jet. A partaet,jconsisting of a quark and a ra-
diated gluon (left), hadronizes and forms a particle jetite) that creates electromagnetic
and hadronic showers in the calorimeter. The energy of thleeeers is measured in the
calorimeter cells, which are organized into pointing tasyand a jet object is reconstructed
from these towers (right).
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If not, each shared tower is assigned to the jet closegst in)-space.

When measuring a jet in the calorimeter, there might be laxgeuations due to finite

energy resolution and calorimeter cell granularity. Theasueed energy will on average
be lower than the true energy since hadronic showers haveex lalorimeter response
compared to electromagnetic showers, and since somelpaiicthe jet may pass through
uninstrumented regions. To account for these effects gigtorrected by the jet energy
scale (JES) [32] according to:

Feorr _ Ejr(;w -0 (4 2)
et — Rij. .

The components of Equation 4.2 are described below.

Uncorrected jet energy ;5"

The measured energy of all cells in the jet.

Offset energyO
The energy not associated with the hard scatter. The maite®dor this energy
are energy deposited from jets produced in additional “mas” interactions, and
energy due to electronic noise. This correction is showniguie 4.2.

Inter-calibration F;,
This is a calibration factor applied to make the responstumias a function of jet
71 across the central and end-cap calorimeters and the irytestat regions. The size
of this correction for a typical jet in this analysis is ardusbo.

Jet ResponseR;
This is the main JES correction. The jet response in the D@ricagters is signifi-
cantly lower than unity for several reasons: hadronic slieWwave a lower calorime-
ter response than electromagnetic showers; energy isnesaterial in front of the
calorimeter, such as tracking material and the solenoichetagome patrticles in the
jet might escape undetected, for instance due to uninstrtedeegions or since they
are neutrinos. The magnitude of this correction is showrigare 4.3.

Showering Correction S
The D@ Run Il jet algorithm reconstructs the jet from the déedsenergy within
the jet cone. Due to effects like shower development in tharicaeter and magnetic
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field bending, there will be energy leaving and entering gtepne. The showering
correctionS corrects for the net energy difference due to such showefiegts.
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Figure 4.2: The jet offset correction as a function of jet There are different curves
depending on the number of primary vertices in the event;lvare created from additional
interactions. The correction is quite large for forwardsjethen there are additiongp
interactions in the event.

The jets used in this analysis are JES corrected as deseaiio»@. They are also required
to fulfil a set of selection criteria recommended by the D@ DeAlgorithm Group [30, 31].
These criteria include requirements on the fraction of éhefpergy in the outermost, coarse
hadronic layer,fcy, the fraction of the energy in the electromagnetic laygng, and a
trigger level 1 ratio requirement. In addition to these iifezation criteria, this analysis
requires all jets to haver > 15 GeV, |n| < 3.4, and not to overlap with any loose isolated
electron.

4.6 Muons

The starting point for muon reconstruction is the formatba track from hits in each layer
of the muon system. The track is combined with an existingktia the central tracking
system reconstructed as described in Section 4.1. Thiglyregroves thep resolution
compared with only using the muon system.

The following muon definitions are used in this analysis:
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Figure 4.3: Top: jet response, measuredy#jet events, as a function of the jet energy

estimatorE’ = pr(7) coshne¢, Which approximates the particle level jet energy. Bottom:

the difference between the measurements and the paragdgizresponse function, and

the uncertainty band from the fit.

Loose isolated muon

A loose muon is required to have tracks with hits both in thé& tnbes and the
scintillators, and in two of the three detector layers of itingon system outside the
toroid. A loose cosmic ray rejection timing requirement ppked, and the track
reconstructed in the muon system must match a track recmtestr in the central
tracker that has at least two hits in the silicon tracker. Yhéor the match between
the two tracks must be less than 4. The muon track is requirdx tclose to the
primary vertex:z(track, PV) < 1 cm and it must not be overlapping with any jet in
the eventAR(u, jet) > 0.5.

Tight isolated muon
Tight isolated muons fulfil the loose muon requirements, iaretdition the follow-
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ing isolation criteria:

a. the momenta of all tracks in a cone of raditisc 0.5 around the muon direction,
except the track matched to the muon, add up to less than 2@8é afuonp

b. the energy deposited in the calorimeter around the magectory in the range
0.1 < AR < 0.4 must be less that 20% of the mupp.

4.7 b Jets

b jets are jets originating from the hadronizatiorb@uarks. These objects are particularly
important in this analysis since single top quark eventsipce twob quarks in the final
state. As the) quark hadronizes, & hadron will be formed, which is a bound state of
ab quark and one or two light quarks3 hadrons have significantly longer lifetimes than
lighter hadrons, and typically travel a few millimetres dxef decaying. As a consequence,
b jets will usually have a decay vertex displaced from the priminteraction point that
can be reconstructed as a secondary vertex. Another dighigg property is that about
20% of allb jets contain a muon inside the jet cone. These features, thied kinematic
properties, can be used to distinguish heavy flavour jets fardinary) light flavour jets.

This analysis uses a neural network (NINjet tagger designed by D@’s B-ID Group to
identify b jets [33]. Jets are first required to be “taggable”, meanirag there are at least
two good tracks associated with the jet such that a secomeaigx can be constructed for
every jet. Taggable jets are then “tagged” by the taggingrétym.

The NN tagger uses seven variables to discrimihgéts from other jets. The most impor-
tant variable is the decay length significance of the seagnaatex, defined as the distance
from the primary to the secondary vertex divided by the utadety of this quantity. The
other variables are: the invariant mass of all tracks aasetiwith the secondary vertex
(SV); the x? per degree of freedom for the reconstruction of the SV froetthcks; the
number of tracks pointing to the SV; the number of SVs assediwith the jet; and the
probability that the jet tracks originate from the PV calted from the minimal distance
between each of the jet tracks and the PV. The NN tagger asaigoutput value between
0 and 1 proportional to the probability that the jet i8 get. Only jets with|n| < 2.5 are
considered by the algorithm.
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There are several operating points defined for the NN taddes. analysis uses the TIGHT
and the OLDLOOSE operating points, where the TIGHT meansMmdiput greater than
0.775, and OLDLOOSE means NN output greater than 0.5. Eaehtes required to
have either one jet fulfilling the TIGHT NN-tagging quality, or to have two jets tagged
by the OLDLOOSE operating point. The average fake rateshieMGHT/OLDLOOSE
operating points are 0.82%/2.5% for data jets in the centlmrimeter, and their average
b-tagging efficiencies on data are 49%/61% for jets With< 2.5.

4.8 Missing Transverse EnergyF

All single top events considered in this analysis have a higheutrino in the final state.
Neutrinos interact very weakly with matter, and their eyeagpd momentum cannot be
directly measured. However, since momentum is conservegdgcan indirectly measure the
pr of the neutrino from the momentum imbalance in the trangvplane. This imbalance
is called the missing transverse enerdy;, and is defined by the negative sum of the
transverse momenta of all particles observed in the detecto

In practice, the (uncorrected) missing transverse energglculated by

Ncells
ET == Z pri- (4.3)
where pr; is the transverse momentum for cél{see Section 4.3 for thg; definition
for a calorimeter cell). Only cells in the electromagnetinci dine hadronic layers of the
calorimeter are included since the energy resolution is pothe coarse hadronic layers.

The missing energy defined in Equation 4.3 needs to be cedddhere are reconstructed
muons in the event, and due to energy corrections of jetstretes and photons. A muon
only deposits a small amount of energy in the calorimetera Ibose isolated muon is
presentin the evenEJT Is corrected by subtracting the component of the muon mament
that was not detected in the calorimeter. The same prinajgées for jets. The momentum
component added due to jet energy scale for each jets nebdsstabtracted from the raw
Fr. There are also small corrections needed if there are efectir photons in the event
due to the electron and photon energy scales.



Chapter 5
Analysis: Event Selection

Single top quark production is a very rare process relabviéstmajor backgrounds. The
background arises from several distinct sources, eachaking the single top signal in its
own way. In essence, single top is kinematically “wedgediMeeniV +jets andit back-
grounds, and there is no easy way to reduce these backgreimdianeously. Instead,
each background needs to be probed for its individual djatshing features. In order
to identify these, and to correctly evaluate the amountdgyfad and background in the
dataset, it is necessary to create an accurate signal akgrband model.

This chapter explains the analysis strategy and descligedataset used, the selection cri-
teria applied, and the momentous task of modeling the seyméhkll background processes
in the data.

5.1 Strategy

As explained in Section 2.2.3, single top quarks decaylio boson and & quark almost
100% of the time.lW bosons further decay leptonically or into jets. This analyscuses
on single top decays in the electron and muon channels.

The composition of the background components is quite rdiffefor events with different

39
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jet multiplicities and lepton flavours. The data are therefdivided into manychannels
(orthogonal samples) depending on the lepton flavour, theeun of reconstructed jets, and
the number ob-tagged jets. The analysis is optimized individually infeaach channel.

The general event selection strategy is to maximize sigre@@ance by using a loose event
selection and thereafter use a multivariate techniquéh{gncdase boosted decision trees) to
separate signal from background.

5.2 Data Set

The data sample was collected between August 2002 and ABQQgtduring the Run lla
and Run IIb run periods. The Run Ilb data were recorded at higs@ntaneous luminosi-
ties, and with the upgraded detector as described in Segt#nThe integrated luminosity
for the dataset can be seen in Table 5.1.

Integrated Luminosity [pb']

Channel Trigger Version Delivered Recorded Good Quality
Run lla electron v8.00 —v14.98 1,312 1,206 1,043
Run Ila muon v8.00 —v14.98 1,349 1,240 1,055
Runllbeand mu v15.00-v15.80 1,497 1,343 1,216

Total Run Il Integrated Luminosity 2.3 fb!

Table 5.1: Integrated luminosities of the datasets usdusranalysis (also, see Figure 3.2).

Each electron data event is required to satisfy at leastragget in a list of several hundred
photon, electron, jet angtjets triggers. For muons events, a similar list is usedaiairtg
jet, muon andutjets triggers. Studies show that essentially all everds plass the event
selection are accepted by these trigger requirements. rigget efficiency used for the
background modeling is 100%, with an uncertainty of 5-10%liasussed in Section 5.8.
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5.3 Background Processes

The three major backgrounds for single top Brejets,t and multijet productioniV +jets
is the largest background for events with two jets, &nd the largest background for events
with four jets. There are also backgrounds fra@mjets and diboson processes.

Figure 5.1 shows example Feynman diagrams with the evemtsige particles highlighted
for single top and the major background processes.

W+jets
W +jets events produce an on-shill boson and one or several jets. Th&b sub-
processp—Wbb + X) has the same final state as single top: two beplarks and
alW. TheWjj, Wee andWej subprocesses, whejaefers to a light jet, enter the
data when jets are misidentified lagets.

Top pair production
tt events produce two on-shell top quarkg—/(+jets events have two jets and
W —{v, just as single top, but have in addition two hjghjets. Thistt decay channel
constitutes a large background for the high jet multipficithannels. Dilepton events
have an extrdl” — (v in the final state and make their way into the dataset when one
of the leptons is not reconstructed.

multijet
There is an instrumental background from multijet eventaliich one jet fakes an
isolated lepton and imprecise jet calibration inducesféls.

Z+jets
Z+jets events can mimic the single top signal when ihdecays leptonically to
ete” or utp~ at the same time as one of these leptons is not reconstruttes.
background is significantly smaller th&vi+jets.

dibosons
WW andW Z each has a similar signature as single top whenldéhdecays to/v
while the other boson decays to quarksZ events might mimic our signal when one
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Single Top Production

Top Pair Production

Multijets Diboson
q M
“677 q
W y
g #
q q /
W 4} q
q q
g q

Figure 5.1: Representative diagrams for single top and thernbackground processes.
The “e” in the multijet diagram illustrates a quark that is mis+itiGed as an electron.
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Z decays to jets, and the other to leptons of which one is nonstoucted. However,
the cross sections for these processes are small, and dibusnts are hence not a
major background for single top.

5.4 Signal and Background Modeling

5.4.1 Monte Carlo Simulation

The signal samples and th&+jets, tt, Z+jets and diboson samples are generated using
Monte Carlo simulations. In all casesyTHIA version 6.409 [35] with the Tune A settings

is used to simulate the underlying event, initial and finatestadiation, and the hadroniza-
tion. For all background samples, the flavour and momentugaoh participating parton
inside the proton or antiproton are modelled by the CTEQ6ltbEparton density func-
tions [36], signal used CTEQG6M.

All stable particles produced are passed through a fullofietesimulation that models the
interactions between the particles and the material in &teatior usingsEANT [37]. The
magnetic field is also simulated such that charged partiajedtories are bent as they travel
through the detector.

The electronic response due to the deposited energy is gobbgla program calledzsim [38],
which also simulates electronic noise and adds detectoalsidrom zero-bias events to ac-
count for additional hard-interactions. Zero-bias evemtsdata events recorded with no
trigger requirements.

The final step in the Monte Carlo generation process is to stnact the event in the same
way as a real data event is reconstructed (see Chapter 4).oDine detector upgrade, but
also due to changes in the software framework, it is necgssaireate separate samples
corresponding to the Run lla and Run IlIb run periods.
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5.4.2 Monte Carlo Signal Samples

The single top quark events used in this analysis are gextkbgtthe Monte Carlo event
generatoiSINGLETOP[39] which is based on theompHEP generator. The top mass is set
to 170 GeV for the simulations.

The s-channel MC is produced using the leading order matrix efgmend is scaled by
an NLO/LO k-factor. The resulting kinematic distributions for all fars agree with the
expectations from NLO calculations [40].

The situation is more complicated for thehannel, where the higher order diagrag—

tq'b has an effective cross section on the same order as the Léathag — t¢' (Feynman
diagram for these processes are shown in Figure 2.3). Thedesmeed to be combined
to properly model the NLO kinematics. In order to avoid oaprlit is necessary to add
requirements to the; of the b quark produced in association with the top. In case of
the g¢ — tq¢'b, this quark is added bpYTHIA as an ISRb quark produced from gluon
splitting. SINGLETOPgenerate$q — tq' events with the restrictiopy(b) < 12 GeV for
the quark added byYTHIA, andgq — t¢'b events requiringr(b) > 12 GeV. The modes
are generated in proportions such thatthéb) spectrum becomes smooth as is shown in
Figure 5.2.
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Figure 5.2: The single topchannel Monte Carlo simulation is generated as a mixture of
the 2—2 and 2-3 modes. The left plot shows tipg distributions for thé quark produced

in association with the top. The matching of the modes careba at 12 GeV. The right
plot shows corresponding pseudo-rapidity distributioms gneir sum.
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5.4.3 Monte Carlo Background Samples

TheW +jets,tt and Z+jets backgrounds are modelled byPGEN [41] version 2.11, which

is a leading order matrix element event generator. Sepaeatples are generated with
different number of final state partons in order to propenhgudate events with high jet
multiplicities. The MLM matching scheme [42], which is pided within ALPGEN, is
applied after the parton showering process in order to asx@dap between the subsamples
with different parton multiplicities.

The MLM scheme works as follows: Parton jets are reconstruasing the UAL jet al-
gorithm [43] with cone size 0.4. This is done afterTHIA has applied parton showering
and initial and final state radiation. Each tree-level pagenerated byLPGEN is required
to match a jet with transverse momentum greater than 8 Gehiwik R < 0.7. If all
tree-level partons fulfil these matching criteria, thenitidusive MLM matching criterion
is met. If all partons are matched, and there are no additiomaatched parton jets in the
event, then the exclusive MLM matching criterion is satsfiégnclusive matching hence
allows extra jets to be created by THIA during parton showering. This matching is only
used for the subsample with the highest parton multipligge Tables 5.2 and 5.3).

The WW+jets events have a leptonically decayiingboson and 0 to 5 partons in the final
state. The factorization scale usedi§, +>_ m?2, wheremy is the transverse mass defined
asm? = m? + p% and the sun}_ m? extends over all final state partons. Separate subsam-
ples are generated as described below in order to ensurestatistics for the important
W+heavy flavour events and to properly model events with metsy |

Wilip These samples are created from diagrams with the final $tétes [p — (v+N Ip,
whereN € {0,1,2,3,4,5}, andlp is short for “light parton”, meaning a gluon or
a massless, d, s or c quark. The sample is further divided into the sub3éis;,
meaningWc+N' lp — lvc+N'Ip (N' = N — 1), andWjj, meaning processes
without any final state quarks.

Wbb denotes¥Vbb+N Ip — (vbb+N Ip, where the twd quarks are massive, and €
{0,1,2,3}.

W e denotedVec+N Ip — (vec+N Ip. Thec quarks are massive, aid € {0, 1,2, 3}.
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Events with twoc quarks after parton showering are removed from thé& and Wb
samples, as well as events witlquarks in thel/’lp sample, such that there is no phase-
space overlap between the samples [44]. Further detailst #fv@lV +jets subsamples are
given in Table 5.2 and 5.4.

W +jets Monte Carlo Sample Details

Process Matching Bo [pb] k-factor Runllastat. Run llb stat.
W + 0lp — fv + Olp excl. 4550 1.30 2.9M 10.1M
W+ 1lp — v + 1lp excl. 1277 1.30 8.5M 3.5M
W +2lp — v + 2lp excl. 299 1.30 5.0M 2.3M
W + 3lp — (v + 3lp excl. 70.1 1.30 2.4M 1.1M
W +4lp — v + 4lp excl. 15.8 1.30 1.7M 1.0M
W + 5lp — fv + 5lp incl. 5.27 1.30 0.5M 0.2M
W3 Total 6217 1.30 21.0M 18.3M
Whb + 0lp — ¢vbb+ 0lp |  excl. 9.34 1.91 1.2M 1.4M
Wbb+ 1lp — (vbb+ 1lp | excl. 4.27 1.91 0.6M 1.0M
Wb + 2lp — (vbb + 2lp excl. 1.55 1.91 0.2M 0.6M
Whb + 3lp — (vbb + 3lp incl. 0.74 1.91 0.2M 0.4M
Wbb Total 15.9 1.91 2.3M 2.5M
Wee + Olp — fvee + Olp excl. 24.0 1.91 1.0M 1.0M
Wee+ 1lp — lvee + 1lp excl. 134 1.91 0.6M 0.9M
Wee + 2lp — fvee + 2lp excl. 5.38 1.91 0.3M 0.5M
Wee + 3lp — fvee + 3lp incl. 2.51 1.91 0.3M 0.5M
Wee Total 45.3 1.91 2.3M 3.0M

Table 5.2: TheaLPGEN leading log cross sections provided during generationMhi
matching applied, an approximate NLO/Ikfactor, and the number of generated Run lla
and Run IIb events.

The Z+jets samples are generated similarly to tiejets samples. Th& bosons are set
to decay leptonically, and the factorization scale usedjs+ > m?2. Separate samples
for the 755, Zbb and Zcc processes are generated with up to four partons in the feial. st
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Details about these samples can be seen in Table 5.4.

Thett samples either have one of thié bosons decaying té while the other decays to
two quarks (+jets), or bothi’” bosons decay leptonically (dilepton). Matrix elements for
tt production with 0 to 2 additional light partons are used. oy quark mass is set to
170 GeV (just as for the signal sample), and the factorinasicale tom? + > p2.(jets).
Details for these samples are given in Tables 5.3 and 5.4.

Top Pair Monte Carlo Sample Details

Process Matching Bo [pb] k-factor Runllastat. Run llb stat.
tt + Olp — (wbb + Olp excl. 1.51 1.42 1.4M 0.7M
tt + 1lp — fvbb + 1lp excl. 0.62 1.42 0.8M 0.4M
tt + 2lp — Lvbb + 2lp incl. 0.31 1.42 0.4M 0.2M
Total tt — (+jets 2.44 1.42 2.6M 1.3M
tt + Olp — £lvvbb + Olp excl. 0.38 1.36 0.7M 0.3M
tt + 1lp — £lvvbb + 1lp excl. 0.16 1.36 0.4M 0.6M
tt + 22p — Llvvbb + 2lp incl. 0.08 1.36 0.2M 0.1M
Total ¢t — (0+jets 0.61 1.36 1.3M 1.0M

Table 5.3: Information of th& samples. The MLM matching applied, thePGEN leading

log cross sections, the NL©factor applied, and the number of Run lla and Run Ilb events
generated. Thé-factor is calculated by dividing the theoretical NLO creestion for:t
production (see Table 5.4) with the alpgen cross section.

Samples for the diboson proces$Es$V, W 7, andZ Z are generated usiry THIA. There
are no constraints on the decays of the bosons. Some ddiails these samples are pre-

sented in Table 5.4.
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Monte Carlo Sample Overview

Cross Section Branching Runlla Runlib
Event Type [pb] Fraction Statistics  Statistics
Signals
th — (+jets 1.12709 0.3240 4 0.0032 0.6M 0.8M
tqb — (+jets 2.341013 0.3240 + 0.0032 0.5M 0.8M
Signal total 3.4670 33 0.3240 4+ 0.0032 1.1M 1.6M
Backgrounds
tt — (+jets 7911901 0.4380 4 0.0044 2.6M 1.3M
tt — 00 791198 0.1050 4 0.0010 1.3M 0.9M
Top pairs total 7.917951 0.5430 & 0.0054 3.9M 2.2M
Wbb — (vbb 93.8 0.3240 £ 0.0032 2.3M 2.5M
Wee — fvee 266 0.3240 £ 0.0032 2.3M 3.0M
Wij — (vjj 24,844 0.3240 & 0.0032 21.0M  18.3M
W-+jets total 25,205 0.3240 £0.0032  25.6M  23.8M
Zbb — £0bb 43.0 0.10098 = 0.00006 1.0M 1.0M
Zce — llce 114 0.10098 = 0.00006 0.2M 1.0M
Zjj — Uljj 7,466 0.10098 = 0.00006 3.9M 7.0M
Z+jets total 7,624 0.03366 & 0.00002  5.1M 9.0M
WW — anything 12.04+ 0.7 1.0+ 0.0 2.9M 0.7M
WZ — anything | 3.6840.25 1.040.0 0.9M 0.6M
Z7Z — anything | 1.4240.08 1.0£0.0 0.9M 0.5M
Diboson total 171£1.0 1.0+ 0.0 4.7TM 1.8M

Table 5.4: The cross sections, branching fractions, art@limumbers of events in the
Monte Carlo event samples. The symbaltands for lepton (electron, muon or tau).
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5.4.4 Monte Carlo Corrections

The Monte Carlo simulations described in Section 5.4.1 mthgeparticle interactions and

the detector response. However, aspects of wear-andftisar detector are not considered,
for example debris build-up and ageing effects. As a resedipnstruction efficiencies for

electrons, muons and jets tend to be overestimated in theletions. The energy and

momentum resolutions for jets and leptons are also bettéeisimulated samples relative
to data.

To account for these effects, scale factors and smearirtigréaare applied to the Monte
Carlo Samples. The smearing factors used in this analysisadem shifts sampled from
a Gaussian distribution. These factors are used to adjastetonstructed energies and
momenta of the simulated objects such that the resolutidhante Carlo agrees with the
resolution in data.

The following subsections describe the corrections thaapplied to the simulated samples
in order to reach agreement with data.

Primary Vertex Position

The distribution of the: position of the primary interaction point tends to be widedata
than it is in the simulation. A correction factor (weight)applied to each simulated event
depending on the position of the primary vertex, the data epoch (Run lla or Rbhand
the instantaneous luminosity [46]. The weight applied iswt..5 for events with large|

(=~ 50cm) and close to unity for events with a central primary verte

Instantaneous Luminosity Reweighting

The instantaneous luminosity for a simulated event is detexd from the corresponding
value for the overlayed zero-bias data event (see Sectibh)5.The instantaneous lumi-
nosity is proportional to the average number of additigipahteractions and since the vast
majority of additional collisions result in dijet eventigtinstantaneous luminosity is also
correlated with the number of additional jets. The simolatioes not do a perfect job when
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picking the overlay events. A weight depending on the insta@ous luminosity and the
data epoch is assigned to each simulated event such thaintieolsity spectrum for each
individual Monte Carlo sample agrees with the spectrum oleskin data.

Z pr Reweighting

In the Z+jets samples, th& p; spectrum generated lay PGEN does not quite agree with
the next-to-leading order theory prediction. To accountlics, a weight depending on the
true Z pr and the jet multiplicity is assigned to the event [47].

Electron Identification Efficiencies

Each event with an isolated electron is scaled by a factoettwounts for the differences in
electron cluster finding and identification efficiency betwealata and Monte Carlo. The
scale factor is divided into two parts: preselection andt-posselection. Preselection
refers to the basic requirement for electron identificatithe presence of an electromag-
netic calorimeter cluster with a loose track match, elentignetic fraction, and isolation.
The preselection scale factor is parametrizeg,in. The post-preselection criteria consist
of requirements on the H-matrix variable, track-matching #e likelihood. The post-
preselection scale factor is parametrizedii(¢). These factors are derived usiag-ce
data and simulated events [48, 49].

The correction factor is given by:

gData SData
c _ Presel PostPresel
e-ID  — “MC MC :

EPresel 8PostPresel

Muon Efficiency Correction

The muon momenta in the Monte Carlo samples are smeared th thatcesolution ob-
served in data [50]. The muon smearing is parametrizeg/jn- and is determined in
Z — s events.

After the smearing is applied, a muon efficiency correctiaetdr is calculated from three
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independent factors for identification, track matching audation efficiencies, according
to

Data c Data c Data
_ €Reco % Track|Reco Isolation|Track
€u-ID = TNC MC MC :

€Reco 6Track|Reco 5Isolation|Track

This factor is applied to the event weight. The identificatefficiency scale factor is
parametrized inrfy.:,¢), the track match scale factor is parametrized in traekdn, and
the isolation one im.

Jet Corrections

Simulated jets have a better energy resolution, a highensgaction efficiency, and some-
times a higher average jet energy than what is observedan @iatcorrect for this, a proce-
dure called JSSR (Jet Smearing Shifting and Removal) isepptiDZ [51]. The smearing

and shifting parameters are measured as functions pf jahdr,, in direct photon events

(vtjets). The JSSR procedure only applies to jets with> 15 GeV.

b Jet ldentification Corrections

There are large differences for the track reconstructi@iniehcy between simulated sam-
ples and data. The tracking efficiency is significantly higheMonte Carlo. One cannot
directly apply the data neural netwokkagger to the simulated events since the algorithm
relies heavily on tracks. Instead the probability to talgjat, a charm jet or a light jet is
measured in data and applied to the Monte Carlo events. Thebalplities are called Tag
Rate Functions (TRFs).

In order to apply thé-tagging algorithm to a jet, it has to baggable meaning that there
has to be a set of tracks associated with the jet. The pratyatuit a jet to be taggable
is also higher in Monte Carlo than in data, so an additionajaadity correction must be
applied. The probability?;,, for a jet to beb-tagged can be written as

Priog(pr, 1, 2, ) = €tageable(PT, 1, 20tas [)TRE (D7, 1, 2012, ), (5.1)
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wheren andp, are for the jet,f is the flavour of the jet:b, c or light, €pgganie IS the
taggability efficiency for jets in data, and TRF is the tag fatection also for jets in data.
Zuiz 1S thez-position of the vertex associated with the jet.

To simulate the tagging in the Monte Carlo samples, sevgraimutationf each event
are created where each jet is set to eithebtegged or not. If there ar®. jets in an
event, ther2Mies such permutations can be created. For instance, four pationg can
be created when an event has two jets: both jets can be taggbdets can be untagged,
or either of the two jets can be tagged while the other is nbie probability for a given

permutation to occur is given by
]Vjets

T (rag(0) Prag (i) + (1 = Tuag(8)) (1 = Prag(9))) (5.2)
whereP,,, is given by Equation 5.1, anfl,, (7) is 1 if jeti is b-tagged and O if it is not. The
probabilities for all permutations add up to unity.

For each simulated event, all possibleagging permutations are created, and each permu-
tation is weighted by its probability according to Equat. All the permutations, except
the ones with zero probability, are considered for evergciign.

As described in Section 4.7, this analysis uses two diftebeagging operating points:
LOOSE and TIGHT, meaningtag NN > 0.5 and NN> 0.775 respectively. More specif-
ically, each event is required to have either exactly onesgeisfying TIGHT b-tagging
while the other jets do not satisfy LOOS$Hagging, or exactly two jets satisfying LOOSE
b-tagging. Separate tag rate functions are derived for ti&&HT and LOOSE operating
points. The permutation weight for jetoeing a TIGHTb jet while all other jets are not

LOOSE can be written as:
]Vjets
PTIGHT(i) H (1 _ PLOOSE(J-))‘ (53)

tag tag
JF

The permutation weights for two jets fulfilling LOOSEtagging can be calculated using
the general formula (Equation 5.2) wifh,, set toP;0°%". For example, the permutation

of an event with three jets where jet 1 and 3@at@gged (., (1) = Lia5(3) = 1, [1a4(2) = 0)
will get the permutation weight:

PLOOSE(1>(1 . PLOOSE(Q))PLOOSE(S))'

tag tag tag
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W +jets Reweighting

After comparing with data, it is found thatLtPGEN mismodels some of the kinematic
variables, in particular the number of forward jets. To deih this, thell/+jets samples
are reweighted beforgtagging to reach agreement with the jetlistributions observed
in data. The reweighting is derived by comparing therjets sample to the data after
subtraction of all other backgrounds. Reweighting functiare derived for the following
variables in the order specified: leadingijesecond leading jet, the A¢ andAn between
the two leading jets, and thereafter the third and fourthy phen applicable.

These reweighting functions are derived such that the dveramalization stays the same.
Only the kinematic shape of the sample is affected.

5.4.5 Monte Carlo Sample Normalization

Thett, Z+jets, dibosons, and single top samples are normalizedtmtbgrated luminos-
ity (Equation 3.3) of the dataset using the cross sectiodsbaanching fractions listed in
Table 5.4. Thereafter the corrections described in Se&tidd are applied, and no further
normalization is necessary.

ThelV +jets background is corrected in the same way as the otheteMarlo samples, but
here further corrections are needed. The sample is firstad®ad to theaALPGEN leading
log cross sections listed in Table 5.2, but these crossosechiave large uncertainties and
are very sensitive to renormalization and factorizatiadeschoices. Also, the higher order
corrections to the cross section calculations are quitgelaand from comparisons with
NLO calculations, it is clear that the amountIdf+jets is underpredicted. Approximate
NLOJ/LL k factors are listed in Table 5.5. Thelsdactors are applied, but from comparison
with data, it is clear that further scaling of thié+jets is needed.

The final W +jets normalization factors are derived from comparisothwiata. Thel//
heavy flavour componentd’bb and W cc are adjusted by the scale fact®y = 0.95 +
0.13, which is calculated from th&tagging efficiencies in the subset of the data that con-
tains two jets [52]. This subset is dominatedbi#jets sincet events tend to have more
jets. The final normalization factors appliediio+jets are the described in Section 5.4.6.
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W +jets Scale Factors

Subset | W35 Wej Wbb Wee
k-factor| 1.3 1.8 191 191
Sur - - 0.95 0.95

Table 5.5: Scale factors applied to thHétjets sample. Thé-factor is correcting theLp-
GEN leading log cross section normalization to NLO, and $hg- factor is measured by
comparing the simulated samples to data [52]. The final deaf®rs needed to reach
agreement with data are listed in Table 5.6 (see Sectiof)5.4.

5.4.6 Multijets and IV +jets Normalization

Multijet events enter the dataset by faking an isolatecolepind .. To model this back-
ground, a data sample is created using the same selectieriaceas for the main analysis
(Section 5.5), but an “inverted” lepton identification eribn. For the electron channel, the
reconstructed electrons are no longer required to havektnatch, and the likelihood cut
is inverted: Ly, < 0.85. For the muon channel, the muon isolation criterion is deahp
and events with a muon fulfilling tight muon isolation areacgd.

The data sample resulting from this selection is orthogtmtie analysis dataset since no
events satisfy the tight lepton requirements. The recoad lepton is highly probable to
be a fake lepton since the lepton identification criteria\a® loose at the same time as
tight leptons are rejected.

Two scale factorsSyy 4jets and Siuiijets, are applied to thél +jets and mulitjet samples
respectively. They are derived such that the total numbgredicted events match data
before any tagging selection is applied. These scale factors hentik i relation:

Ndata = SW—i—jetsYW-l—jets + Smultijetstultijets + yall other MC; (54)

whereNg,., are the number of events in datéy i jes andY ,usijets are the sum of weights
for all events in théV +jets and mulitjet samples, add; owner Mc are the predicted number
of events for the remaining signal and background samplesalzed as described in Sec-
tion 5.4.5. Notice, that since all terms b jets and Siuiijets are known in Equation 5.4,
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these factors are anticorrelated, and we only have one wrkparameter.

The Sy yjets @and Spuiijers are determined by comparing the lepton Fr, andmqp (W)
distributions between data and background, which all hegrefecantly different shapes in
W+jets and multijet backgrounds. The calculation of thetransverse mass is described
in Section 7.1.2.

The procedure according to Whidhy 1 jets andShuiijets are calculated is the following:

1.
2.

SetSy 4jets = 1.0 and calculate the correspondifigisijets from Equation 5.4

Do a Kolmogorov-Smirnov test (KS-test) between data aukground for the each
of thepr, £, andm, (W) distributions and record the KS-test values

Increasesyy . s by 0.001
Repeat from step 2 untily ;s reachesl.0 or whensS,,iijets bECOMeES negative

For each of the three variables, select the recorfigd {s,Smutijets) Which gave the
highest KS-test value

. The final scale factors are the weighted average of the Suale factors selected in

step 5, using the KS-test value as weight.

The procedure above is done individually for electrons andms and each jet multiplicity
bin. The derived scale factors are listed in Table 5.6.

W+jets and Multijet KS Scale Factors

SW+jets Smultijets
Run lla Run llb Run lla Run b
e ] e i e i e Ju!

2jets| 1.51 1.30 1.41 1.230.348 0.0490 0.388 0.0639
3jets| 1.92 1.79 1.75 1.570.291 0.0291 0.308 0.0410
4jets| 229 2.06 1.81 1.920.189 0.0244 0.424 0.0333

Table 5.6: W +jets and multijets normalization scale factors derivediescribed in Sec-
tion 5.4.6.
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5.5 Event Selection Criteria

The event selection is designed to find events with a lepadigidecayingl¥ boson and
jets. Each event is required to have an isolated lepton,imgissansverse energy from the
neutrino and two to four jets. The selection is applied saedy for the electron and muon
data.

General selection

e Good quality (for data)

Trigger requirement: at least one of the selected triggasstfire (see Section 5.2)

Good primary vertex|zpy| < 60 cm with at least three tracks attached

2-4 good jets withpr > 15 GeV and|n?t| < 3.4

The leading jet is required to hawye > 25 GeV

Missing transverse energy
20 < F7 < 200 GeV in events with exactly two good jets

25 < F; < 200 GeV in events with three or more good jets

b-tagging selection
e Each jet must havpy| < 2.5 to be considered fdrtagging

e One jet fulfilling the TIGHTb-tagging criterion (NN> 0.775) while the other jets do
not fulfill LOOSE b-tagging (NN< 0.5), or two jets fulfilling LOOSEb-tagging

e The leading-tagged jet is required to hayg > 20 GeV

Electron channel selection

¢ One tight electron withnd°t| < 1.1 andpy > 15 (20) GeV in events with 2 (3 or
more) good jets

e No additional loose electron withy > 15 GeV

¢ No tight isolated muon witlr > 15 GeV and within|n¢'| < 2.0
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e Electron track pointing back to the primary vertégz(e, PV)| < 1 cm

Muon channel selection

e One tight muon withpy > 15 GeV and|n°*| < 2.0

No additional loose muons withy > 4 GeV

No loose electron withhy > 15 GeV and within|nd¢t| < 2.5

Muon track pointing back to the primary verteiz(u, PV)| < 1 cm

Additional p; > 30 GeV criterion applied to the leading jet when it is in the mte
cryostat region.0 < |n9°*| < 1.5

The selection criteria listed up to this point select a sigant amount of multijet back-
ground. It is desirable to reduce this background sincediffcult to model, especially
when thef; is parallel or back-to-back with a (mis)reconstructed obje

The following selection criteria have been designed to cedhe amount of mulitjet back-
ground while keeping most of the signal:
Multijet reduction criteria

e Various angular selection criteria that remove events Voith /- at the same time
as thef vector is either back-to-back or parallel to the lepton erlérading jet (see
Figures 5.3 and 5.4)

¢ Selection on the scalar sum of tig- and thep, of the lepton and all jets
In the electron channel:
— Hyp(alljets, e, Br) > 120 GeV for events withVj.,, = 2
— Hy(alljets, e, B) > 140 GeV for events withV;.s = 3
— Hy(alljets, e, Br) > 160 GeV for events withVi.,, = 4

In the muon channel:
— Hy(alljets, u, Fr) > 110 GeV for events withVie, = 2
— Hy(alljets, u, Fr) > 130 GeV for events withVie, = 3
— Hy(alljets, u, Br) > 160 GeV for events withVi = 4
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Figure 5.3: A¢(jetl, ) versusf (first and third rows) and\¢(leptonf;) versusf
(second and fourth rows) distributions for data (left), tijedls (centre) andb+igb signal
(right), in the electron channels in Run lla (two first rowsygldun Ilb (second two rows)
data. The “triangular” selection criteria applied are givgy the lines in the plots. All

events are required to fall to the right of the lines showne €kents that fail these cuts
have low /i at the same time as thE; is aligned or anti-aligned with a reconstructed

object in the event.
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Figure 5.4: A¢(jetl, ) versusf (first and third rows) and\¢(leptonf;) versusf
(second and fourth rows) distributions for data (left), tijedls (centre) andb+igb signal
(right), in the muon channels in Run lla (two first rows) and Rlm(kecond two rows)
data. The “triangular” selection criteria applied are givgy the lines in the plots. All
events are required to fall to the right of the lines showne €kents that fail these cuts
have low J/;- at the same time as thE; is aligned or anti-aligned with a reconstructed
object in the event.
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5.6 EventYields

The number of events in data, and the predicted number oélsagrd background events
are here referred to agelds The yields after the selection described in Section 5.5 are
presented for the Run lla dataset in Table 5.7 and for Run lliabiels.8.

The Run lla data, signal and background yields for events exéttly one-tagged jet, are
presented in Table 5.9, and the corresponding yields for Ruaré shown in Table 5.10.
The yields for events with exactly twietagged jets are given in Tables 5.11 and 5.12 for
the Run lla and Run llb datasets respectively.

Figure 5.5 illustrates the proportions of the signal andkgemund components in the
datasets classified by number of jets and numbértagiged jets.

2 jets 3 jets 4 jets

Preta
9 tb [

tqb 1N

tt - 1 B

tf - I+jets W

wob Il

wee IR

wej Il

wjj B
Ztjets

Dibosons ||

Multijets [l

1 b tag

2 b tags

Figure 5.5: lllustration of the signal and background cosifian of the dataset depending
on the number of jets and numberiafags.
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Run lla Event Yields Beforé Tagging

Electron Channel Muon Channel
2jets 3jets 4djets 2jets 3jets 4jets
Signals
th 23 8.2 2.2 27 11 2.8
tgb 43 17 5.8 51 23 7.0
th+tqb 67 26 8.0 77 33 10
Backgrounds
tt—00 60 37 12 57 41 13
tt—/(+jets 41 136 158 32 143 196
Wbb 479 160 45 530 211 57
Wee 1,041 356 101 1,196 485 125
Wej 1,338 315 65 1,514 389 81
Wiy 13,847 3,309 72217,028 4,612 984
Zbb 18 7.1 3.5 70 22 6.6
Zce 33 12 4.2 151 46 13
Zjj 461 125 40, 1,309 348 84
Dibosons 339 98 24 457 142 34
Multijets 923 278 74 896 235 69
Background Sum | 18,582 4,834 1,24623,243 6,675 1,663
Data 18,582 4,834 1,24623,243 6,675 1,663

Table 5.7: Yields for Run lla data, signal and all backgrouohponents after event selec-
tion. Nob tagging requirements have been applied.
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Run IIb Event Yields beforé tagging

Electron Channel Muon Channel
2jets 3jets 4djets 2jets 3jets 4jets
Signals
th 24 8.4 2.3 26 11 3.3
tgb 43 19 6.3 49 24 7.9
th+tqb 67 27 8.6 75 35 11
Backgrounds
tt—00 65 42 13 61 46 14
tt—/(+jets 43 141 168 33 145 198
Wbb 458 161 42| 499 200 61
Wee 1,006 351 94 1,126 453 137
Wej 1,327 316 70 1,442 377 96
Wiy 14,166 3,489 79516,941 4,710 1,137
Zbb 19 8.2 3.4 70 26 7.4
Zce 35 15 5.9 152 54 14
Zjj 596 167 55| 1,833 507 118
Dibosons 343 103 26 445 145 37
Multijets 987 294 188 1,369 377 108
Background Sum | 19,048 5,087 1,46023,972 7,040 1,927
Data 19,048 5,087 1,46023,972 7,040 1,927

Table 5.8: Yields for Run IIb data, signal and all backgrouachponents after event selec-
tion. Nob tagging requirements have been applied.
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Run lla Single-Tagged Event Yields

Electron Channel Muon Channel

2jets 3jets 4jets 2jets 3jets 4jets
Signals
th 9.1 3.1 0.82 10.2 3.9 1.0
tgb 17.4 6.6 2.1 205 8.6 2.6
th+tqb 26.4 9.7 3.0 30.7 125 3.6
Backgrounds
tt— 00 23.6 14.2 43 221 156 4.8
tt—(+jets 16.3 520 57.0 125 543 69.8
Wb 1354 442 12.0146.4 571 16.0
Wee 66.0 24.8 8.1 739 334 9.9
Wej 98.3 24.0 5.0 112.1 30.2 6.3
Wij 73.6 21.9 6.1 87.0 30.1 8.1
Zbb 6.5 28 0.89 26.8 7.9 2.5
Zce 2.7 1.2 055 133 4.6 15
Zjj 54 1.8 0.63 12.7 4.3 1.1
Dibosons 16.2 5.3 1.4f 22.3 7.8 2.1
Multijets 28.0 10.3 3.0 515 17.2 7.3
Background Sum | 472.1 202.4 99.0580.6 262.5 129.4
Bkgds+Signals | 498.5 212.2 101.8611.3 275.0 131
Data 508 202 103 627 259 131

Table 5.9: Yields for Run lla data, signal and all backgrouohponents after event selec-
tion and requiring every event to have exactly énagged jet.
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Run llb Single-Tagged Event Yields

Electron Channel Muon Channel

2jets 3jets 4jets 2jets 3jets 4jets
Signals
th 9.5 3.3 091 9.9 4.3 1.2
tgb 16.9 7.2 2.5/ 185 8.7 3.0
th+tqb 26.4 105 34 284 13.0 4.2
Backgrounds
tt— 00 256 16.1 49 235 17.0 5.0
tt—(+jets 164 538 615 122 536 70.6
Wb 1295 443 11.6136.0 534 16.8
Wee 68.6 26.2 76 724 326 10.9
Wej 106.1 25.8 541119 29.7 6.6
Wij 1144 354 9.6 128.3 46.5 145
Zbb 50 24 10 201 77 22
Zce 2.1 1.1 0.57 10.7 4.3 1.2
Zjj 6.0 21 0.790 139 5.0 1.3
Dibosons 17.4 5.8 170 227 8.4 2.4
Multijets 31.0 10.1 7.1 735 282 9.0
Background Sum | 522.1 223.2 111.6625.3 286.5 140.5
Bkgds+Signals | 548.5 233.6 115.2653.6 299.4 144.7
Data 547 207 124 595 290 142

Table 5.10: Yields for Run llb data, signal and all backgrowothponents after event
selection and requiring every event to have exactlyotagged jet.
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Run lla Double-Tagged Event Yields

Electron Channel Muon Channel
2jets 3jets 4jets 2jets 3jets 4jets
Signals
th 569 212 058 6.66 275 0.75
tgb 081 161 090 092 215 1.07
th+tqb 6.50 3.72 149 759 490 1.82
Backgrounds
tt— 00 1391 9.70 3.1214.09 11.22 3.58
tt—(+jets 4.32 28.63 43.16 3.51 32.18 55.38
Wbb 33.96 12.34 3.6935.64 15.71 4.77
Wee 512 275 128 562 356 1.50
Wej 144 068 0.19 162 0.83 0.26
Wij 145 086 0.34 170 120 0.46
Zbb 088 0.74 0.31 6.14 260 0.91
Zce 0.15 0.13 0.10 1.05 054 0.25
Zjj 0.14 0.09 0.0 031 0.20 0.07
Dibosons 205 0.8 0.28 3.06 1.37 0.46
Multijets 190 110 048 328 198 0.93
Background Sum | 65.33 57.88 53.0076.03 71.40 68.57
Bkgds+Signals 71.82 61.59 54.4883.60 76.29 70.40
Data 67 61 37 71 62 56

Table 5.11: Yields for Run lla data, signal and all backgroendchponents after event
selection and requiring every event to have exactly hwagged jets.
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Run llb Double-Tagged Event Yields

Electron Channel Muon Channel

2jets 3jets 4jets 2jets 3jets 4jets
Signals
th 526 2.00 058 561 259 0.78
tgb 094 189 1.01 099 222 121
th+tqb 6.20 3.89 158 6.60 480 1.99
Backgrounds
tt— 00 1358 9.99 3.1712.95 10.79 3.33
tt—(+jets 4.07 27.71 43.44 3.11 29.00 51.06
Wbb 30.54 1219 3.4330.84 14.42 5.07
Wee 555 315 117 560 3.72 1.67
Wej 204 096 0.28 2.07 1.04 0.33
Wij 281 166 0.64 3.21 220 0.98
Zbb 069 060 0.34 434 207 0.70
Zce 0.14 0.14 0.10 086 0.53 0.19
Zjj 0.16 0.11 0.06 0.34 0.24 0.09
Dibosons 196 091 0.30 298 1.38 0.46
Multijets 225 137 113 492 312 0.97
Background Sum | 63.78 58.80 54.06 71.22 68.50 64.85
Bkgds+Signals 69.99 62.68 55.6477.81 73.31 66.85
Data 79 56 51 85 79 80

Table 5.12: Yields for Run llIb data, signal and all backgrowothponents after event
selection and requiring every event to have exactly hwagged jets.
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5.7 Data-Background Model Comparison

This section, and many of the subsequent sections in thessthehow plots where the data
are compared with the total background and signal predistiigure 5.6 shows the colour
scheme used to label the data and the different signal ark@jilamd components in these
plots.

After all but theb-tagging selection criteria are applied, the dataset exred to as there-
tag sample (see Figure 5.5). This sample is divided into twehanaoels depending on the
run period (Run lla or Run IIb), the lepton flavour ¢r 1), and the jet multiplicity (two,
three or four jets). Afteb-tagging is applied, the total number of analysis channela/g
to 24: twelve single-tagged and twelve double-tagged ablann

In order to ensure that the background is well modeled, tmeesgent between the data
and the signal and background samples is studied for a lshgflivariables, both for
each channel individually, and for various combinationslannels. This task is very time
consuming due to the large number of variable and channdbic@ations. Several thousand
plots are produced and checked. Initially, most attens@pent on the distribution of basic
kinematic quantities. Examples of such distributions &g in Figure 5.7, where all 24
channels are combined. One of the variables shown in Figdris shell transverse mass
defined by

-

mp(W) = ER(W) = pr(W) = (Er + pr(0)* — (Er + pr(0))*. (5.5)

This variable is expected to peak close to the mass ofithieoson (around 80 GeV) for
events containing redl” bosons. Thél” transverse mass distribution for various combina-
tions of channels, both before and aftelagging, is shown in Figure 5.8.

More details about the different variables and the agreétmetwveen data and the signal
and background model is presented in Section 7.1.2.
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Key for Plots
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Figure 5.6: The colour scheme used to label the signal ankigbaend components in
many of the plots shown in this thesis.
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Figure 5.7: Data-background agreement of various varsasiterb tagging has been ap-
plied (all 24 channels combined). A colour key for the sigaradl background components
is shown in Figure 5.6.
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in the pre-tag sample (top row), the single-tagged samplddle row) and the double-
tagged sample (bottom row). Channels with two, three and jietsrare shown in the
left, middle and right columns respectively. The colour kaythe signal and background
components can be seen in Figure 5.6.
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5.8 Systematic Uncertainties

This section describes the different systematic uncdigagirassociated with the analysis.
The relative uncertainties on each of the sources are sumedan Table 5.13, and pre-
sented in greater detail in Appendix B.

e Integrated luminosity
There is a 6.1% uncertainty on the integrated luminosityrede, which affects the
signal,tt, Z+jets, and diboson yields.

e Theory cross sections
For the single top antt cross sections, there are uncertainties due to the scale, pa
ton density functions, kinematics, and top quark mass ehtiat are combined in
quadrature [13, 56]. The mass uncertainty is calculatedeadifference between the
cross section at 170 GeV (the value the analysis is perfoatjeahd the most recent
combined top mass measurement of 172.4 GeV [57].

The diboson cross section uncertainty is derived using th® WICFM genera-
tor [45]. The uncertainty fofiV 1 is 5.6%, forWZ 6.8%, and forZ~Z 5.5%, and
for the sum of the processes it is 5.8%. The average valueBét & also used for
the Z+jets background.

e Branching fractions
The branching fractions for 8 boson to decay to an electron, muon, or tau lep-
ton, have an average uncertainty of 1.5% [1]. This is one M€ normalization
uncertainties.

e Parton distribution functions
The effect of changing the parton distribution functiongvsaluated by reweighting
each event in the single top Monte Carlo according to the 4@réiit CTEQ error
PDFs. The systematic uncertainty affecting the signal @ecees from this source
is estimated to be 3%.

e Trigger efficiency
This analysis uses an OR of many trigger conditions whickgatrigger efficiency
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of close to 100%. The uncertainty of this trigger efficiercyieasured to be 5% in all
channels except for the Run lll3jets channels, where 10% is used. This uncertainty
is treated as uncorrelated between Run Ila and Run IIb and betwgets andu+jets
channels.

¢ Instantaneous luminosity reweighting
The instantaneous luminosity distributions are reweiglite all Monte Carlo sam-
ples in order to match the Run lla or Run llb data distributioagppropriate. The
initial distributions are from the zero-bias data overlaidthe MC events to simu-
late the underlying events, and are generally at too lowegafor later data-taking
conditions. The uncertainty on this reweighting is 1.0%.

e Primary vertex modeling and selection
The distribution of the: position of the primary vertex is reweighted in Monte Carlo
to match that in data [46]. The uncertainty due to this rewweng is 0.05% (negligi-
ble). The uncertainty on the difference in primary verteeston efficiency between
data and MC is 1.4%.

e Electron reconstruction and identification efficiency
The electron scale factor uncertainty includes the depwselef the electron ID scale
factor on the variables ignored in the parametrizationjattiplicity dependence,
track match and likelihood scale factor. The dependenciesamdp of the electron
are included in the systematic error as well and also theduirstatistics in each bin
of the parametrization. The assigned total uncertainty5%e2

e Muon reconstruction and identification efficiency
The MC scale factor uncertainties for muon reconstructiahidentification, includ-
ing isolation requirements, are estimated by the muon Iigs coming from the
tag/probe method, background subtraction, and limitetissits in the parametriza-
tion. The assigned total uncertainty is 2.5%.

¢ Jet fragmentation
The systematic uncertainty due to the modeling of the jgnfrantation is evaluated
by comparing the acceptancetofevents generated withLPGEN+PYTHIA (as used
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in the analysis) to ones generated wilPGEN+HERWIG, with all other generation
parameters unchanged. The resulting uncertainty is al86ub¥4%, and is applied
to all MC samples in the analysis.

e Initial-state and final-state radiation
This uncertainty is evaluated thsamples generated with different amounts of initial-
and final-state radiation. The uncertainty ranges from G®%2.6%.

¢ b-jet fragmentation
The size of the uncertainty from thhget modeling is evaluated in the pairs cross
section analysis following the method described in RefexdB6]. The uncertainty
arises from the difference between the fragmentation petrdaations preferred by
SLD vs. LEP data. A 2.0% value is measured.

e Jet reconstruction and identification
The efficiency to reconstruct and identify jets is measuretath data and Monte
Carlo [30, 31]. These efficiencies are slightly higher for Mog&arlo, and a small
correction is applied to the simulated samples. The uniogytan the Monte Carlo
normalization due to this correction is 1%.

e Jet energy scale
The jet energy scale correction is raised and lowered by tar&lard deviation on
each MC sample and the whole analysis repeated, which pesdushape-changing
uncertainty, and an overall normalization uncertaintye filbrmalization part ranges
from 1.1% to 13.1% on the signal acceptance and from 0.1%d 8 &n the combined
background.

¢ Jet energy resolution
A flat uncertainty of 4% is assigned due to the jet energy tgwml. Using the method
described in Reference [51], it is found that the shape vanatdue to this uncer-
tainty are smaller than 4% for all signals and backgrounds.

e ALPGEN reweighting
The uncertainty due to the reweighting of thePGEN W +jets background affects
the shapes of thB/+jets background components (see Appendix B).
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e W+jets and multijets normalization
The W+jets and multijets background normalizations are deteechifrom a fit to
the pretagged data, as described in Section 5.4.6. Thetamtes from this fit vary
from channel to channel and range from 30% to 54% for the patdtbackgrounds
and from 1.8% to 5.0% for th#/+jets backgrounds.

e Taggability and tag-rate functions for MC events
The uncertainty associated withtagging in MC events is evaluated by adding the
taggability and the tag rate components of the uncertamyadrature. The TRF un-
certainties originate from several sources: statistinare of the Monte Carlo event
sets; the assumed fraction of heavy flavour in the multijetsitd Carlo events for the
mistag rate determination; and, the TRF parametrizatiohes& uncertainties affect
both shape and normalization of the Monte Carlo samples. ®haalization part
of the uncertainty is about 2.3% (9.9%) to 4.7% (10.8%) fagke-tagged (double-
tagged) signal acceptances, and from 2.1% (9.0%) to 7.0%%d)X¥or single-tagged
(double-tagged) combined backgrounds. More details &engn Appendix B.

e W+jets heavy-flavour scale factor correction
The heavy-flavour scale factor correctiSg - is measured in data [52]. The Monte
Carlo tag rate function uncertainty induces fluctuationshm effective scale factor
that are at least as large as the channel-to-channel wasain the measurement.
Therefore, it can be argued that any additional systematiouble counting. How-
ever, an uncertainty of 13.7% is still assigned on the seaitof.

e Z+jets heavy-flavour scale factor correction
The uncertainty used for thB+heavy-flavour normalization scale factor is 13.7%,
taken from theSy - factor used folV +jets.

e Sample statistics
The Monte Carlo and data samples used to estimate the sighbhakground shapes
are limited in size. In particular, the number of multijeckground events is quite
low after b tagging. The statistical uncertainty on the different lgaokind com-
ponents is taken into account for each sample in each bineofitlal discriminant
distribution.



CHAPTER 5. ANALYSIS: EVENT SELECTION 75

Relative Systematic Uncertainties

Components for Normalization

Integrated luminosity 6.1%

tt cross section 12.7%

Z+jets cross section 5.8%

Diboson cross sections 5.8%

Branching fractions 1.5%

Parton distribution functions 3.0%

(signal acceptances only)

Triggers (5.0-10.0)%

Instantaneous luminosity reweighting 1.0%

Primary vertex selection 1.4%

Lepton identification 2.5%

Jet fragmentation (0.7-4.0)%

Initial-and final-state radiation (0.6-12.6)%

b-jet fragmentation 2.0%

Jet reconstruction and identification 1.0%

Jet energy resolution 4.0%

W +jets heavy-flavour correction 13.7%

Z+jets heavy-flavour correction 13.7%

W +jets normalization to data (1.8-5.0)%

Multijets normalization to data (30-54)%

MC and multijets statistics (0.5-16)%
Components for Normalization and Shape

Jet energy scale for signal (1.1-13.1)%

Jet energy scale for total background (0.1-2.1)%

(not shape fotZ+jets or dibosons)

b tagging, single-tagged (2.1-7.0)%

b tagging, double-tagged (9.0-11.4)%

Component for Shape Only
ALPGEN reweighting —

Table 5.13: A summary of the relative systematic unceisnfior each of the correction
factors and normalizations scales used in the analysis.



Chapter 6
Analysis: Decision Trees

A decision treas a multivariate technique which can be used to classifgniagions [60,
61]. In this thesis, the term decision trees refers to whamase specifically known as
classification tregsand this technique is applied to separate single top quekie from a
vast amount of background.

This chapter gives an overview of decision trees and masvathy and how they can be
used in experimental particle physics.

6.1 Motivation

Single top production is a very rare process. After applyirggevent selection described in
Chapter 5, the signal to background ratio is 1:20, and theabigicess is smaller than the
uncertainty on the background prediction. In this situatib is not possible to conduct a
cross section measurement—~better separation of sigmaldeckground is needed.

The traditional approach is to apply further selectionecidt (cuts) on discriminating vari-
ables and select a subset of the original sample with an eeldangnal to background ratio.
The main disadvantage with this method is that we lose pussanal every time a cut is
applied.

76
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A more effective way is to use a multivariate technique, ehttre separation power of
several variable§ is combined into a discriminar® (). This discriminant will separate
signal from background better than any individual variabléne signal significance and
cross section can then be calculated either by applyingextiah criterion onD(Z), or,
more effectively, by integrating over the full discrimirtatistribution.

The analysis described in this thesis uses boosted detisesas a multivariate technique
to derive a discriminanD(Z) that monotonically increases with the probability of anreve
being signal. The cross section and the signal significanoesierived from theD(7)
distributions observed in data and expected for the sigmhbackground processes using
Bayesian calculations as described in Section 7.2.1.

6.2 Overview of Decision Trees

6.2.1 History and Usage

Decision trees originated in the fields of data mining andegpatrecognition. Much of
the initial development was done by Breimanal. who developed the CART algorithm
(Classification And Regression Trees) [60] in the early 198Bdensive studies of deci-
sion trees have been conducted since then resulting in aligtngf publications mainly
in different branches of computer science. Several mettf@tsmprove the classification
performance by creating an ensemble (forest) of decisemstwere developed in the 1990s
(see Section 6.5). One of these extensiormissting(section 6.5.3) which is used in this
analysis.

There are vast applications of decision trees in variouddigicluding medical diagnos-
tics, mass spectrum classification, financial analysis amdi kvriting recognition. In high
energy physics, decision trees have rarely been used uitgl iggcently. The two main ap-
plications are particle identification (PID) and isolatioha specific physics process from
background processes (as in this analysis). Examples ofapflcations include distin-
guishing jets originating from either laquark or from the hadronic decay ofralepton
from ordinary QCD jets. Boosted decision trees were first usddgh energy physics by
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the MiniBooNE experiment [63, 64] for particle identificatioand later by our group at
Simon Fraser University as part of D@’s search for singlegoark production [4, 5].

6.2.2 Whatis a Decision Tree?

A binary tree or 2-tree, is a structure obdesvhere each node can have up to two daughter
nodes. The initial node is referred to as thet nodeand is typically assigned the identifier
numbert = 1. Left and right daughter nodes are assigned 2Dand2¢+1 respectively.
The nodes are eithénternal (have daughter nodes) terminal (no daughters). Terminal
nodes are callelkaves An example of a binary tree is illustrated in Figure 6.1.

Terminal Node
= Leaf

Internal Node

Root Node

Figure 6.1: lllustration of a binary tree. Each node is shavith its identifier numbet.

A decision tree is a-tree (up ton children per node) which can be used to classify obser-
vations inton-classes. Hereafter we will assume that we are dealing withta/o classes,
signalS' and backgrounds, in which case the decision tree is a binary tree. Interndeso
each have an associated test that, given the features osanvabonz, returns either true

or false (“go right” or “go left”). Each leaf has an assignestidion tree output value.

An observation defined by variabléswill, starting from the root node, follow a unique
path through the decision tree depending on the outcomdseatests from the internal
nodes passed. Eventually the observation will end up atfafehthe classification of the
observation is the decision tree output value of this leadimple decision tree is illustrated
in Fig. 6.2.



CHAPTER 6. ANALYSIS: DECISION TREES 79

Figure 6.2: Graphical representation of a decision treelddavith their associated splitting
test are shown as (blue) circles and terminal nodes with ploeity output values are shown
as (green) leaves. An event (observation) defined by vasablof which Hy < 242 GeV
andmy,, > 162 GeV will return D(z;) = 0.82, and an event with variables; of which
Hp > 242 GeV andpr > 27.6 GeV will have D(Z;) = 0.12. All nodes continue to be split
until they become leaves.

6.2.3 Advantages and Limitations

As previously mentioned, a big advantage with decisionstim@mpared with a selection
based analysis is that events which fail an individual selacriterion will continue to be
considered by the algorithm.

Compared with other multivariate techniques, decisionstiggve several beneficial fea-
tures: the tree has a human-readable structure, makingstipe to know why a particular
event is labelled signal or background; learning is fastgamad to neural networks; de-
cision trees can use discrete variables directly; and, aprpcessing of input variables is
necessary. In addition, unlike neural networks, decisiead are relatively insensitive to
including extra variables. Adding well-modelled variabtéat are not powerful discrimi-
nators does not degrade the performance of the decisiofnoesdditional noise is added
to the system).
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Limitations of decision trees include the instability oéttree structure with respect to the
learning sample composition, sub-optimal performanceamnlmear data, and the piece-
wise nature of the output. Creating decision trees usingmarglibsets of the same samples
may produce very different trees, but usually with simileparation power. The decision
tree output is discrete since the only possible output gadue the purities of each leaf, and
the number of leaves is finite.

It is possible to overcome these limitations by creating yrdifferent trees and taking the
average of their output as described in Section 6.5. Thiglteeg1 a smooth combined
discriminant which performs better than any individuaktr@he price one has to pay is a
slower more complex algorithm. One also loses the easypirttion of why events are
classified the way they are. It should be pointed out that éwe algorithm gets slower,
it is in most cases still significantly faster than neuralvegks.

6.3 Growing a Tree

The process in which a decision tree is created is usuakynext to aslecision tree learn-
ing, but also decision tregaining, building or growing We start with a learning sample
L containingN known signal and background events. Each eyasatdefined by an event
weightw;, a list of variables’; and a label; € {.S, B} with value S for signal andB for
background. Hence we can write= {(w1,%1,11), ..., (WN,ZN, YN ) }-

The number of weighed signal and background events in theifepsample is given by
s:ij x I(y; =S), and (6.1)
L

b=> w;xI(y; = B), (6.2)
L

where/(statement) is 1 if the statement is true, and O if not. In this analysigheavent
weight, w;, is the product of all normalization scales and efficiencyextions for thej'"
event, which are derived from the event properties as de=tnn Section 5.4. In this
situation,s andb correspond to the predicted number of signal and backgreuadts in
the dataset.
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The following list outlines the steps required to create @sien tree fromZ. More details
are found in subsequent sections as indicated in each step.

1. (Optional) Initially normalize the learning sample sublat the weighted sums of
signal and background become the same ():

ZUJJXI(yJ:S):ijXI<yJ:B) (63)
L L

2. Create the root node with index= 1 (see Figure 6.1) containing all events in the
learning sampleL; = L.

3. Check if any of the stopping conditions are met (see Seéiéri). If so, the node
becomes a leaf and the algorithm is aborted.

4. For each variable, find the splitting value that gives testsignal-background sep-
aration (more on this in Section 6.3.1). If no split that iloyEs the separation is
found, the node becomes a leaf.

5. The variable and split value giving the best separatiensatected, and the events
L, in the node are divided into two subsampl&s and L., ., depending on whether
they pass or fail the split criterion. These subsamples eé&fin new daughter nodes.

6. Apply the algorithm recursively from Step 3 until all reimag nodes have been
turned into leaves.

Each leaf is assigned an output value. In most cases, thatotioie is the signal purity

Si
; 6.4
s;+ b ( )
wheres; (b;) is the weighted sum of the signal (background) events wieeleh the leaf.

This is the decision tree outpu®, for a given event ending in leaf

D=

A leaf [ is deemed a signal or background leaf depending on whetbguitity p, is greater
or smaller than a parameter called the purity limit,,. Often, this parameter is set to the
initial signal purity of the sample, which is 0.5 if signaln®rmalized to background in
Step 1 above. Each leafs hence associated with a classif p; > pyn, Or B if p; < prim.

It is also common to define the leaf output value dependindherckass only, for instance,
1 for a signal leaf, and 0 (or 1) for a background leaf.
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6.3.1 Node Splitting

The most important part of decision tree learning isribde splitting Here, all event<,

in the node that are about to be split, are divided into the two sub&gtand.L,; 1, which
define two new daughter nodes indexe@dnd2t¢+1 (see Figure 6.1), or more simply,(R)
for the left (right) subnode. Since this is a split, the weégghsum of signal and background
events in the samples are conservee: s; + s andb = by, + bg.

The best split maximizes some figure of merit (FOM) calculdtem the weighted sum of
signal and background events after the split. The mathealdtirmulation generally used
is to define an impurity measuiés, b) and calculate the figure of merit for a split as the
decrease in impurity\::

Ai =i(s,b) — isprit(Sr. Sz, br, br) = i(s,b) — (i(sp,br) +i(sk, br)). (6.5)

This quantity is also referred to as the “goodness” or “gaf'the split. The split that
best separates signal from background (according to theefigiumerit) is the one that
reduces the impurity the most (largest). This split will result in the smallest impurity
isplit (Sr, S, br, br), Since the initial conditions, b andi(s, b)) is the same for all splits.
Finding the best split is hence a minimization problem.

For certain applications, an alternative definitiongf; is used [66, 67]:
isplit (Sr, 51, bR, br) = min(i(sp,br), i(sk, br) ), (6.6)
which means that the right hand side of Equation 6.5 needs todulified accordingly.

Technically, the splitting of a node containing events with weighted signal and back-
ground sums andb, can be implemented in the following way:

1. Setthe variable indeik = 1, and set; = by, = 0.

2. Sort (re-index) all events in increasing order accordmghe £** variablez*. We
k k ;
now haver; < z7,, for every eveny.

3. Go through the events in order, and add the weight of theegtevent; to sy,
(br) if the event is a signal (background) event. If it is possitd split the sam-
ple between the current event and the nea?t ¢ xﬁl), calculateAi for the split
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usingsg = s — sy, andbr = b — b;,. Record the corresponding selection criterion:
ah < (aF + 2%, ,)/2, as the best if\ is the highest encountered so far.

4. Setthe next variable in the list as the currént: k£ + 1, and repeat from Step 2 until
all variables have been processed.

5. Split the sample according to the best split (from Steg 8)d A7 improvement for
this split is positive.

6.3.2 Impurities

There are several different impurity measures suggestitbiature. The two most com-
monly used are the Gini Index [65] and the Cross Entropy [6@hdd by

Gini Index : . il_) 2 (6.7)
Cross Entropy :  —slog o blog e (6.8)

Both of these functions are maximal for equal amounts of $igine background and sym-
metric and strictly concave for any deviation thereof. lbsld be pointed out that most
literature defines these quantities scaled by an additiac#dr of (s + b)~1. Using such
impurity definitions one needs to add additional factors ef b to Equation 6.5. In this
thesis, the “already weighted” impurity definitions aboas¢ used in [63]) are used since
these quantities are additive and easy to work with.

Another quantity that can be used as an impurity measureig/éighted sum of misclas-
sified events:

s, ifs/(s+b) < Plim

Misclassification Error, e : / J<p (6.9)

b, otherwise
If pum = 0.5 (often the case), the definition simplifiesdo= min(s,b). The misclassifi-
cation errore is used for many of the traditional decision tree applig&ito measure the
performance. For instance, if a decision tree is used teifjashether a patient is sick or
not, then it's most likely desirable to have a minimal missiéication rate. As will be dis-
cussed in greater detail in Section 6.7, for high energy iphyapplications, we are usually
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more interested in optimizing signal significance. Thedeihg three impurity definitions
have been constructed to optimize figures of merits usedjim émergy physics:

“s/Vs b — VSS_H) (6.10)
2
Cross Section Significance, S2:  — i (6.11)
7 s+b
2
Excess Significance, S? : —%. (6.12)

The former was used in Ref. [67]; the latter two were develapatitested in this analysis.

6.4 Pruning the Tree

During the decision tree learning process described ini@e6t3, the crucial part is the

calculation of the maximal decrease in impuriy. Due to the finite number of events
in the learning sample, there will always be a statisticaleutainty associated with this

calculation. Since the sample size is reduced after eadhtb relative statistical uncer-

tainty grows as the learning process proceeds. As a relselsglits get successively more
affected by statistical fluctuations, which, in most casegntually leads to a degradation
of performance.

To mitigate this, one usually applies so-calledining criteria which limits the growth
of the tree. There are two main approach&e;pruning(often just referred to as “stop-
ping condition”), which is applied during the learning pbaandpost-pruning(often just
“pruning”), which is applied in a separate stage after tlaerang process is finished. The
following two subsections will discuss these approaches.

6.4.1 Pre-Pruning

Pre-pruning refers to one or several stopping criteriaiag@uring the learning process
(see Step 3 in Section 6.3). One option is to require a minimplrity improvement for
each split. The disadvantage with this method is that on&nigss out on good splits that
would have occurred later.
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The most common approach (also used in this thesis) is tareesguminimum number of
events in each leaf. The idea is that if leaves are not allawdzecome too small, then
splits that are not statistically significant are avoided Hrere is little or no need for post-
pruning. However when dealing with weighted events, thisaalways true as discussed
in Section 6.8.

6.4.2 Post-Pruning

The idea behind post-pruning is to first grow the tree venydaand then prune the tree by
turning an internal node into a leaf and hence remove thersebabove this node. There
are a long list of different pruning algorithms availablewadl of the most common such
methods ar€ost Complexity PruningndReduced Error Pruning

Reduced Error Pruning

This method was developed by J.R. Quinlan [68]. It is a recarl@aves-down method
(meaning that we start from the leaves and recursively mowandowards the root node).
A separate pruning sampf@ is used to calculate the classification error rate of the tree
This sample needs to be independent of (orthogonal to) #raileg sampleP N L = {}.

For each internal nodeg the number of classification errars(Equation 6.9) of the node is
compared with the sum of classification errors of all the ésan the subtree rooted at node
t. The current node is pruned if the subtree has a larger error.

Cost Complexity Pruning

This method, also know as weakest link pruning or the CART imgi@lgorithm [60],
assigns—as the name suggests—a cost for complexity. Thathlg has two stages. The
first stage is a root-up recursive algorithm which create= afssubtrees of the original tree
Tax: {To,T1,...T1}. The crucial quantity calculated here is

R(t) — Reup(t)

t) =
a( ) Nleaves<t) —1 ’

(6.13)
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where R(t) (the “resubstitution estimate”) is a figure of merit set bg thser calculated
from the events in the node,(andb,), R« (t) is the same quantity but calculated from all
leaves in the subtree rootedtabind V... IS the number of leaves of this subtree. In most
cases, the resubstitution estimate is set to the misclzetsifn rateR(t) = e;/(s:+0;). The
weakest link of the tree is the node with the minimét). The tree is pruned at this node,
and the resulting tree is labelldd. The algorithm then repeats the same procedure starting
from the root node in tre€;. The weakest link is again found and pruned resulting in tree
T;+:. Eventually we end up with a tree only consisting of the raude

In the second stage of the algorithm, all trees are evalugted) an independent pruning
sample. The best performing tree is chosen, and the othes tiscarded. The figure of
merit used to measure the performance is often the mistitadsn error of the tree.

6.5 Forests of Decision Trees

This section will discuss a few algorithms that grow manyisiea trees and combine them
into a stronger classifier. Each tree will classify an evéwtte” for its class) based on its
featuresr, and the combined output will be an average of all trees €yt majority”).

These methods are not restricted to decision trees. Anyfseeak classifiers, meaning
a classifier performing slightly better than random guegsoan be combined according
to these procedures. The performance (strength) of the io@chldiscriminant depends on
the strength of the individual classifiers (stronger isdagttand on their correlation. The
strategy behind the methods described in this section isete a set of independent trees
by forcing the learning process for each tree to emphasiedaic subset of the information
available. The combined performance might improve as lertg@new trees contain some
degree of uncorrelated information.

Other advantages with these methods are that the learrocg$s gets more stable and the
combined discriminant output gets smoother compared toglesdecision tree.
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6.5.1 Bagging

Bootstrapaggegaing is a method proposed by Breiman in 1994 [69]. The learning sam-
ple L is split into Ny,..s bootstrap sample§Ly, ..., Ly,....} by sampling randomlyf,s N
events fromZ, wheref,, < 1 is parameter set by the user (oftgn = 1). The same event

is allowed to be picked several times (“sampling with replaent”). Statistical fluctuations
are hence introduced, randomly giving more weight to cereaents. Iff,; = 1, then on
average, 63.2% of the events in any of the bootstrap sampesaue, and the rest dupli-
cated. The events which are not picked can be used to fornrdapémdent testing sample
7, that can be used to evaluate the performance. A decisioifdresy other classifier) is
generated for each bootstrap samg)eand the bagged decision tree output is the average

of the output of each of th&/,..; decision trees.

6.5.2 Random Forest

Random Forest is an extension of bagging. Just as in case ginigag decision tree
is grown from each bootstrap samplg, but an additional step is added to the learning
process: when splitting a node, only the fractijpnof the V... variables is considered for
the split. Thesd; V... variables are selected randomly at each node.

6.5.3 Boosting

The idea behind boosting is to boost (assign a higher we@ha subset of the learning
sample rather than randomly selecting a subset as in cake bbgging and random for-
est algorithms. Many different boosting algorithms haverbdeveloped over the years.
The analysis described in this thesis uses a boosting méthoan in the literature as
AdaBoost [70]. This algorithm creat€¥,,.., decision treeq T}, T, ... T,,...} In succes-
sion, where the learning process for each tree is adaptezhdegy on the performance of
the previous tree (adaptive boosting). Once a figdas been created, the events in the
learning sample that are misclassified by the tree are assigrhigher weight (boosted).
When creating the next tré, . ;, the learning process will hence focus more on the previ-
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ously misclassified events. The algorithm works as follows:

1. AfirsttreeT; (n = 1) is created using the full learning sampgle

2. The misclassification ratg, for the tree is calculated as the weighted sum of mis-
classified events in each leaf (Equation 6.9) divided byriteal weighted sum of all
events in the learning sample. A tree weightis calculated according to

1—e¢,

a, = X In (6.14)

€n
where/ is the boosting parameter.

3. Each misclassified eventin the learning sample is scaled by the facttr (which
will be greater than 1)w; — w; x e*".
Hence misclassified events will get higher weights.

4. (Optional) The learning sample is normalized such thattttal weighted sum of
signal and background events is the same as before the mpakscribed in the

previous step. This prevents the average decision tre@ibudiue from shifting as
the boosting proceeds.

5. A new tree, indexed+1, is created from the boosted sample. The learning process
will now work harder on the previously misclassified eveifise algorithm continues
from Step 2 untilV;,..s decision trees have been created.

6. The final boosted decision tree result for eveist

N
1

D(Z;) = ———— o, D, (Z5), 6.15

() 25:1 an; @) ( )

whereD, (%;) is the decision tree output for everfrom treeT,,.

An example of how the misclassification rate and the tree lsidevelop during the boost-
ing procedure is illustrated in Figure 6.3.
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Figure 6.3: Example of the misclassification rai€top) and the corresponding tree weight
o, (bottom) versus the tree index(G = 0.2). The misclassification rate for the individual
trees tends to get worse the more boosting cycles are apahiddhe tree weights hence get
lower according to Equation 6.14. Even if the individuakgerform worse, the combined
performance becomes better than using the first, best tvae ak can be seen in Figure 6.4.
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6.6 Decision Tree Options

Most of the different parameters and options discusseckiptvious sections are summa-
rized below.

Impurity measure
Figure of merit used to define the optimal split during thenésg process.

Splitting condition
The definition ofig,;;—most commonly according to Equation 6.5, but Equation 6.6
or other definitions might be useful for certain applicasion

Minimal leaf size, INmin

leaf

Pre-pruning condition. The lower the value, the larger the.t

Number of trees, Virees
The number of trees in the forest of decision trees. Appbdrgging, random forest
and boosting. For boostingy;...s — 1 boosting cycles will be applied (the first tree
is created from the unboosted learning sample).

Bootstrap fraction, fis
(Bagging and random forest only) The fraction of events to dmm@ed from the
learning sample when creating the bootstrap samples useedte the decision trees.

Random forest variable fraction, f.¢
(Random forest only) Determines how many randomly selectedhles that are
considered when splitting each node during the randomtftgaming process.

AdaBoost parameter,3
Scale factor that affects the strength of the boosting. énattiginal algorithm, this
parameter is set to unity. Lower valugs £ 0.5 or less) often perform better. The
lower the s, the softer the boosting, and the ma¥g..; might be needed to reach
optimal performance.

Resubstitution estimate,R(t)
Figure of merit used during Cost Complexity Pruning.
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6.7 Evaluating the Performance

Since the decision tree learning process is affected bigtstal fluctuations in the learning
sample as discussed in Section 6.4, the performance esdloatthe learning sample will
always be artificially enhanced. As a consequence, thepeaface of a decision tree must
be evaluated on a (testing) samgle,which is completely (statistically) independent of the
learning sample7 N £ = {}.

A common figure of merit traditionally used to evaluate thefgrenance of a decision tree
is the misclassification rate of the testing sample. In higgrgy physics applications, this
is not generally the quantity of interest. When trying to &ela physics process, the goal
is usually to maximize thsignal significance In particle physics, several definitions of
significance have been used [71]. The simplest one is the o&txpected signal excess
over the statistical uncertainty of the predicted numbesv@nts, which can be written as
s/v/bor s/\/s + b, depending on whether we assume the background-only hggisttor
the s+b hypothesis.

In this analysis, two figures of merit where constructetdoss section significancand
excess significanceAs the names imply, the former is correlated to the presisiba
cross section measurement, and the latter to the signigoaina signal excess over back-
ground. These quantities are calculated from histogramtagong the decision tree out-
put of the testing sample separately for signal and backgtg¢see the histograms shown
in Appendix C for an example). When filling these histograrhshould be ensured that
the relative statistical uncertainties on the signal arak@peound predictions are reasonably
small. If this is not the case, histogram bins need to be nderghich is further discussed
in Section 7.1.4.

Cross Section SignificanceS,,

The cross section significance is calculated by adding thé& + b significance in quadra-
ture for each of the histogram bins of the decision tree dutptribution:

2

S
o = 2. 6.16
S Zsﬁ@ (6.16)

i



CHAPTER 6. ANALYSIS: DECISION TREES 92

s; andb; are the signal and background predictions (weighted nummbevents) in his-
togram bini. Each histogram bin is hence treated as an individual aisalyith its own
dataset, similar to what is done during the actual crossasenteasurement described in
Section 7.2. This analysis find that the cross section saamie is a good approximation
of the actual significance for the expected cross sectiorsutement when no systematics
are included in the calculation. The cross section sigmifies, can hence be used as a
guick estimate of the expected precision of a cross secteasarement.

Figure 6.4 shows the cross section significance evaluatediatluding different numbers

of boosted decision trees. It should be pointed out that setdyistical uncertainties are
considered when calculatirf) according to Equation 6.16. It should be possible to extend
the formula to also include approximate systematic unceiés, possibly as suggested in
Section 6.8.3.

Excess SignificanceS

The excess significance is calculated by addingsthéb significance for each histogram

bin in quadrature
NS
Ss = EZ b (6.17)

Since only the background prediction appears in the deratoninit is particularly impor-
tant to ensure that the relative statistical uncertainty mreasonably small.

Figure 6.4 shows a comparison between the cross sectionxeesisssignificances evaluated
after combining different numbers of boosted decisiongrdeis clear thatS, is always
larger thanS, as expected from the definitions above. It can also be seertheexcess
significance is less stable compared to the cross sectiaifisaqce since this quantity is
more sensitive to statistical fluctuations in the denonainat
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Figure 6.4: Cross section significance (top) and excesdsignce (bottom) versus number
of combined decision trees. These plots are made from the &aest of boosted decision

trees as are used to create the plots in Figure 6.3. Thes#csigne estimates are correlated
with the expected significance measurements describedtio8§€ .4.
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6.8 Thoughts and Suggested Improvements

This section presents some of the author’s thoughts of aggestied adaptions to the deci-
sion tree algorithm to better suit the needs and applicatadrhigh energy physics. Most
of what is discussed in this section has not been tested dumdaonstraints.

6.8.1 Weighted Events and Pre-Pruning

Most decision tree applications require a minimum numbevents in each leaf. The idea
is to avoid splits of leaves with very few events where dtigas$ fluctuations will dominate
the decision. This might be a reasonable approach wheraatiitegg sample events have the
same weight since the relative statistical uncertainty ooumt can be estimated hy+/N
(according to Poisson statistics).

In the vast majority of high energy physics applicationss thput sample consists of
weighted events. The sum of weighted evehiis any subset of the sample corresponds to
the expected number of data events in the sub‘se:t:z;y: , w;. The statistical uncertainty
on the suml can be calculated as

(6.18)

whereN is the number of weighted events in the subset. From thisrtaioty, one can de-
fine the effective number of events as the prediction squawedthe statistical uncertainty
of the prediction squared:

d? (Zjvzl w;)?

Neg = = .
(0d)? zjil w}

(6.19)

The relative statistical uncertaintyig+/ N, andN.gs = N when all weights are the same.

The most commonly used pre-pruning condition is a requirgroa N**—the minimal
number of events in each leaf. When dealing with weightedtigamples, it is more
appropriate to instead use the number of effective eventssasssed above. The require-
ment should be applied both to signal and background sinte these quantities enter
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the optimization calculation (Equation 6.5). SettiNgr = 20 should hence require the
effective number of signal and background events in eadht)ezalculated according to
Equation 6.19 aés; /ds;)? and(b;/b;)?, to both be greater than 20.

6.8.2 Impurity Optimization

The decision tree learning process should ideally optinhizdigure of merit of interest for
the analysis. A search for a new physics process could heseéhe excess significance
both for the learning and testing. The cross section sigmifie should be a better choice
when the goal is to measure the cross section or any otheeyanf the signal process.

If the aim of the analysis is to apply a single selection cote on the decision tree output
distribution, as in case of particle identification, therslitould be more optimal to pro-
duce the decision trees using the asymmetric node splittiterion given by Equation 6.6
instead of the standard splitting criterion 6.5.

6.8.3 Consideration of Systematic Uncertainties

Systematic uncertainties are an important part of all erpenrtal particle physics analyses,
and should ideally be taken into account during the decisi®a learning and evaluation
processes. However, it is not obvious how this informatiboutd enter the calculations
without significantly increasing the learning process catimg time. It is possible that the

impact of the systematic uncertainties can be estimateplgiby adding all uncertainties

in quadrature:

2
all _ i
Sl = \/Z ENETRENS Sy (6.20)

J Ut
wheredb; is the Monte Carlo statistics uncertainty (Equation 6.18) anis the relative
systematic uncertainty from sourgef the background in subset (biin)However, this does
not take into account the correlations of the systematietamties between the subsets
(histogram bins).
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6.8.4 Logging

The idea behind logging is simple: decision trees that domptove the performance ac-
cording to some figure of merit are removed. After all trees@eated, the performance
is first evaluated using only the first tree. Trees are thenes@anlly added, and the per-
formance is reevaluated after adding each tree. If the padoce degrades when adding a
tree, the tree is discarded.

For instance, in Figure 6.4, the first drop in excess sigmifieaoccurs after tree number 6 is
included. This would be the first tree that logging would rem@f the excess significance
is the figure of merit used for logging).



Chapter 7
Analysis: Measurements

This chapter describes how boosted decision trees areedraatl applied in order to sepa-
rate single top quark events from background events, andim@aingle top quark produc-

tion cross section is measured using the boosted decigerotrtput distributions. Mea-

surements of the signal significance and the CKM matrix eleéniéy) are also presented,

as well as several cross checks of the measurements.

7.1 Decision Tree Analysis

This section describes the procedure to create the boostesiah trees used in the subse-
guent sections. The decision tree software used waslthssi f i er package [72] in the
D@ CVS code repository. This program was originally creatgddby Burnett and Gor-
don Watts. Several alterations and new features were itemtimainly by Yann Coadou
and the author to suit the needs of this and the previous [@n&lyses.

97



CHAPTER 7. ANALYSIS: MEASUREMENTS 98

7.1.1 Input Samples

Each of the signal and background samples, created ashganiSection 5.4, are divided
into three independent subsets. The first subset of evemsedsfor the decision tree learn-
ing, the second subset is used for decision tree optimizé8ection 7.1.3), and the third
independent subset is used for the final measurements anoldioge all plots.

Because of thé-tagging modeling described in Section 5.4.4, all Monte €admples
contain permuted events with highly correlated kinematiosorder to make the subsets
independent, it is important to ensure that all permutatioinan event end up in the same
subset. To ensure this, the samples are divided based orothdus of the event number,
which is given to Monte Carlo events during generation, asifipd in Table 7.1.

This splitting procedure results in three subsets of vamjlar sizes. For each signal and
background component, a normalization scale factor isegpd each subset such that the
total sum of weights becomes the same as before splitting.

Sample Subset Splitting Procedure

Subset Splitting Criterion

Learning subset | EventNumberod 3 = 0
Testing subset] EventNumbenod 3 = 1
Yield subset) EventNumbenod 3 = 2

Table 7.1: Sample splitting procedure in order to avoid ias1 permuted events. The
event number is given to a MC event during generation anceiséime for all permutations
of an event. The learning subset is used to create the dediges, the testing subset
is used for decision tree evaluation and optimization, dedyield subset is used for the
measurements.

7.1.2 Discriminating Variables

One of the most important parts of a decision tree analysieiglentification and selection
of the input variables. To maximize the performance, it isiddle to include uncorrelated
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variables with good discriminating power. However, it izi@al that all variables and
their correlations are well modeled such that the decisiemperformance for the modeled
samples reflect the real performance in data.

Introducing more variables when creating a decision trexs i@t degrade the performance.
If the newly introduced variables have some additionalrthsioative power, they will im-
prove the performance of the tree. If they are not discrithteaenough, they will be
ignored. However, to reduce computing time and memory aopsion, and to keep the
analysis simple, it is preferred to use a reasonably shatrdfivariables.

A long list of candidate input variables was considered fos tinalysis. Many of these
variables were derived based on an analysis of the signabackijround Feynman dia-
grams [73, 74] and on a study of single top quark productioreat-to-leading order [75].
Other variables were constructed and evaluated for thilysisa All variables considered
fall into five categories, which are described below.

e Object kinematics
Transverse momentum., pseudorapidity;, and@(¢) x n for the individual objects
in the event. The latter quantity takes advantage of the CRm&tmy in ¢-channel
production as discussed in Section 2.3.4.

e Event kinematics
These variables are calculated from the four-vectors pbakh subset of the objects
in the event.H, Hy and centrality are defined as:

H= Zobjec‘cs E energy sum, (71)
Hpr = Zobjects pr  scalar pr sum, (7.2)
Centrality =  Hp/H. 73

All other variables in this category are calculated from fitner vector sums of the
objects, for instance the invariant mass = /FE? — 2 and the transverse mass
My = \/E} — p2, where(E, j) = 3 e (B, 7). V3 is the invariant mass of all
objects in the event.

e Angular correlations
These are eitheAR or A¢ angles between jets and leptons, or cosine of angles
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between various objects in different reference frames lthse been shown to be
correlated with the top quark spin [73, 74].

e Top quark reconstruction
There are several ways to reconstruct the top quark in art eéegending on which
jetis used, and which neutrino solution is picked when retroicting thely boson.

— Neutrino p. solutions
The p, of the neutrino cannot be directly measured in the detebtdrcan be
estimated using the lepton momentyiit) and thel’ boson mass constraint.
This leads to a quadratic equation with two solutiongfdr ). In this analysis,
the default choice is the solution with the smaller absouatie. However,
some variables use the second solutig)( with larger absolute value of (v).

— Top mass differenceA My,
The top quark mass is reconstructed for each of all posstmebmations of
the lepton, each neutrino solution and each jet. For anyngsueh(/, v, jet)-
system, the top quark mass is calculated from

Mtop = \/(EE + Ezz + E'jet)2 - (]74 +ﬁ1/ +]33et)2- (74)

The difference between this value and 170 GeV, which is thenass used in
the Monte Carlo simulations, is callesl),,,. The reconstructed top mass and
AM,, for the (¢, v, jet)-combination yielding the smallestM,,,, define the

two variablesMAM™" and A M respectively.

— Significance of top quark candidate
In addition to calculating the mass difference, the sigaifie of the recon-
structed top massSignificance(M,.p), iS also calculated for eact, v, jet)
combination. This quantity relates the mass differefod,,, with the res-
olution of the reconstructed top mass. It is assumed thatapeuark mass
resolution is a Gaussian distribution of width/;,,,, and the significance of the
reconstructed top mass is calculated from

Gauss(AMop/ (0 Miop))

Significance(M,,,) = In Gauss(0) 7

(7.5)
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where Gauss is the probability density function of a Gawsgigh mean 0 and
width 1. The resolution uncertainty of the reconstructegl teasso M, is
derived in terms of the resolution of thg,, £ [77], and the jet energy res-
olution, 6 E};, [78], by error propagation of Equation 7.4. The lepton eperg
resolution is neglected as the lepton energy is well medstompared to that
of the jets andf;. The variableSignificance,;, (M;.,) and Mtsf)i are defined
as the significance and reconstructed top mass fronj‘thejet) combination
that gives the smallest top mass significance in an event.

e Jet reconstruction
The jet width inn and¢ is the energy weighted root-mean-square ofitfaad¢ for
all cells in the jet energy cluster.

Starting from several hundred variables, the variabladiseduced in two steps: variables
that showed unsatisfactory data-background agreemergrams/ed; and the most sensitive
variables are identified and selected.

To judge whether a variable is well modeled or not, the véeidistribution for data is com-
pared with the sum of the signal and backgrounds. This is tmreach of the 24 channels
individually. Two requirements are enforced. The KolmagyeSmirnov test value [76],
calculated by comparing the variable distribution for daitl the sum of signal and back-
grounds, is required to be at least 0.1 for the majority ofchannels. Then the data-
background agreement has to be judged as satisfactorgaéerining the data-background
agreement by eye.

In order to further reduce the list, the most discriminatuagiables are identified using
decision tree variable ranking. This ranking is obtainedt®ating one or several decision
trees and for each variable calculating the sum of impunitgrovementg\: for each split

in which the variable is used. Hence frequently used vaembénd to get high decision
tree rankings, while an unused variable will get a rankingagtp zero. Decision trees are
created using the full list of well modeled variables foreabannel individually. A com-

bined list of variables is created using the 50 highest rdniegiables from the 2jets,1tag
channels, the 30 best from the 3jets,1tag channels, thes2@rbm the 2jets,2tag channels,
and the 10 best from each of the other thi\gets,Ntags combinations. After removing the
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duplicated entries in this combined list, a final list of 64weodeled variables is obtained.

The 64 variables are listed in Table 7.2, and the data-bacdkgragreement for all channels
combined can be seen in Figures 7.1-7.6. The variable naswibles which objects are
included when calculating the variable value. Jets aredontp, and index 1 refers to the
leading jet in a jet category. “jet (n=1,2,3,4) corresponds to each jet in the event.ritag
are theb-tagged jets, “light” are defined as all jets but the leadibiagged jet. The “best”
jet is the one for which the invariant mas$(1V, jet) is closest tan,, = 170 GeV, and
“notbest” are all but the best jet.

SOME OF THE MOST SENSITIVE VARIABLES

300 p17+p20 e+p channel g 5007 pl7+p20 e+u channel
1-2 b-tags 100 | 1-2 b-tags
+ 2-4 jets r 4007 2-4 jets
200 5 i
3 507 5
0
< S
100 > F 3
>~
0 2 4 100 200 300 400
Q(leptam)xn(ligihtt) Ag(leptom,Zy) [Rad] M(alljetts) [[X]]
10°F p17+p20 e+u channel p17+p20 e+u channel r p17+p20 e+p channel
1-2 b-tags F 1-2 b-tags [ 1-2 b-tags
600 2-4 jet | 2-4 jet
: jets 400 jets
5 400 5
-] =]
3 [ < 200
> 200[ > I
500 1000 L AOOO % 200 400 600 0""100 200 300 400
AMTp He(leptom &1 alljets) (&4 M(W,tag1) [GeV]

Figure 7.1: Distributions of some of the most sensitivealalgs used as input when creating
the boosted decision trees. The plot key can be seen in Figbire
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Decision Tree Input Variables

Object kinematics Event kinematics

pr(jet2) Centrality(alljets)

pr(jet3) Hr(alljets)

pr(jetd) Hr(alljets—tagl)

pr(tagl) Hr(alljets—best)

pr(light2) Hrp(jetl,jet2)

pr(notbest?) Hr(jetl,jet2,leptorir)

pr(lepton) Hr(alljets,leptonf ;)

Er Hr(Er,lepton)

Q(lepton)xn(jetl) H(alljets—tagl)

Q(lepton)xn(jet2) M (alljets)

Q(lepton)xn(best) M (alljets—best)

Q(lepton)xn(light1) M (alljets—tagl)

Q(lepton)xn(light2) M (jetl,jet2)
M(jetl,jet2}V)

Jet Widths M (jet3,jetd)

Width,,(jet2) Mr(jetl jet2)

Width,, (jet4) pr(jetl,jet2)

Width, (jet4) V3

Width,,(tag1) My (W)

Width, (light2)
Width,, (light2)

Angular Correlations Top quark reconstruction
AR(jetl,jet2) M (W, bestl) (“best” top mass)
AR(jetl,lepton) M (W, tagl) (“b-tagged” top mass)
AR(tagl,lepton) M (W, tagl, S2) (with second neutrino solution)
AR(light1,lepton) M (W, jetl)

Ag(leptonFr) M (W, jetl, S2)
cos(best,lepton)esstop M (W, jet2)

cos(best,notbest)tiop M (W, jet2, S2)
cos(jetl,lepton)iaggedtop M (W, notbest2)
cos(tagl,lepton)iaggedtop M (W, notbest2, 52)
cos(lepton,esttop,DEStORMframe) MEM i
cos(Iepton,aggedtop, Dtaggediopyisame) | Mons
cos(tagl,lepton)aggedtop AMEm
cos(lepton()(lepton)x z)pesttop Significance,in (Miop)

Table 7.2: The 64 variables used as input to the decisios,tiedive categories: object
kinematics; jet reconstruction; angular correlationgrg\kinematics; and top quark recon-
struction. For the angular variables, the subscript ind&the reference frame.
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SINGLE OBJECT KINEMATICS
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Figure 7.2: Distributions for most individual object kinatit variables used as input to the
decision trees. The plot key can be seen in Figure 5.6.
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Figure 7.3: Distributions for event kinematic variablegdiss input to the decision trees.
The plot key can be seen in Figure 5.6.
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Figure 7.4: Distributions for event kinematic variablesl g&t width variables used as input
to the decision trees. The plot key can be seen in Figure 5.6.
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Figure 7.5: Distributions for most angular correlationightes used as input to the decision
trees. The plot key can be seen in Figure 5.6.
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TOP QUARK RECONSTRUCTION
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Figure 7.6: Distributions for most top quark reconstructi@riables used as input to the
decision trees. The plot key can be seen in Figure 5.6.
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7.1.3 Choice of Decision Tree Parameters

There are many parameters that can impact the performareae€ision tree (see Sec-
tion 6.6). The impact from various parameter choices isistly creating several sets of
decision trees, using the learning subset of events asildegdn Section 7.1.1, and then
evaluating the performance using the testing subset. Taeefaf merit used to evaluate the
performance is theross section significanq&quation 6.16), calculated using histograms
with 100 bins with equal widths.

The parameter choice from the previous boosted decisienamealysis [4, 5] is used as a
starting point. Several different parameters are variedaira time over the range of values
shown in Table 7.3. The strategy is to identify the optimabpaeter value, fix this value
and optimize the next parameter. In order to reduce the ctatipnal time, the evaluation
is only done using two of the 24 channels, namely the Run I#is2[ltag: andu channels,
which are two of the most sensitive channels.

Boosted Decision Tree Parameter Scan

Parameter Evaluation Points

Impurity measure Gini, Entropy,S,,, S

Minimal leaf size, Nt 50, 75, 90,100, 110, 125, 150, 200, 500
Number of boosting cyclesy,oosts | 0,20, 30, 50, 70

AdaBoost parametef; 0.05, 0.15, 0.180.20 0.22, 0.25, 0.3, 0.5

Table 7.3: The decision tree parameter values that areaealuuring the decision tree
optimization. The parameter values used in the previougesitop analysis are indicated
with bold font.

Boosting Parameters

The results from varying the AdaBoost parameter and the nuofdegoosting cycles are
shown in Figure 7.7. The result clearly improves when goingifO to 20 boosts, thereafter
the performance improves only marginally and reaches aglafT his can also be seen with
better resolution in Figure 6.4.
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The largest AdaBoost parameter valtie= 0.5 performs worse than the other choices.
values around 0.2 perform equally well within uncertainty.
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Figure 7.7: Cross section significance as a function of thebmurof boosting cycles for
different values of the AdaBoost parameter. The statistiogkertainty on the evaluation
points is about-0.05.

Impurity Measures

The boosted decision tree performance for three diffenapiurity measures are shown
versus different number of boosting cycles in Figure 7.8e Ppbrformance of, (excess
significance, Equation 6.12) is not shown since it perforrsigadificantly worse than the
others. The reason for this is most likely statistical ibgiy of the background estimation
b in the denominator. This problem might be solved by reqgidnminimal number of
effective background events in each leaf as discussed imo8e8:8.1. The performances
for the other impurity measures does not differ significant!

Minimal Leaf Size

Figure 7.9 shows the decision tree performance for diften@nimal leaf size values. A
smaller minimal leaf size results in a larger tree. Leafsinehe range 50-200 all perform
equally within uncertainty.
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Figure 7.8: Cross section significance as a function of thebmurof boosting cycles for
different impurity measures used by the decision tree Iegrprocess. The uncertainty on
the evaluation points are abatid.05.

Pruning

Two different pruning methods are tested: Cost Complexityniigiand Reduced Error
Pruning. No improvement in performance is observed usirygodithese methods (com-
pared to no pruning). Hard pruning resulted in worse peréoroe, softer pruning made no
difference. This is probably because the pre-pruning @ofcVviin = = 100 results in a

close to optimally grown tree which needs no further pruning

Summary

From the study described above, the parameters listed ie Tab are chosen. This list of
parameter settings results in a good separation for theneffmstudied: (Run lla+2jets, 1tag)
and (Run llapt+2jets, 1tag). The same set of parameters is used for theasthalysis chan-
nels since no significance differences of optimal parammeiez expected, and since most
of these channels have significantly less impact on the fasailt.
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Figure 7.9: Cross section significance as a function of thebmurof boosting cycles for
different minimum leaf size values. The uncertainty on eaolss section significance point
is roughly+0.05.

Chosen Decision Tree Parameters

Parameter Value
Impurity measure Gini
Minimal leaf size,N2in 100
Number of boosting cyclesyoosts 50
AdaBoost parametef 0.20

Table 7.4: The decision tree parameter values that are chizseed on the procedure de-
scribed in Section 7.1.3. These parameters are used whetimgrall final decision trees.
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7.1.4 Output Transformation

The decision tree output distribution given by Equatiorb@elnds to be very sparsely pop-
ulated close to 0 and close to 1 as can be seen in the top pladuwer7.10. This results in
problems with the stability of the cross section calculasoce the signal and background
estimations in some histogram bins are based on very fewaietbevents, and hence have
a large Monte Carlo statistical uncertainty. This is pattidy troublesome in the signal
region, where many bins have very few background eventsxtherae cases, there might
even be bins containing signal events but no background®ven

A monotonic re-binning scheme was designed in order to rentlo® instability described
above without losing too much resolution in the signal ragibhe re-binning is done indi-
vidually for each channel, and transforms the backgrousttidution such that it follows

al/z-curve up to 0.8, and a linear slope from the intercept ofithegraph at 0.8, down

to zero at 0.95. There are no shape constraints between ®95.@, but all bins of width

0.02 are required to contain at least 40 background everdsdir to keep the statistical
uncertainty reasonably small. The transformation is doo fright (Ozp7=1.0) to left.

The transformed background shape is:

filz) =k/x, when z < 0.8,
fo(x) =M — Kz, when 0.8 <z < 0.95,

with & = 0.346, K = 2.88 andM = 2.74, such thatf,(0.8) = f5(0.8).

Technically, a histogram of the original boosted decisi@e tdistribution is created with
10,000 uniform bins between 0 and 1 and filled with the weightsl background events.
The histogram is normalized to unity. A new, initially emptistogram with 50 uniform
bins is defined. Starting from the righD ¢, = 1) in the original histogram, the content
of each bin is moved to the rightmost bin in the new histograntil the two conditions
mentioned above are met: enough background statisticsrangyk background events to
make the weighted sum equal or greater than the value expfota the function. This
procedure continues until the contents of all histograns lhiave been moved to the new
histogram. Each bin in the old histogram now has a correspgtun in the new histogram,
and a “transfer function” can be derived from this mappiree(Bigure 7.10).
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Figure 7.10: The original boosted decision tree discrimitar signal in blue and all back-

ground components combined in red (top). The distributiares sparsely populated in
the high and low discriminant regions. In this particulastbgram there is one histogram
bin in the signal region containing only 3 background eveftse monotonic transforma-

tion function (bottom left) is applied to both the signal ahd background. The resulting
transformed boosted decision tree distributions (bottgimt)y have adequate statistics in all
histogram bins. These plots are for the Run ¢hgets, 2 jets, 1 tag channel.

This rebinning is equivalent to creating a histogram withatale bin-widths of the native
boosted decision tree distribution. The width of each bithen given by the conditions
described above.
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7.1.5 The Final Decision Trees

The final boosted decision trees are created using the hgpsuibset for each of the 24
channels separately. The variable list presented in Tablen®l the decision tree parameters
in Table 7.4 are used for all channels. Various propertigh®24 boosted decision trees
are presented in Table 7.5. The average size of the tredatieddo the number of events

in the input sample, which increases with the number of jetiaags due to the permuted
events.

The boosted decision tree output distributions for eacthef24 individual boosted de-
cision trees are shown in Appendix C in Figures C.1-C.4. Figuid presents all these
distributions combined, by stacking the histograms. Thiesdnot truly reflect the per-
formance since each channel is considered individuallynwheasuring the cross section.
Figure 7.12 shows the boosted decision tree distributionthe six differen{ Njet, Ntag)
combinations after combining the Run lla and IIb anddlzend;. channels.

= 3?
Bs00- DO Runll Prelim. 230 B19F DO Runll Prelim. 2.3 fb
s [ p17+p20 e+u channel s p17+p20 e+u channel
€ 1-2 b-tags € | 1-2 b-tags
5600* 2-4 jets :>j 2-4 jets

=
o
)

02 04 06 08 1 0O 02 04 06 08 1
th-+qi DT @uipibt th+tqj DT @utfoitit

Figure 7.11: Decision tree discriminant output for all 2&ahels combined using linear

scale (left) and log scale (right) for the y-axis. The plotocw key for the signal and
background components can be seen in Figure 5.6.
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Properties for the 24 boosted decision trees

Channel (Npodes)  (Nieaves) (depth) S, S
Run lla,e+2jets, 1tag 596 299 20 200 248
Run lla,e+3jets, 1tag 280 141 9 095 1.06
Run lla,e+4jets, 1tag 190 96 9 0.45 049
Run lla,e+2jets, 2tags 343 172 19 1.05 1.21
Run lla,e+3jets, 2tags 394 197 15 0.69 0.81
Run lla,e+4jets, 2tags 692 347 24 0.39 044
Run lla, u+2jets, 1ltag 693 347 23 219 282
Run lla, u+3jets, 1tag 649 325 26 1.13 1.36
Run lla, u+4jets, 1ltag 353 177 18 0.48 0.52
Run lla, u+2jets, 2tags 300 151 13 1.16 1.35
Run lla, u+3jets, 2tags 984 493 30 0.81 0.96
Run lla, ut+4jets, 2tags 992 497 27 0.40 0.46
Run llb, e+2jets, 1tag 335 168 16 1.82 213
Run llb, e+3jets, 1tag 334 168 20 1.08 1.26
Run llb, e+4jets, 1tag 178 89 11 055 0.61
Run lIb, e+2jets, 2tags 255 128 17 1.00 1.15
Run llb, e+3jets, 2tags 516 258 24 0.73 0.90
Run llb, e+4jets, 2tags 279 140 12 0.41 0.47
Run llb, u+2jets, 1tag 458 229 19 200 2.46
Run Ilb, p+3jets, 1tag 301 151 14 1.17 1.34
Run llb, u+4jets, 1tag 278 139 16 061 0.71
Run llb, u+2jets, 2tags 112 56 7 1.02 1.16
Run llb, u+3jets, 2tags 661 331 26 0.80 1.00
Run llb, u+4jets, 2tags 465 233 15 0.46 0.54

Table 7.5: Various properties for the 24 boosted decisieastr Each boosted decision
tree contains a forest of 51 decision trees, and the avertageear of nodes and leaves per
decision tree and the average tree depth is shown in thefttsemlumns. These quantities
are mainly related to the size of the learning sample. Thescsection significance and the
excess significance calculated after applying all treegiases in the last two columns.
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Figure 7.12: Boosted decision tree discriminant outputridistions after combining the
Run lla and Run llb run periods as well as thand;, channels. Combined channels with
oneb-tagged jet are shown in the top row, with twdagged jets in the bottom row, and
with two, three and four jets in the left, middle and rightwoins respectively. The plot key
can be seen in Figure 5.6.

7.1.6 Cross Checks

In order to validate every step of the decision tree anaklygtisout being biased by a po-
tential sign of signal, cross-check samples are createdsedito decide whether the back-
ground model and data are in agreement after applying thetédalecision trees. The
selection criteria TV +jets™: (2 jets, 1 tagH, < 175 GeV) and ‘tt": (4 jets, 1 or 2 tags,
Hr > 300 GeV) are applied to construct samples dominated byikthgets andi¢ back-
grounds. Figure 7.13 shows the decision tree output digtoibs in these cross-check sam-
ples for Run lla-be andy, 1-2 tags combined. In Appendix D, the distributions for the
individual channels are shown separately for Run lla and Rurfdl e+jets andu+jets.
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Figure 7.13: Combined decision tree outputs for thié+jets” sample (left) and thetf”
sample (right) cross-check samples.

As an additional cross check, the decision trees are apigitte data and simulated sam-
ples before any tagging is applied. The purpose of this exercise is to logksample com-
posed of a large number of events and verify that the dataackfbound are in agreement.
A complication with this exercise is that the boosted decisgrees are trained with several
variables that use information about thagged, and untagged jets (see Section 7.1.2).
Since this information is not available at the preagging stage, variables associated with
tagged, or anti-tagged jets are replaced according to TableThis change might affect
the validity of the cross check, but in principle the datakzaound agreement should still
be adequate since the decision trees treat data and baokiggqually.

For each pre-tag subsample, the decision tree created icothesponding 1tag-channel
is applied. The resulting boosted decision tree outputibigtons for the four pre-tag
channels with 2 jets are shown in Figure 7.14. The correspgndistributions for all
twelve pre-tag channels are shown in Figure D.3 of Appendix D

All boosted decision tree distributions shown in this sagtiand in Appendix D, show
good agreement between data and the background model. blérdua the decision trees
due to the composition of the background model is observedteShe background model
and boosted decision trees behave well, the analysis caa foovard with confidence to
measure the single top cross section.
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Variable Replacement for the Pre-Tag Sample

Used for Decision Tree LearningUsed when Applying to Pre-Tag Data
Leadingb-tagged jettagl Best-top-mass jehest
Leading light-quark jetlight1 Leading not-best jefjotbestl
Second light-quark jetight2 Second not-best jehotbest2

Table 7.6: The variables derived using the objects in thecldfimn, are replaced by the
corresponding variables using the information in the righitumn when the boosted deci-
sion trees are applied to the préagging (pre-tag) sample. This is done sincetagging
information is available for the events in the pre-tag sangturther explanation of the
variables and the naming convention is given in Sectior27.1.

Hooo DO Runlla Prelim. 1.1 b 3 DO Runlla Prelim, 1.1 fb

P pl7 e+jets EOOO* pl7 p+jets

g ot pre-tag = f pre-tag

%0007 2 jets :>j 2 jets
2000~

1000 1000

02 04 06 038 1 02 04 06 038 1

th-+af T Quippitit th-+af [T Qutppitit
Hooo- DO Runlib Prelim. 1.2 b Fooo- DO Runlib Prelim. 1.2 fb*
P p20 e+jets s | p20 p+jets
e pre-tag g pre-tag
%OOO* 2 jets L%OOO 2 jets
2000
1000

02 04 06 08 1 02 04 06 08 1
th-+tqi DT Quippit th-+tgi DT @uippat

Figure 7.14: Boosted decision tree output distribution frapplying the final 2jets,1tag
boosted decision trees to the corresponding 2jets chabefiseb tagging is applied.
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7.2 Cross Section Measurement

This section describes how the single top cross sectiontiaa®d from the final observed
boosted decision tree distributions seen in Figures C.1-&hd, how the measurement
is cross checked and calibrated using ensembles of psetdo-éll measurements as-
sume the standard model ratio of theandt-channel single top cross sectioy, /oy, =
1.12/2.34 = 0.48 (see Table 2.3).

7.2.1 Bayesian Analysis

In a given histogram bin, the probability to obse®elata events, if the expected number
of events is, is given by the Poisson distribution
7ddD

P(DId) = F5

(7.6)

wherel is the gamma function. The expected number of evémtsthe bin is the sum of
the predicted signal and background, which further can be expressed as

Nikg

d=s+b=ao+ ) b, (7.7)

j=1
wherea is the effective luminosity for the signad; is the signal cross sectiob; is the
expected number of events (yield) of background souaed Ny, is the number of back-
ground sources. When dealing with many bins from a singlevaraéhistograms, one can
construct a combined likelihood as a product of the singtdikelihoods [5, 79]

mes

L(D|d) = L(D|o,a,b) H P(D;|d;), (7.8)

whereD andd are vectors of the observed and predicted number of eveatimbin, and

a andb are vectors of effective luminosity and background yieldsing Bayes’ theorem,
the posterior probability densipy o, a, b|D) can be obtained and further converted into the
function of interest by integrating with respect to the paegersa andb [5, 80]:

p(o]D) = /iv / L(D|o, a, b)r(a, b)r(c)dadb. (7.9)
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N is here an overall normalization factor, the prior density) is set tol /o, for 0 <

o < omax, @nd 0 otherwise. The prior probability densitya, b) encodes all knowledge of
the effective signal luminosity and background yieldsluding all systematic uncertainties
and their correlations.

The peak position of the(c|D) distribution is interpreted as the measured cross section,
and the 68% interval around the peak as the uncertainty ahtresurement as illustrated

in Figure 7.15. This interval is constructed such that th&tgxior probabilities are equal at
the start and end points of the interval.
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Figure 7.15: lllustration of the posterior density|D). The measured cross section is the
peak positiorr,..k, and the uncertainty of the measurement is the intefvalcovering
68.27% of the posterior as indicated in the plot.

7.2.2 Numerical Calculation

The integration of Equation 7.9 is done numerically usingéoCarlo samplingNgamples
systematically-shifted histogranis;, b,) are generated by random sampling from the prior
densityr(a, b). Uncertainties that affect the normalization only are niedas the widths

of Gaussian distributions with means set to the expectddsy/ieSystematic uncertainties
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that affect the boosted decision tree discriminant shagpmadeled bin by bin by evaluating
the effect of shifting the uncertainty up and down by oneddsad deviation. This results in

different positive and negative shifts as illustrated igufe 7.16. This is further discussed
in Appendix B. Uncertainties that are correlated betweddint bins, are treated by using
the same random Gaussian shift.

Using the systematically-shifted histografas, b;.), the posterior density given in Equa-
tion 7.9 is estimated by

Nsamples

1
p(c|D) =~ e L(Dl|o, a, bg). (7.10)

N,
samples =1

For the combined measurements in this analysis, the postnsity is calculated using
this formula witho ., Set to 12 pb, an@g,mples S€t 1020, 000.
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Figure 7.16: lllustration of the treatment of shape shiftsystematic uncertainties. This
analysis uses shape-changing systematics for the jetyeseate b-tagging efficiency and
theALPGENreweighting. Separate boosted decision tree histogragrs@ated from events
where these quantities are shifted up and down by one sthddaiation (see Section B.2).
The systematic uncertainty in any given bin is modeled by asSian distribution with
different positive and negative width&,, andd.; , as illustrated in the plot.
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7.2.3 Ensemble Tests

Ensemble testing is performed in order to ensure that tisene bias in the cross section
measurements. An ensemble is a collection of pseudo-detayeeerated with a known
signal to background fraction. Each pseudo-data set isoratydsampled from the signal
and background in the yield sample (see Section 7.1.1)dakto account both statistical
and systematical uncertainties. The probability to pickgiaen event is proportional to the
event weight modified by the unique systematic shifts forpgbeudo-dataset in question.
The pseudo data hence mimic all expected characteristicsabfdata, and can also be
treated just like real data.

Eight ensembles are generated with the single top crosesest to 2, 3, 3.46 (standard
model), 4.2, 5, 7, 8 and 10 pb respectively. When generatiegetensembles, the event
weights for the single top events are initially scaled suwt the probability to sample a
single top event is increased or decreased by the desiredrdamo

The cross section is measured for each pseudo-data sétdridee pseudo-data in exactly
the same way as real data. The measured cross sections insémldes can be seen in
Figure 7.17, where also a Gaussian fit is performed aroungdéak of the distribution. The
average measured cross sections closely match the crossmsesed when generating the
ensembles. This is further illustrated in Figure 7.18, Wwhsbows a linear calibration fit
from the means of the fitted Gaussians shown in Figure 7.17cav@ction to the cross
section measurements is hence needed.

The distribution of measured cross sections in the enseoali&ining the standard model
amount of single top resemble tsgandard model expectatiasf the cross section mea-
surement. The average measured cross section is very oltse standard model value of
3.46 pb, and the distribution has a standard deviation & pt®
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Figure 7.17: Measured single top cross sections in enseng#aerated with various
amounts of single top. The input single top cross sectioad ase 2, 3, 3.46 (SM), 4.2, 5,
7,8 and 10 pb.
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Figure 7.18: Linear fit through the means from the GaussiarfRigure 7.17) of the mea-
sured cross sections in ensembles generated with diffaneotints of single top. The fit is
constrained to the rang®, 10]. The correct cross section is measured on average.
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7.2.4 Observed Results

This section presents the boosted decision tree croses@ttiasurements using the 2.3b
dataset. The histograms used for the cross section catpukate shown in Appendix C.
The boosted decision tree output for all channels stackegdmof each other is shown in
Figure 7.19, visualizing the excess of data over backgrautite signal region.
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Figure 7.19: Boosted decision tree discriminant outputriistions for all 24 channels
combined. The single top contribution in this plot is norizedl to the measured cross

section. The same combined distribution is shown on linealeg(top left), log scale (top
right) and a zoom in the signal region (below).
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The measurement is performed as described in Section a2dlthe resulting posterior
density for all channels combined is shown in Figure 7.2@ ifteasured cross sections is

o (pp—tb+ X, tgb+ X) = 3.7473% pb.

This measurement assumes the standard model ratio of sopgéeand¢-channel produc-
tion oy, /0 = 0.48. The measured cross sections for various combinations alysia
channels are presented in Table 7.7. All results are cemsigtith the standard model cross
section of 3.46 pb within uncertainty. The peak over halfitisignificance (P/HW) is
defined as the ratio of posterior peak position over the |&8e8% confidence bound. The
peak over half-width values for various combinations oflgsia channels are presented in
Table 7.8. Table 7.9 further presents the measurementsimaahe 24 individual chan-
nels.
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Figure 7.20: Observed posterior density from t-channel single top cross section mea-
surement using boosted decision trees. This is for all 2Améla combined-e., Run lla
and Run llb,etjets andutjets, 2-4 jets and 1 or 2 of thetatagged. The blue lines show
the 1o (68.3%), ¥ (99.7%) andho (99.99994%) confidence bounds.

All systematic uncertainties are taken into account intgsasurement.
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Observed Cross Section Measurements

1,2tags + 2,3,4jets e,u + 2,3,4jets e,u + 1,2tags All

e-chan pu-chan | 1ltag 2tags| 2jets 3 jets 4 jets| channels
Runlla | 23717 27718 | 1973 37428 | 1.2t 47739 58707 | 2507129
Runllb | 6.2722 3.9717 | 5878 38725 | 43T18 56722 92758 | 4927135
Runlla+b| 44715 33712 | 38708 3.7112 | 2671, 52728 7.0753 | 3.747095

Table 7.7: Measured single top quark production crossa@ecfor many different combi-
nations of analysis channels. All systematic uncertasngiee taken into account in these

measurements.
Observed Posterior Peak Over Half-Width
1,2tags + 2,3,4jets e, + 2,3,4jets e,n + 1,2tags All
e-chan p-chan | 1tag 2tags| 2jets 3jets 4 jets channels
Run lla 14 1.9 1.6 1.6 1.2 1.8 1.3 2.2
Run Ilb 3.2 2.6 3.7 1.7 2.8 2.3 1.8 4.1
Runllatb| 3.6 3.2 4.1 2.2 2.6 2.9 1.8 4.7

Table 7.8: Posterior peak over half-width significance fasndifferent combinations of
analysis channels. The best values from all channels cadlaire shown in bold type. All
systematic uncertainties are taken into account in thdsalations.

7.3 Event Kinematics

Figures 7.21 and 7.22 shows data-background comparispmarious discriminating vari-
ables used by the boosted decision trees after applyingrelift cuts on the decision tree
discriminant. Single top in these plots are normalized éortteasured cross section. Event
displays of two of the most signal like even@@gpr > 0.98) are shown in Appendix A.
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Channel o+ Ao P/HW
elpl7/1tag /2jets | 0.91715 1.0
elpl7/1tag / 3jets | 9.0375%9 1.7
el pl7/ltag /4jets | 8.15"1L% 1.0
e pl7/2tags / 2jets| 0.00731 0.0
el pl7/2tags/ 3jets| 9.2711% 1.5
el pl7/2tags/ 4jets| 0.001.%5! 0.0
e/ p20/ 1tag / 2jets | 0.00739 0.0
e/ p20/ 1tag /3jets | 5.6575% 1.6
el p20/ 1tag / 4jets | 14.1573%52 1.5
el p20/ 2tags / 2jets| 4.24F4%7 1.2
e/ p20/ 2tags / 3jets| 5.0475:37 1.0
e | p20/ 2tags / 4jets| 21.37+154 1.6
nlpl7/1tag / 2jets| 2.53F198 1.5
1/ pl7/1tag /3jets| 0.81F342 1.0
pl pd7/ 1tag / 4jets| 0.00779 0.0
nl pl7 / 2tags / 2jets 1.56F3% 1.0
1/ pl7/ 2tags / 3jets 1.0016:3 1.0
11 pl7 / 2tags / djets 12.657%9 1.4
p/p20/ 1tag / 2jets| 5.05733% 2.3
1/ p20/ 1tag / 3jets| 5.1973% 1.4
11 p20/ ltag / 4jets| 3.62+1%38 1.0
11 p20/ 2tags / 2jets 2.02F5% 1.0
1/ p20/ 2tags / 3jets 4.3875:17 1.1
11 p20 / 2tags / djets| 8.687L18 1.1
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Table 7.9: Measured cross sections and peak over
half-width significances, with all systematic uncer-
tainties taken into account, for each of the 24 indi-
vidual analysis channels.
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Figure 7.21: Data-background comparison for various emafter requiringdgzpr >
0.8 (left column),Ogpr > 0.9 (middle column) and)gpr > 0.96 (right column). All
channels combined.
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Figure 7.22: Data-background comparison for various Wéemafter requiringgpr >
0.8 (left column),Ogpr > 0.9 (middle column) andgpr > 0.96 (right column). All
channels combined.



CHAPTER 7. ANALYSIS: MEASUREMENTS 132

7.4 Signal Significance

The significance of the excess over background is measuneglaisery large ensemble of
pseudo-datasets generated with background only. Eachlate$et corresponds to 2.3 th
of data without any single top. The single top cross sect®omeasured in each such
pseudo-dataset in exactly the same way as for the real tlatase

From the measured cross sections in the ensemble, the @gbfdy background only
to fluctuate to give a cross section higher than the standadkhtross section, or the
measurement in real data, is calculated. This probabditgfierred to as thep“value”, and
is widely used to estimate the significance of a measurerenin ap-valueca, the number
of standard deviations equivalendg is calculated using

N, =V2-erf7}(1 - 20) (7.11)

which fulfils N
/ Gauss(z)dr =1 — a, (7.12)

— 00

where the normal distribution Gayss is normalized to unity.

Figure 7.23 presents the expected and observed signifedacehe signal excess over
background in the boosted decision tree distribution. Mpeeted significance, sometimes
referred to as theensitivity is calculated from the fraction of pseudo-datasets mesgur
a cross section above the standard model single top crossrset3.46 pb. 267 pseudo-
datasets out of 34.1 million measure a single top cross aBa&pb, which corresponds
to an expected 4a3excess over background. The observed significance is agdclirom
the number of pseudo-datasets that measure a cross seigiian than the cross section
measured in real data, and is hence strongly correlatedtiétimeasured cross section.
The observed significance for this analysis is4.6

7.4.1 Combined Significance

Two other multivariate analyses were performed using tieesdata and simulated sam-
ples: one based on Bayesian neural networks (BNN) [81, 82],0aedusing the Matrix
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Figure 7.23: Measured cross sections using the boostesialetiee distributions in a large
ensemble of pseudo-datasets containing no single top. Xpgexctd significance (top) is
calculated from the number of pseudo-datasets measuringsa section higher than the
standard model cross section, and the observed signifi¢antem) is derived from the
number of pseudo-datasets with measured cross sectioa Himmeasurement in real data.
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Element method (ME) [83, 84]. Just as for the boosted deatisiee analysis described
in this thesis, these are improved versions of the singlestagence analyses, which are
described in Reference [5].

The single top cross section and the significance are mehsw®idually for each anal-
ysis. These measurements are highly correlated since the dataset is used. However,
since the analyses use quite different techniques to &slagle top quarks, they are not
fully correlated. The three analyses were therefore coathinto a more powerful dis-
criminant using a second Bayesian neural network [85]. Tkerulhinant outputs for the
individual multivariate techniques as well as the BNN conalion are presented in Ap-
pendix E.

The sensitivity of the combined measurement is determisetya very large ensemble of
background-only pseudo-datasets, in the same way as footsted decision tree analysis
(Section 7.2.3). The distribution of measured cross sestiothe background-only ensem-
ble and the expected and observed significances are présertigure 7.24. The boosted
decision tree and BNN combination results are summarizedlheT7.10.

The observed significance for the BNN combination excéedsvhich corresponds to the
first observation of single top quark production.

Multivariate Analysis Results

Significance Measured
Analysis Expected Observed o, [pb]
Boosted decision trees 4.3 4.60 3.7158
BNN combination 4.50 5.00 | 3.970%

Table 7.10: Expected and observed significances and melesingde top cross sections for
the boosted decision tree analysis as well as for the BNN aaetibn. The BNN combi-
nation results in an improved expected significance, andurea an observed significance
of 5.00.
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Figure 7.24: The distribution of measured cross sectiongugie BNN combination dis-
criminant in a very large ensemble of pseudo-datasets ioomgano single top. The
expected (above) and observed (below) significances acelatdd from the number of
pseudo-datasets measuring a cross section higher tharpgbeted standard model mea-
surement and the measurement using real data respectively.
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7.5 Measurement of| V|

As discussed in Section 2.3.3, a measurement of the amgplitLithe CKM matrix element
Vi, can be performed from the boosted decision tree discrinhimaput in much the same
way as the cross section measurement since the single teg seotion is directly propor-
tional to |Vj,|%. This measurement makes no assumptions on the number &f fqnaities
or the unitarity of the CKM matrix. However, assumptions adain the interpretation of
the measurement as well as when generating the Monte Carfdesgras discussed below.

|Vip| is assumed to be much larger thdfy| + |Vis| such that3(t — Wb) ~100%. This
assumption is used in the Monte Carlo generation and is rahf®aince measurements of
the quantityR = |Viy|/(|Vis| +|Via| +|Vis|) @re consistent with unity [86]. Single top quarks
are assumed only to be produced via the standard model giadincodes (Section 2.3.2),
hence no single top production via flavour-changing nectredents or new, heavy charged
bosons (Section 2.3.6) are considered. Finally,Jthi interaction is assumed to be CP-
conserving and of th&—A type, but is allowed to have an anomalous strengthAdding
this factor results in &/tb vertex of the form [4, 87]

—%ffv;bu@bwm(p» (7.13)

whereP;, = (1 — ~5)/2 is the left handed projection operator.

I —
1—‘Wtb -

Under these assumptions, thé&,| measurement is conducted using the same Bayesian cal-
culations (Section 7.2.1) and the same boosted decisienhistograms as for the cross

Additional systematic uncertainties in percent affectimg|V;,| measurement

tb tqb
Top quark mass 5.56 3.48
Factorization scale 3.7 1.74
PDF 3.0 3.0
Qg 1.4 0.01

Table 7.11: Systematic uncertainties in percent that neee tonsidered when measuring
|Vip| in addition to all uncertainties affecting the cross sectiteasurement (Section 5.8).
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section measurement. A few additional systematic unceigaineed to be considered dur-
ing this measurement. The magnitude and the sources far fyssematics are shown in
Table 7.11. Two measurements are performed. The first measut is “unconstrained”
(uses a flat prior between 0 and 3), and the second measur&mestricted to the0, 1]
interval. The former can be interpreted as a measuremerftf-df,|, while the latter only
considers the region allowed by the standard moglek€ 1), and can hence be interpreted
as a measurement {fy,|.

The first measurement yieldig;, f| = 1.05%)13, and the posterior density is presented in

Figure 7.25. The second posterior density peaks at unitysasistown in Figure 7.26. The
corresponding measurement yieldg,| = 1.0070%), or |V;,| > 0.77 at 95% confidence
level.

1.6
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Figure 7.25:|V;, f£|?> measurement result using an unconstrained prior. All syatie un-
certainties are taken into account in this measurementidimg the additional systematics
listed in Table 7.11. The different coloured regions repnéshe 68.3%, 95.4% and 99.7%
confidence bounds.
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Figure 7.26:|V;,|> measurement using a flat prior between 0 and 1. All systernatier-
tainties are taken into account in this measurement, inojuthe additional systematics
listed in Table 7.11. The different coloured regions repnéshe 68.3%, 95.4% and 99.7%
confidence bounds.



Chapter 8
Summary

This thesis presents a search for single top quark produsti@.3 fb-! of data collected

in the D@ detector at Fermilab. Selected events are reqtorkdve an isolated electron or
muon and 2 to 4 jets, of which 1 or 2 must be&agged. Boosted decision trees are used to
isolate single top signal from background. Using a Baye®ahrique, the single top cross
section is measured from the boosted decision tree outgiifditions to be

o (pp—tb+ X, tgh+ X) = 3.7470% pb.

The measurement hagavalue of2.1 x 10~¢, corresponding to a significance of 4.6 stan-
dard deviations.

Using the same dataset, a measurement of the amplitude GKihematrix element |
is also performed using the boosted decision tree outptriliions. This measurement
makes no assumptions on the number of quark families orrnitgitd the CKM matrix, and
yields:

Vi ff] = 1055575,
where fL is a generic left-handetd’tb coupling. Constraining the measurement to the
standard model region.é.,|V;;| < 1 andfL = 1) gives

[Vio| = 1.00709Y,

or at 95% confidence level:
0.77 < |V| < 1.
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The separation of the single top quark signal from the bamkupls is improved by combin-

ing the boosted decision trees with two other multivariathhiques. A new cross section
measurement is performed, and the significance for the meshsdcess over the predicted
background exceeds 5 standard deviations and constihgdisdt observation of single top

quark production.



Appendix A

Event Displays

This appendix shows event displays of two signal candidatats. The first one is shown
in Figures A.1, A.2, and A.3 and is atjets event with three jets, one of théntagged.
The second event is shown in Figures A.4, A.5, and A.6 andiisjats event, with three
jets of which two areé-tagged. The boosted decision tree outputs for the two s\amet
0.984 and 0.991 respectively.

141
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Run 229388 Evt 13339887 Wed Jan 3 21:05:14 2007

ET scale: 39 GeV

b jet

/ electron

\‘ : jet

Figure A.1: Transverse-plane view of a si 16 tgged+3 jets signal candidate event. The
positivex-axis points to the right, and theaxis points up. Hits in the inner tracking system
are shown as red dots and blue circles, reconstructed teekshown as black lines, and
electromagnetic and hadronic energy deposits in the cadter towers are illustrated as
red and blue bars. The yellow bar (top-right) is the recarcsérd missing transverse energy

vector, J}:‘:T, and the dark red bar with a matched track to the bottom-igytite electron.
Other views of the same event can be seen in Figures A.2 and A.3
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Run 229388 Evt 13339887 Wed Jan 3 21:05:14 2007

E scale: 36 GeV

jet

Figure A.2: Side view of the single-tagged3 jets signal candidate event show in Fig-
ures A.4 and A.6. The-axis points to the right, and the outer, thin lines are linés
constant; drawn in increments of 0.1. The bars illustrate energy dépasthe electro-
magnetic (red) and hadronic (blue) layers of the calorimet@ers. The upper half of the
plot illustrates the positivg hemispherd0 < ¢ < =) and the lower half represents the
negativey hemispherér < ¢ < 27).
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Run 229388 Evt 13339887 Wed Jan 3 21:05:14 2007

Triggers:
DTA1_2N032T10I10 1 MET M ev
DTA2_2N032T10I10

DTA3_2N032T10110 2em particle ICD
DTA4_2N032T10110 MG

DTA5_2N032T10110

E1 ISH30 M HAD
E1_ISHT15_M25 CH

40

ET
(GeV)

Bins: 200

Mean: 1.08

Rms: 3.52 0 47 em particle et: 37.73
Min: 0.0115 MET et: 37.77

Max: 35.3 em particle et: 2.153

Figure A.3:(n,¢) “lego plot” of the single-taggeed+3 jets signal candidate event shown in
Figures A.1 and A.2. The brown bar @f, ) = (0.43,5.65) is the reconstructed electron
with p; = 37.7 GeV, the yellow bar show the magnitude and ¢heoordinate of thef,- (it

is placed at) = 0 since thez-coordinate is unknown). Again, the red and blue bars show
the electromagnetic and hadronic energy deposits in tlogicadter, respectively.
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Run 223473 Evt 27278544 Sun Jul 23 19:21:41 2006

ET scale: 28 GeV

b jet

b jet

et

muon

MET

Figure A.4: Transverse-plane view of a doubleaggedu+3jets signal candidate event.
The z-axis is horizontal pointing right and thgaxis is vertical pointing up. Hits in the
inner tracking system are shown as red dots and blue cirelesnstructed tracks are shown
as black lines and electromagnetic and hadronic energystetspo the calorimeter towers
are illustrated as red and blue bars. The yellow bar (botisrtt)e reconstructed missing
transverse energy vecto}f}f, the green bar (bottom-right) is a muon. The jet to the right
is a forward jet(n = 2.2) that is notb-tagged, the other two jets are bdtttagged. Other
views of the same event can be seen in Figures A.5 and A.6.



APPENDIX A. EVENT DISPLAYS 146

Run 223473 Evt 27278544 Sun Jul 23 19:21:41 2006

E scale: 28 GeV

jet

muon

Figure A.5: Side view of the doubletagged+3 jets signal candidate event show in Fig-
ure A.4. Thez-axis points to the right, and the outer, thin lines are liolesonstant) drawn

in increments of 0.1. The bars illustrate energy deposithénelectromagnetic (red) and
hadronic (blue) layers of the calorimeter towers. The updf of the plot illustrates the
positivey hemispheré < ¢ < w) and the lower half represents the opposite hemisphere

(m < ¢ < 2m).
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Run 223473 Evt 27278544 Sun Jul 23 19:21:41 2006

Triggers:
JT2_3JT12L_MM3_V 1 MET
JT2_3JT15L_IP_VX

M ev

JT2_ACO_MHT BDV mu particle ICD
JT2 ACO_MHT_HT MG
IT2_ACO_MHT_LMO

B HAD

JT2_MHT25_HT

55

ET
(GeV)
360

Bins: 171

Mean: 0.856 0

Rms: 1.96 -4.7 mu particle et: 43.46
Min: 0.00916 MET et: 53.63

Max: 16.2

Figure A.6: (n,¢) “lego plot” of the doubleb-taggedu+3 jets signal candidate event show
in Figures A.4 and A.5. The green bar illustrates thep)-coordinates and the momentum
of the muon, the yellow bar shows the magnitude and¢tte@ordinate of thefl, (it is
placed at) = 0 since thez-coordinate is unknown). The red and blue bars again show the
electromagnetic and hadronic energy deposits in the cadber, respectively.
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Systematic Uncertainties

B.1 Systematics Affecting Normalization Only

Tables B.1-B.6 show the systematic uncertainties on the Issggrthbackground samples
that affect the normalization only. There are also thredesyatics sources that affect
the shapes of the distributions: jet energy scale, tagftatetions, andALPGEN W +jets
reweighting factors. These effects are not included in détséet since they are treated dif-
ferently in the calculations, and are discussed separat&gction B.2

The tables show the correlations between various backdrcomponents and analysis
channels for each uncertainty. A systematic uncertaingsgimed to be fully correlated
between all signal or background samples within a given rowach table, and for rows
with the same name in different tables. This does not fullylgfo the lepton identification
and trigger uncertainties, which are treated indepengémtlelectrons and muons and the
Run lla and Run llb run periods.

Since thelV +jets and multijets backgrounds are normalized to datarbeéftagging (Sec-
tion 5.4.6), the simulatedl’ +jets components are not affected by most of the systematic
uncertainties. However, there are uncertainties on tlaivelcompositions of th&l/ +jets
components, and due to thE&+jets and multijets normalization. These uncertainties ar
anticorrelated due to the constraint to match data befaegging, which is indicated by
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giving one of the values a negative sign. It should also batpdiout that there is a nor-
malization uncertainty due to théagging of the simulated samples, which is not shown in
the tables. This uncertainty is roughly 7% and 11% for eveuitis one and twa-tagged
jets respectively (see Figures B.1-B.4).
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Single-Tagged Two-Jet Electron Channel Percentage Uxicges
tt  Wbb Wee Wlip Zbb Zcé Zlp dibosons multijet tb  tqgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 1.5
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 1.4 14 14 14 — 14 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 25 25
Jet frag. 0.7 — — — 4.0 40 4.0 0.7 — 0.7 0.7
ISR/FSR 3.0 — — — 80 80 8.0 0.6 — 0.6 0.6
b-jet frag. 2.0 — — — 20 — — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
Sy — 137 -15 137 — —_- - — — —- —
Spetio — =50 — 5.0 — - — — — —- —
S% - - — — 137 137 — — — - —
IKS — 2.3 2.3 2.3 — —_- - — —-420 — —

Double-Tagged Two-Jet Electron Channel Percentage Uxinteis
tt  Wbb Wee Wlip Zbb Zcé Zlp dibosons multijet tb  tqgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 1.5
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 14 14 14 14 — 14 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 25 2.5
Jet frag. 0.7 — — — 4.0 40 4.0 0.7 — 0.7 0.7
ISR/FSR 3.0 — — — 80 80 8.0 0.6 — 0.6 0.6
b-jet frag. 2.0 — — — 20 —  — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
sv. — 137 -15 137 — —_- - — — —- —
Spetio — =50 — 5.0 — —- - — — —- —
S% - -  — — 137 137 — — — - —
IKS — 2.3 2.3 2.3 — —_- - — —420 — —

Table B.1: Systematic uncertainties for the Run lla electiwenoels with two jets. The
shape-shifting systematic uncertainties are not showinege tables (see Section B.2).
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Single-Tagged Three-Jet Electron Channel Percentagertdintees
tt  Wbb Wee Wlip Zbb Zcé Zlp dibosons multijet tb  tqgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 1.5
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 1.4 14 14 14 — 14 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 25 25
Jet frag. 0.1 — — — 4.0 40 4.0 3.7 — 3.7 3.7
ISR/FSR 2.8 — — — 80 80 8.0 5.2 — 52 5.2
b-jet frag. 2.0 — — — 20 — — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
Sy — 137 -08 137 — - — — — —- —
Spetio — =50 — 5.0 — - — — — —- —
S% - - — — 137 137 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -300 — —

Double-Tagged Three-Jet Electron Channel Percentagertdimtees
tt  Wbb Wee Wlip Zbb Zcé Zlp dibosons multijet tb  tqgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 1.5
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 14 14 14 14 — 14 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 25 2.5
Jet frag. 0.1 — — — 4.0 40 4.0 3.7 — 3.7 3.7
ISR/FSR 2.8 — — — 80 80 8.0 5.2 — 52 5.2
b-jet frag. 2.0 — — — 20 —  — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
sv. — 137 -08 137 — —_- - — — —- —
Spetio — =50 — 5.0 — —- - — — —- —
S% - -  — — 137 137 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -300 — —

Table B.2: Systematic uncertainties for the Run lla electtmmaoels with three jets. The
shape-shifting systematic uncertainties are not showinege tables (see Section B.2).
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Single-Tagged Four-Jet Electron Channel Percentage tairides
tt  Wbb Wee Wlip Zbb Zce Zlp dibosons multijet tb  tgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 15
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 1.4 — — — 1.4 14 14 1.4 — 1.4 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5
Jet frag. 0.7 — — — 4.0 40 4.0 4.7 — 4.7 47
ISR/FSR 0.6 — — — 80 80 8.0 12.6 — 126 12.6
b-jet frag. 2.0 — — — 20 —  — — — 20 20
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 4.0 4.0 40 4.0 — 4.0 4.0
sV — 137 -07 137 — - — — — — —
Spetio — =50 — 5.0 — - — — — — —
S% - -  — — 137 137 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -30.0 — —

Double-Tagged Four-Jet Electron Channel Percentage taities
tt  Wbb Wee Wlip Zbb Zce Zlp dibosons multijet tb  tgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 15
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 14 14 14 14 — 1.4 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5
Jet frag. 0.7 — — — 4.0 40 4.0 4.7 — 4.7 47
ISR/FSR 0.6 — — — 80 80 8.0 12.6 — 126 12.6
b-jet frag. 2.0 — — — 20 @ —  — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
Sy — 137 -07 137 — —_- - — — — —
Spetio — =50 — 5.0 — —_- - — — — —
S% - -  — — 137 137 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -300 — —

Table B.3: Systematic uncertainties for the Run lla electtwemnaoels with four jets. The
shape-shifting systematic uncertainties are not shownese tables (see Section B.2).
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Single-Tagged Two-Jet Muon Channel Percentage Uncedsint
tt  Wbb Wee Wlip Zbb Zcé Zlp dibosons multijet tb  tqgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 1.5
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 1.4 14 14 14 — 14 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 25 25
Jet frag. 0.7 — — — 4.0 40 4.0 0.7 — 0.7 0.7
ISR/FSR 3.0 — — — 80 80 8.0 0.6 — 0.6 0.6
b-jet frag. 2.0 — — — 20 — — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
Sy — 137 -08 137 — - — — — —- —
Spetio — =50 — 5.0 — - — — — —- —
S% - — —  — 200 200 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -40.0 — —

Double-Tagged Two-Jet Muon Channel Percentage Unceadsint

tt  Wbb Wee Wlip Zbb Zcé Zlp dibosons multijet tb  tqgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 1.5
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 14 14 14 14 — 14 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 25 2.5
Jet frag. 0.7 — — — 4.0 40 4.0 0.7 — 0.7 0.7
ISR/FSR 3.0 — — — 80 80 8.0 0.6 — 0.6 0.6
b-jet frag. 2.0 — — — 20 —  — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
sv. — 137 -08 137 — —_- - — — —- —
Spetio — =50 — 5.0 — —- - — — —- —
S% - - —  — 200 200 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -40.0 — —

Table B.4: Systematic uncertainties for the Run lla muon cebnwith two jets. The
shape-shifting systematic uncertainties are not showinege tables (see Section B.2).
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Single-Tagged Three-Jet Muon Channel Percentage Unuztai
tt  Wbb Wee Wlip Zbb Zcé Zlp dibosons multijet tb  tqgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 1.5
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 1.4 14 14 14 — 14 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 25 25
Jet frag. 0.1 — — — 4.0 40 4.0 3.7 — 3.7 3.7
ISR/FSR 2.8 — — — 80 80 8.0 5.2 — 52 5.2
b-jet frag. 2.0 — — — 20 — — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
Sy — 137 -08 137 — - — — — —- —
Spetio — =50 — 5.0 — - — — — —- —
S% - — —  — 200 200 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -300 — —

Double-Tagged Three-Jet Muon Channel Percentage Untidetai
tt  Wbb Wee Wlip Zbb Zcé Zlp dibosons multijet tb  tqgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 1.5
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 14 14 14 14 — 14 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 25 2.5
Jet frag. 0.1 — — — 4.0 40 4.0 3.7 — 3.7 3.7
ISR/FSR 2.8 — — — 80 80 8.0 5.2 — 52 5.2
b-jet frag. 2.0 — — — 20 —  — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
sv. — 137 -08 137 — —_- - — — —- —
Spetio — =50 — 5.0 — —- - — — —- —
S% - - —  — 200 200 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -300 — —

Table B.5: Systematic uncertainties for the Run lla muon céknwith three jets. The
shape-shifting systematic uncertainties are not showinege tables (see Section B.2).
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Single-Tagged Four-Jet Muon Channel Percentage Unciesin
tt  Wbb Wee Wlip Zbb Zce Zlp dibosons multijet tb  tgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 15
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 1.4 — — — 1.4 14 14 1.4 — 1.4 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5
Jet frag. 0.7 — — — 4.0 40 4.0 4.7 — 4.7 47
ISR/FSR 0.6 — — — 80 80 8.0 12.6 — 126 12.6
b-jet frag. 2.0 — — — 20 —  — — — 20 20
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 4.0 4.0 40 4.0 — 4.0 4.0
sV — 137 -07 137 — - — — — — —
Spetio — =50 — 5.0 — - — — — — —
S% - — —  — 200 200 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -30.0 — —

Double-Tagged Four-Jet Muon Channel Percentage Uncietin
tt  Wbb Wee Wlip Zbb Zce Zlp dibosons multijet tb  tgb

Luminosity 6.1 — — — 6.1 6.1 6.1 6.1 — 6.1 6.1
Xsect. 127 — — — 58 5.8 5.8 5.8 — 112 74
Branching frac. 1.5 — — — — —_-  — — — 1.5 15
PDF — — — — — — = — — 3.0 3.0
Triggers 5.0 — — — 5.0 5.0 5.0 5.0 — 5.0 5.0
Lumi. rewtg. 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Prim. vertex 14 — — — 14 14 14 14 — 1.4 14
Lepton ID 2.5 — — — 2.5 2.5 2.5 2.5 — 2.5 2.5
Jet frag. 0.7 — — — 4.0 40 4.0 4.7 — 4.7 47
ISR/FSR 0.6 — — — 80 80 8.0 12.6 — 126 12.6
b-jet frag. 2.0 — — — 20 @ —  — — — 20 2.0
Jet ID 1.0 — — — 1.0 1.0 1.0 1.0 — 1.0 1.0
Jetres. 4.0 — — — 40 40 4.0 4.0 — 4.0 4.0
Sy — 137 -07 137 — —_- - — — — —
Spetio — =50 — 5.0 — —_- - — — — —
S% - - —  — 200 200 — — — - —
IKS — 1.8 1.8 1.8 — —_- - — -300 — —

Table B.6: Systematic uncertainties for the Run lla muon ceenwith four jets. The
shape-shifting systematic uncertainties are not shownese tables (see Section B.2).
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B.2 Shape-Changing Systematics

To evaluate the uncertainties on the jet energy scale ankttdngging efficiency, four ad-
ditional sets of simulated samples are produced with thaaetdgies shifted up and down
by one standard deviation of their uncertainty. Wiejets samples are also re-reproduced
with the all ALPGEN reweightings (Section 5.4.4) shifted up and down by onedstah
deviation. The yield subsets (Section 7.1.1) of these smpdas are passed through the
final boosted decision trees, and new discriminant outmibgrams are produced. Some
of these histograms from the 1tag-2jet channels are seegumds B.1 and B.2, and from
the 2tag-2jet channels in in Figures B.1 and B.2. The diffezdoetween the histogram is
the uncertainty used in the cross section calculation alsiegal in Section 7.2.2.
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Figure B.1: Shape-shifting systematics for Run Hbjets, 2jets-1tag. The boosted decision
tree distributions are produced from the nominal and sthi$@mples. We have single top
(left) and all backgrounds combined (right) for jet energgle (top row)) tagging (middle
row) andALPGEN reweighing forlV +jets only (bottom plot).
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Figure B.2: Shape-shifting systematics for Run [ibjets, 2jets-1tag channel. The boosted
decision tree distributions are produced from the nomindlshifted samples. We have sin-
gle top (left) and all backgrounds combined (right) for jeeérsgy scale (top row), tagging
(middle row) andaLPGEN reweighing forll/ +jets only (bottom plot).
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Figure B.3: Shape-shifting systematics for Run Hbjets, 2jets-2tag channel. The boosted
decision tree distributions are produced from the nomindlshifted samples. We have sin-
gle top (left) and all backgrounds combined (right) for jeérsgy scale (top row), tagging
(middle row) andaLPGEN reweighing forll/ +jets only (bottom plot).
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Figure B.4: Shape-shifting systematics for Run [ibjets, 2jets-2tag channel. The boosted
decision tree distributions are produced from the nomindlshifted samples. We have sin-
gle top (left) and all backgrounds combined (right) for jeeérsgy scale (top row), tagging
(middle row) andaLPGEN reweighing forll/ +jets only (bottom plot).



Appendix C

Decision Tree Outputs

This appendix presents the boosted decision tree outpubdisons for all of the 24 indi-
vidual channels. Each distribution is shown both usingdirend log scale of thg-axis.
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Figure C.1: Boosted decision tree discriminant output distions for the six Run lla
etjets channels with two (left column), three (middle colyrand four (right column) jets
and one and twe-tagged jets (alternating rows) using linear scale (topteves) and log
scale (bottom two rows). The plot key can be seen in Figure 5.6
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Figure C.2: Boosted decision tree discriminant output distions for the six Run lla
u+jets channels with two (left column), three (middle colyrand four (right column) jets
and one and tweé-tagged jets (alternating rows) using linear scale (topteves) and log
scale (bottom two rows). The plot key can be seen in Figure 5.6
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Appendix D

Cross Check Samples

This Appendix presents the boosted decision tree outptrtldions for twoll/ +jets and
tt cross check samples in Figures D.1 and Figures D.2 respBcti¥igure D.3 shows
the boosted decision tree output for the data, signal ankigbaend samples before any
b-tagging selection is applied.

The W +jets andit cross check samples are defined as follows:
o “W+jets” (2 jets, 1 tagHr < 175 GeV),

e “it" (4 jets, 1-2 tagsHr > 300 GeV).
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Figure D.1: Boosted decision tree discriminant output distrons for the T/ +jets” sam-
ple for theetjets (left) andutjets (right) and Run lla (top row) and Run IlIb (bottom row)
channels. The plot key can be seen in Figure 5.6.
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Appendix E

Combined Results

This appendix presents the results from the other mulat@analyses that were conducted
using the same data and simulated samples as the boostetbdéze analysis presented
in this thesis.

The other two individual analyses use Bayesian neural n&sM@NN) [81, 82] and the

Matrix Element method (ME) [83, 84] to separate single taprfrbackgrounds. Both of
these analyses are updated versions of the previous as@bjsehich established the first
evidence for single top quark production in 2006.

As discussed in Section 7.4.1, the three individual muliita outputs were used as input
to a second layer of Bayesian neural network. The resultipgragiscriminant (BNN com-
bination output) is more powerful than any of the discrinmtsafor the individual analyses.
The discriminant outputs for the individual multivariagehniques, as well as the combina-
tion, are presented in Figure E.1, and the cross sectionignificGance measurements are
shown in Table E.1. The boosted decision tree analysis ie semsitive than the BNN and
ME analyses, but not as sensitive as the BNN combination.

The BNN combination output is also used to derive a cross@eatieasurement yielding:
|fEVi| = 1.07 £0.12, and|Vj,| > 0.78 at the 95% confidence level.
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Figure E.1: The discriminant output distribution for allacinels combined for boosted
decision trees (a), Bayesian neural networks (b), the matement method (c) and the

BNN combination (d). The BDT distribution is the same shown iguFe 7.19, but a
different binning is used.
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Multivariate Analysis Results

Significance Measured
Analysis Expected Observed o, [pb]
Boosted decision tree 4.30 4.60 3.7759
Bayesian neural networks 4.1o 5.20 4.750%
Matrix elements 410 5.00 43109
BNN combination 4.50 5.00 | 3.9709

Table E.1: Expected and observed significances and measinggdd top cross sections for
the three different multivariate techniques and their cimiation. The boosted decision tree
analysis is the most sensitive of the ordinary multivarealyses with an expected sig-
nificance of4.3¢0. This significance improves as the analyses are combineglolbserved

significance for the BNN combinationfigr, corresponding to the first observation of single
top quark production.
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