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ABSTRACT

A search for neutral supersymmetric Higgs bosons and work relating to the

improvement of the b-tagging and trigger capabilities at the DØ detector during

Run II of the Fermilab Tevatron collider is presented. The search for evidence of

the Higgs sector in the Standard Model (SM) and supersymmetric extensions of the

SM are a high priority for the DØ collaboration, and b-tagging and good triggers

are a vital component of these searches.

The development and commissioning of the first triggers at DØ which use b-

tagging is outlined, along with the development of a new secondary vertex b-tagging

tool for use in the Level 3 trigger. Upgrades to the Level 3 trigger hit finding

code, which have led to significant improvements in the quality and efficiency of the

tracking code, and by extension the b-tagging tools, are also presented.

An offline Neural Network (NN) b-tagging tool was developed, trained on Monte

Carlo and extensively tested and measured on data. The new b-tagging tool sig-

nificantly improves the b-tagging performance at DØ, for a fixed fake rate relative

improvements in signal efficiency range from ∼ 40% to ∼ 15%. Fake rates, for a

fixed signal efficiency, are typically reduced to between a quarter and a third of their

value.

Finally, three versions of the search for neutral supersymmetric Higgs bosons are

presented. The latest version of the analysis makes use of almost 1 fb−1 of data, the

new NN b-tagger and the new b-tagging triggers, and has set one of the world’s best

limits on the supersymmetric parameter tanβ in the mass range 90 to 150 GeV.
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Preface

This thesis describes the work the author carried out between January 2003 – June

2006 as a member of the DØ collaboration. The structure of the thesis is outlined

below, followed by a description of the author’s work.

Chapter 1 - A brief review of the Standard Model (SM) and the Minimal Su-

persymmetric extension of the Standard Model (MSSM), paying particular

attention to the Higgs sector.

Chapter 2 - A description of the Tevatron and the DØ detector.

Chapter 3 - All work relevant to the Level 3 trigger, namely: improving the hit

finding and tracking in the Silicon Microstrip Detector, the development and

commissioning of a secondary vertexing tool and the design of two multi-jet

Higgs triggers.

Chapter 4 - The development and commissioning of the Neural Network (NN)

b-tagging tool at DØ.

Chapter 5 - The search for neutral supersymmetric Higgs bosons (hb) in multi-jet

events at DØ, which covers the three analyses with which I was involved.

Chapter 6 - An overview and the future outlook of the work in this thesis.

Natural units are used throughout this thesis where c = h̄ = 1, and energy,

momentum and masses are all therefore expressed in terms of electron volts (eV).

The work the author undertook as part of this thesis is outlined below, broken

into my Level 3, b-tagging and Higgs work.
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Level 3: The author has been a member of the Level 3 (L3) algorithms group

since January 2003. The author’s work for the L3 group centred around b-tagging

and tracking improvements. The author alone is responsible for the L3 work docu-

mented in this chapter, except for the secondary vertex tool which was tuned with

the help of a fellow PhD student.

The tracking work resulted in various improvements to the Silicon Microstrip hit

finding. These upgrades were presented to and accepted by the L3 group in June

2004. The upgrades substantially improved the quality, efficiency and purity of the

tracking. Several of the improvements have since been incorporated into the ‘offline’

reconstruction code. The improvements to the L3 tracking have resulted in more

efficient L3 triggers for almost every physics group at DØ.

The L3 triggers developed for the multi-jet Higgs analysis, including the use

of b-tagging in a trigger for the first time, were presented to and accepted by the

Trigger Board. The triggers have been running online since Summer 2004, and are

integral to the success of the latest multi-jet Higgs analysis. Since its demonstrated

success in the multi-jet Higgs trigger, the b-tagging tool has been incorporated into

numerous triggers.

The L3 secondary vertex b-tagging tool has been running online in a test trigger

since Summer 2006, and will be incorporated into new physics triggers in Winter

2006. This new tool will play an important role in providing the extra rejection

necessary to allow triggers to effectively function at the higher Run IIb instanta-

neous luminosities. As part of this work a method was developed to allow trigger

development over a large sample of b-enriched real data events spanning a long time

period, and this has since been used in the development of other tools.

b-Tagging: The author has been an active member of the b-ID algorithms group

since November 2004, and designed and developed the first, and only, NN b-tagging

tool at DØ. With the help of another PhD student the author ‘certified’ this tool for

general use, and implemented the tool into the standard analysis framework. The

‘certification’ required the tagger to be accepted by both an editorial board and a

group review. This tool has greatly increased the performance of the b-tagging at DØ

and is now the official b-tagging tool which is used in all b-jet based analyses. The

large improvement in the b-tagging efficiency has effectively doubled the sensitivity

of most b-jet based analyses at DØ.

The author also developed a fully automated package which performs the full

certification required for a b-tagging tool at DØ, including: determining the data

b-tagging efficiency on udsg, c and b-jets, a full error evaluation and production of
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all plots needed for documentation. This package is now used for every b-tagging

tool’s certification at DØ, and greatly simplifies a very complex procedure which

needs to be repeated on a regular basis. This has long been a goal of the b-tagging

group.

Higgs: The author has been a member of the Higgs group since October 2003.

The author has participated in three generations of the ‘hb’analysis. The first analy-

sis in which the author took part was the ‘p14 Pass1’ analysis, which was published

in Physical Review Letters, setting a new world best limit on the MSSM Higgs

sector. The author carried out trigger studies as part of this analysis.

The second analysis documented is the ‘p14 Pass2’ analysis. The aim of the Pass2

analysis was to investigate the effect of the higher performance NN b-tagging in the

hb analysis. The author undertook all the work in this version of the analysis, and

co-developed a new analysis method and background model, which was necessary

due to the higher performance b-tagging.

The last analysis is the ‘p17’ analysis. The author’s contribution included the

design of the triggers (outlined in Chapter 3) which collected two thirds of the data,

the joint development of the new background model and analysis method, and the

Neural Network b-tagging. This version of the analysis has set a new preliminary

world best limit on the MSSM Higgs sector, as presented at ICHEP 2006, and will

be published early 2007.
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Chapter 1

Theory

The Standard Model (SM) of particle physics is a very successful model which de-

scribes to a high degree of accuracy the interactions of the fundamental particles.

The SM is not however a complete theory and the origin of mass in the SM has

not yet been resolved. The most popular theory to introduce mass into the SM is

the Higgs mechanism. Searches for the Higgs boson are thus currently one of the

highest priorities in high energy physics.

Supersymmetry (SUSY) is a popular extension of the SM which creates a sym-

metry between fermions and bosons. SUSY naturally explains some problems within

the SM, and allows for the unification of all the forces and the inclusion of gravity

into the SM. At present no evidence for SUSY has been found, although neither has

it been excluded.

A brief overview of the SM is given in Section 1.1. The Higgs mechanism is ex-

plained in Section 1.1.1, and constraints on the mass of the SM Higgs are outlined in

Section 1.1.2. The motivation for SUSY, along with an introduction to the minimal

supersymmetric extension to the SM (MSSM), is covered in Section 1.2. The Higgs

sector in the MSSM is covered in Section 1.2.1, along with the recent search results

for the MSSM Higgs bosons.

This chapter is a brief introduction to the SM and SUSY, and more complete

reviews can be found in [1, 2] and [3, 4, 5] respectively.

1.1 The Standard Model

This section provides a brief overview of how the forces, via their mediating bosons,

are ‘naturally’ introduced into the SM by requiring systems to be invariant under

certain symmetry transformations. Group transformations which vary in space and
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time are called ‘local gauge transformations’. By forcing the Lagrangian1 of a free

particle to be invariant under a local group transformation, it is necessary to in-

troduce a ‘gauge field’ to maintain the invariance of the Lagrangian. These gauge

fields are actually the force mediating spin-1 bosons. The use of local gauge invari-

ance is best demonstrated using a free Dirac field, Ψ = Ψ(x) and Ψ = Ψ†γ0, whose

Lagrangian is given by:

LDirac = Ψ(iγµ∂µ − m)Ψ, (1.1)

where γµ are the 4×4 gamma matrices. A U(1) local gauge transformation of the

Dirac fields is defined as:

Ψ → Ψ′ = eiθ(x)Ψ

Ψ → Ψ
′
= e−iθ(x)Ψ, (1.2)

where θ(x) is a function of the space-time co-ordinates. Substituting Equation

1.2 into Equation 1.1 proves that the Lagrangian is clearly not invariant in its current

form:

LDirac → L
′
Dirac = LDirac − Ψγµ∂µθ(x)Ψ. (1.3)

To maintain the invariance of the Lagrangian a real gauge field, Aµ, is introduced

whose transformation exactly cancels out the extra term in Equation 1.3:

Aµ → A′
µ = Aµ − 1

e
∂µθ(x). (1.4)

For completeness an invariant kinetic term for the gauge field is also added to

the Lagrangian:

L
K.E. = −1

4
FµνF

µν , (1.5)

where Fµν = ∂µAν−∂νAµ. Replacing the derivative with the covariant derivative,

Dµ, defined as:

Dµ ≡ ∂µ + ieAµ, (1.6)

ensures that the extra term is cancelled out and the Lagrangian is invariant

under the U(1) local gauge transformation. The resulting Lagrangian now describes

1Technically it is the Lagrangian density, and the actually Lagrangian is given by L =
∫

Ld3x.
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the interactions of electrons and photons - quantum electrodynamics (QED). By

requiring the invariance of a free Dirac field under a U(1) local gauge transformation,

the free system has been changed into an interacting one. The final QED Lagrangian

is given by:

LQED = Ψ(iγµDµ − m)Ψ − 1

4
FµνF

µν

= Ψ(iγµ∂µ − m)Ψ − eΨγµΨAµ
︸ ︷︷ ︸

Interaction Term

− 1

4
FµνF

µν. (1.7)

A mass term for Aµ is not included, as a term such as mAµAµ is not invariant.

In the SM the gauge bosons of the weak and strong forces are introduced in an

analogous way, but using different group structures to represent the different sym-

metries. For instance, the strong force is introduced into the SM Lagrangian by

requiring invariance under SU(3)C local gauge transformations. The 8 generators2

of the SU(3) group correspond to the 8 gluons.

The unified EM and weak forces are introduced by requiring invariance under

SU(2)L
⊗

U(1)Y local gauge transformations [11, 12]. The SU(2)L transformations

are in weak isospin (T) space and the U(1)Y transformations are in hypercharge (Y)

space. The three generators of the SU(2)L group correspond to the W1
µ, W2

µ and W3
µ

gauge bosons with a coupling g, and the single generator of the U(1)Y group to the

Bµ boson with a coupling g′. The EM charge, Q, is given by Q = T 3 + Y/2 where

T 3 is the eigenvalue of the third component of isospin, and the couplings are related

by g′ = gtanθW , where θW is the weak mixing angle. The physical bosons (photon,

W± and Z0) exist as linear superpositions of the gauge fields, and are given by:

W± ≡ (W 1
µ ∓ iW 2

µ )
√

2 (1.8)

Zµ ≡ cosθWW 3
µ − sinθW Bµ (1.9)

Aµ ≡ cosθWBµ − sinθW W 3
µ . (1.10)

The gauge bosons are all massless to maintain the invariance of the Lagrangians,

however this is at odds with the experimental evidence of massive Z0 and W± bosons.

Clearly a mechanism is needed which introduces mass terms into the SM in an

invariant way; one such theory is the Higgs mechanism.

2SU(n) groups have n2 − 1 generators.
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1.1.1 The Higgs Mechanism

The section describes the Higgs mechanism [6, 7, 8]. An illustrative example is

given below of how the Higgs mechanism can give mass to a gauge boson, and the

implementation of the Higgs mechanism into the SM is covered at the end of this

section.

The Higgs mechanism is best illustrated using a U(1) locally gauge invariant

Lagrangian for a complex scalar field, φ (analogous to the Lagrangian derived in

Section 1.1):

φ =
1√
2
(φ1 + iφ2) (1.11)

φ∗ =
1√
2
(φ1 − iφ2). (1.12)

The U(1) gauge invariant Lagrangian for this field is (see Section 1.1):

L = (∂µ + iqAµ)φ∗(∂µ − iqAµ)φ − 1

4
F µνFµν

︸ ︷︷ ︸

Kinetic Term

− V (φ)
︸ ︷︷ ︸

Potential Term

. (1.13)

The first two terms are the kinetic terms, and the third term, V (φ), is the potential

term which is defined as:

V (φ) = µ2φ∗φ + λ(φ∗φ)2. (1.14)

The potential for V(φ) is shown in Fig. 1.1 for the case of µ2 > 0 and µ2 < 0. In

the case of µ2 > 0 the minimum of the potential is at φ = 0 and the Lagrangian

describes a scalar field with mass
√

2µ. The more interesting case is that for µ2 < 0,

where there is an unstable maximum at φ = 0 and a minimum mapped out by a

circle:

φ2
1,min + φ2

2,min = v2 with v =

√

−µ2

λ
, (1.15)

where v is the vacuum expectation value. The perturbative expansion of the La-

grangian has to be performed around the classical minimum, and by choosing a

minimum we are breaking the symmetry of the theory. This is ‘spontaneous sym-

metry breaking’, by choosing a particular minimum the symmetry of the theory has

been broken. The minimum is chosen as:
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Figure 1.1: Graphical representation of V (φ) [9].

φ1 = v (1.16)

φ2 = 0 (1.17)

and two new fields can be defined at the minimum:

η = v − φ1

ζ = φ2. (1.18)

Substituting Equation 1.18 into Equation 1.13 gives:

L =
1

2
(∂µη)2 − v2λη2

︸ ︷︷ ︸

Scalar Particle

+
1

2
(∂µζ)2

︸ ︷︷ ︸

Goldstone Boson

− 1

4
F µνFµν

︸ ︷︷ ︸

K.E. Term

+
1

2
e2v2AµAµ

︸ ︷︷ ︸

Mass Term

− evAµ∂
µζ

︸ ︷︷ ︸

Interaction Term

+ .... (1.19)

The first two terms describe a scalar particle (η) of mass
√

2v2λ, and the third term

describes a ‘Goldstone’ boson, ζ, a massless scalar spin-0 particle which always

results from the breaking of a continuous global symmetry [10]. The fourth term

provides a mass term for the previously massless boson field Aµ as desired.

The above Lagrangian does not represent the fundamental particles in the theory.

The field ζ has a bilinear interaction term with Aµ and it is also a massless boson.

By picking the ‘unitary gauge’, defined as:
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θ = −tan−1(φ2/φ1), (1.20)

the ζ field can be transformed away. Replacing η → h, the Lagrangian becomes:

L
′′
scalar =

1

2
(∂µh)2 − 1

4
F µνFµν − v2λh2 +

1

2
e2v2AµA

µ

− λvh3 − 1

4
λh4 +

1

2
e2A2

µh2 + ve2A2
µh.

There are two real fields left, a massive scalar field h (the Higgs particle) and

a massive gauge field Aµ. From the initial massive complex scalar field introduced

into the Lagrangian, the Aµ field has ‘absorbed’ an extra degree of freedom, leaving

a massive scalar Higgs field.

1.1.1.1 The Higgs Mechanism in the Standard Model

The above example is U(1), in the SM the Higgs mechanism couples to SU(2), thus

we introduce a doublet of complex scalar fields which has four degrees of freedom.

The Higgs field spontaneously breaks the symmetry of the SM Lagrangian and in

the process imparts three of its degrees of freedom to the weak gauge bosons, with

the remaining degree of freedom appearing as the massive scalar Higgs field. The

vacuum remains invariant under EM charge (Q) hence electric charge is conserved

and the photon remains massless.

The mass terms for the fermions, f, can be generated using the same Higgs

doublet in a gauge invariant way. The Yukawa couplings are of the form:

LY ukawa = −Gf (ΨLΦΨR + ΨRΦ†ΨL), (1.21)

where Gf are the Yukawa coupling constants, determined from experiment. The

mass of the fermions and their interaction with the Higgs can be generated by

substituting the broken Higgs field transformed into the unitary gauge into Equation

1.21, as shown below for the case of an electron:

LY ukawa = −me(eLeR + eReL) − me

v
(eLeR + eReL)h. (1.22)

The first term is the mass of the electron, with me = Gev/
√

2, and the second term

is its interaction with the Higgs. The coupling is proportional to the mass of the

electron. A similar procedure can be followed to impart mass to the quarks, whose

coupling to the Higgs is again proportional to their mass.
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1.1.2 Constraints on the Higgs

Although the Higgs mechanism is successful in generating the necessary mass terms

in the SM, the Higgs boson has not been observed. The constraints from direct

searches, indirect measurements and theory on the Higgs mass are outlined in the

following sections.

1.1.2.1 Direct Searches

The most stringent limit on the mass of the Higgs particle has been set by direct

searches carried out at LEP. The LEP experiments performed a direct search for

the Higgs boson using 2461 pb−1 of data collected at centre of mass energies from

189 – 209 GeV. The primary production process was e+e− → HZ; all Z decays were

included for the H to bb̄ channel, but only Z decays to quarks were included for the

H to τ+τ− channel. A lower limit was set on the Higgs boson mass of 114.4 GeV

at 95% confidence level (CL) [13].

Direct searches have also been carried out at both DØ and CDF. Upper limits

have been set on the production cross section of a SM Higgs in associated produc-

tion (ZH → ννbb̄, WH → eνbb̄, WH → µνbb̄ and , WH → WW +W−) and gluon

fusion (H → WW ). The current combined limit from both experiments for all

search channels is presented in Fig. 1.2 [14]. The expected limit indicates the limit

setting potential of the experiment, and is derived from the background and signal

distributions assuming no signal production. The observed limit is the actual limit

on signal production derived when also taking into account the experimental data.

The observed limit at the Tevatron is currently a factor of 10(4) from the SM cross

section at a mass of 115 (160) GeV, although with the expected increases in luminos-

ity and improved analysis techniques (see for example the b-tagging improvements

in Chapter 4) this factor will decrease rapidly. Previous studies have shown that

∼ 2 fb−1 is needed for sensitivity to a SM Higgs of mass ∼ 115 GeV [15].

1.1.2.2 Indirect Experimental Measurements

Most electroweak (EW) parameters are sensitive to the Higgs via higher order loop

corrections and it is thus possible to use these corrections to place indirect constraints

on the mass of the Higgs. Precision measurements of 18 EW parameters, such as

the mass and width of the W boson, have been combined in a global fit with the

Higgs mass, using high-Q2 data from LEP, SLC and the Tevatron. The ∆χ2(mH) =

χ2
min(mH) − χ2

min of the fit as a function of Higgs mass is shown in Fig. 1.3. The

minimum of the ∆χ2 curve corresponds to 85+39
−28 GeV at 68% CL and an upper limit
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Figure 1.2: The ratio of the expected and observed 95% CL limits to the SM cross section for
the combined CDF and DØ analyses.

is set on the Higgs mass of mH < 199 GeV at 95% CL [16]. The largest sources of

error in the fit are due to the mass of the W-boson and the mass of the t-quark.

1.1.2.3 Theoretical Constraints

Constraints on the mass of the Higgs can be derived by requiring that λ, the constant

of the quartic term in the Higgs potential (see Equation 1.14), remains positive and

finite up to an energy scale Λ, where new physics appears. Figure 1.4 shows the

theoretical limits on the mass of the Higgs as a function of Λ [17]. The theoretical

limits allow a Higgs boson up to the Planck scale3, in which case the Higgs mass is

restricted to be between 130 and 190 GeV. If Λ is closer to 1 TeV, then the Higgs

mass is constrained to be in the range 85 < mh < 420 GeV. Additionally, unitarity

requirements in the WL scattering process place an upper limit of 1 TeV on the

Higgs mass, this requirement applies to all SM extensions which involve a Higgs

[18].

1.2 Limitations of the Standard Model and Su-

persymmetry

Though the SM is a very successful theory, it is not complete. For example:

3The Planck scale is the energy at which quantum gravity becomes important.
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Figure 1.4: The theoretical limits on the mass of the Higgs (MH) as a function of Λ, the energy
where new physics appears [17].
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• The Higgs particle is expected to have a mass of the order of the EW scale

(several hundred GeV), although loop corrections push the mass to values of

the order of the highest energy scale at which the SM is valid. This could be

of the order of the Planck scale i.e. 1019 GeV. Correcting the Higgs mass to

be of the correct order by fine tuning the parameters is possible, although this

is considered to be an unsatisfactory approach, and the fine tuning has to be

retuned for every order of perturbation theory. The large difference between

the ‘natural’ Higgs mass and the EW scale is known as the ‘hierarchy’ problem,

and the constant retuning required to maintain a Higgs mass on the order of

the EW energy scale the ‘fine tuning’ problem [3].

• In Grand Unified Theories (GUT) the coupling constants for the strong weak

and EM forces are expected to converge at high energy. In the SM the coupling

constants never all converge at a single value [4].

Supersymmetry addresses both of these issues by creating a new symmetry be-

tween the fermions and the bosons. A supersymmetric partner, or ‘sparticle’, is

introduced for every particle. The sparticles have the same quantum numbers as

their SM partner, except for the spin which is altered from half integer to full integer

or vice-versa. The MSSM is the simplest of the supersymmetric extensions of the

SM, but still results in the inclusion of 105 extra parameters [5]. Since no supersym-

metric partners have ever been seen, it is assumed that the supersymmetric particles

have a higher mass than the particles.

Supersymmetry is a popular theory because:

• It solves the hierarchy problem as the extra loops from the sparticles cancel

out the divergent loop terms in the SM.

• The three coupling constants converge in SUSY due to corrections caused by

the sparticles, as shown in Fig. 1.5.

• The mathematical framework of SUSY allows spin-2 particles to be introduced.

Gravity is postulated to be mediated by a spin-2 particle, and this could

therefore allow for the future inclusion of gravity into the theory.
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Figure 1.5: The running values of the inverse of the coupling constants as a function of the energy
scale, Q, in the SM (left) and the MSSM (right) [4], where α1, α2 and α3 are the U(1), SU(2) and

SU(3) coupling constants respectively.

1.2.1 Higgs Sector of the MSSM

In the MSSM Higgs sector there are two Higgs doublets: one which couples only

to down-type fermions and the other which couples only to up-type fermions. The

vacuum expectation values of these two fields are referred to as vu and vd respectively,

and their ratio is defined as:

tanβ = vu/vd. (1.23)

The Higgs doublets have 8 degrees of freedom, three of which are ‘absorbed’ by

the EW gauge bosons. This leaves five 5 physical Higgs bosons: three neutral (one

CP-odd, A, and two CP even, h and H) and two charged (H±). All couplings to

fermions and the masses of the Higgs particles can be deduced once two parameters

from the Higgs sector are defined. These are chosen here as mA and tanβ [3].

At tree level the masses of the CP-even Higgs bosons are related to the mass of

the CP-odd Higgs and the mass of the Z-boson (mZ) by :

m2
h,H =

1

2
(m2

A + m2
Z ∓

√

(m2
A + m2

Z)2 − 4m2
Am2

zcos22β). (1.24)

The masses of the CP-even Higgs bosons are further constrained by the following

relationships:

mh ≤ mZ |cos(2β|) (1.25)

mH ≥
√

m2
A + m2

Zsin22β. (1.26)
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The masses of the charged Higgs bosons are given by:

m2
H± = m2

A + m2
W . (1.27)

At tree level, the mass of h appears to be less than or equal to the mass of

the Z, however due to radiative corrections the mass actually has an upper limit

of ∼ 130 GeV [3]. The SM coupling of the CP-odd Higgs boson to the bottom-

quark is enhanced by a factor of tanβ, and therefore the production cross section

is enhanced by tan2 β. The coupling of the CP-even states, h and H, are enhanced

by −sinα/cosβ and cosα/cosβ respectively, where α is the mixing angle between h

and H, and is given by:

cos2(β − α) =
m2

h(m
2
Z − m2

h)

m2
A(m2

H − m2
h)

. (1.28)

The joint production cross section of the h and H Higgs bosons is equal to the

production cross section of A at high tanβ (see Section 5.3.1.1 for more details). At

large tanβ this results in an enhancement factor of ∼ 2tan2β for the total production

cross section of A, h and H bosons in association with b-quarks with respect to the

SM production cross section [19].

Large tanβ values are favoured by some models, as it naturally explains the

difference in mass between the bottom and top quarks [20].

1.2.2 MSSM Higgs Searches

Combined limits from the four LEP experiments have excluded at 95% CL MSSM

neutral Higgs bosons below mh < 92.9 GeV and mA < 93.4 GeV for all tanβ, and

have excluded tan β values between 0.7 and 2.0 for all mA/h values [21].

Searches at the Tevatron have further constrained the MSSM Higgs bosons firstly

at CDF [22] and then at DØ [23, 24, 25, 26]. The current preliminary world best

limit has been set in the latest DØ analysis [26] which has set limits on tanβ from 50

– 100 for mA ranging from 100 – 170 GeV. This result [26], along with its predecessor

[24] are documented in Chapter 5.
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Chapter 2

The Tevatron and the DØ
Detector

2.1 The Tevatron

The Fermi National Accelerator Laboratory (Fermilab) [27], as shown in Fig. 2.1,

consists of a series of accelerators which produce protons and antiprotons, and accel-

erate them up to 150 GeV for injection into the Tevatron. The Tevatron is currently

the highest energy operational particle accelerator in the world. The accelerator is

6.3 km in circumference and collides beams of protons and antiprotons at a centre

of mass energy of 1.96 TeV. Both beams are circulated in the same beam pipe but

in opposite directions, and are brought to focus at two points: the DØ and CDF

detectors. Run I of the Tevatron took place between 1992-1996, and Run II began

in 2001. Run II is split into two sections, Run IIa and Run IIb. Run IIa finished in

April 2006, and all data used in this thesis were collected during this run. Both de-

tectors were upgraded to operate at the higher instantaneous luminosities expected

in Run IIb, which began in June 2006. Run II is currently planned to last until the

end of 2009, with a final total integrated luminosity of up to 8 fb−1. The operating

parameters for the Tevatron in Run I and II are shown in Table 2.1. Figure 2.2

shows the peak instantaneous luminosity achieved during Run IIa; as can be seen

the goals were exceeded. Instantaneous luminosities in Run IIb are expected to

reach ∼ 3 × 1032 cm−2s−1.

2.2 The DØ Detector

The DØ detector, shown in Fig. 2.3, has a symmetrical design of concentric cylin-

drical sub-detectors centred around the collision point. The innermost layer is the
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Figure 2.1: The system of accelerators at the Fermi National Accelerator Laboratory used to
produce and accelerate protons and antiprotons.
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Figure 2.2: The peak instantaneous luminosity delivered by the Tevatron during Run IIa [28].
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Figure 2.3: A cross section of the DØ detector. The central tracking region is shown in more
detail in Fig. 2.4.

Figure 2.4: The central tracking region in the DØ detector.
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Run I Run II

Energy pp̄ (GeV) 900 980

Proton bunches 6 36

Protons/bunch 2.3×1011 2.7×1011

Antiproton bunches 6 36

Antiprotons/bunch 5.5×1010 3.0×1010

Bunch spacing (ns) 3500 396

Peak luminosity (cm−2s−1) 0.16×1032 ∼1×1032

Luminosity (pb−1/week) 3.2 17.3

Interactions per crossing 2.5 2.3

Table 2.1: The Tevatron operating parameters in Run I and II [30].

central tracking system, shown in Fig. 2.4, which is followed by the calorimeter

and then the muon detectors. All sub-detectors are described in more detail in the

following sections, and full details can be found in [29]. The DØ detector functions

with an average data-taking efficiency1 of between 85 − 90% as shown in Fig. 2.5.
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Figure 2.5: The data-taking efficiency of the DØ detector during Run IIa [31].

A right handed co-ordinate system is used throughout this thesis. The z-axis is

along the beampipe in the proton direction (Fig. 2.3), the y-axis is upwards, and

the x-axis points towards the centre of the Tevatron. The angles φ and θ are the

azimuthal and polar angles, and r is the perpendicular distance from the beampipe.

1Data taking efficiency is defined as the ratio of the recorded to the delivered data.
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The pseudorapidity, η = − ln(tan( θ
2
)), approximates the true rapidity in the limit

that mc2

E
→ 0. Objects are also frequently matched in η − φ space using the ‘cone’

distance, dR =
√

dη2 + dφ2.

2.2.1 The Central Tracking Detector

Good tracking, and by extension vertexing, is essential for a wide range of physics

studies including Higgs, top, B, electroweak and new phenomena. The central

tracking system, shown in Fig. 2.4, consists of a high precision silicon microstrip

tracker (SMT) and a central fibre tracker (CFT) surrounded by a 2 T supercon-

ducting solenoid. The central tracking provides a primary vertex resolution of

35 µm, a b-tagging resolution of 15 µm for central tracks with transverse momentum,

pT , > 10 GeV, and a momentum resolution of 2 + 0.15pT %.

2.2.1.1 The Silicon Microstrip Tracker

The SMT, shown in Fig. 2.6, provides tracking and vertexing for almost the full η

range of the calorimeter and muon detectors. The SMT detector is made from high

precision silicon wafers arranged into three sub-detectors:

Barrels - There are 6 barrel detectors in total, 3 either side of the origin, each made

from 4 concentric layers of double sided rectangular silicon wafers providing

information in r−φ (p-side) and r−z (n-side). There are 12 wafers in layers 1

and 2, and 24 in layers 3 and 4. The barrel detectors cover 2.7 cm < r < 10.5 cm

and |z| < 38 cm, providing tracking in the region |η| < 2.4.

F-Disks - There are 12 F-disks, 6 cap the high |z| of each barrel and 2 triplets of

F-disks spaced 5, 10 and 15 cm from either end of the barrel detectors. Each

F-disk is constructed from 12 double sided wedge shaped silicon modules.

H-Disks - The H-disks are designed for high η coverage and 2 doublets are placed

1 m either side of the barrel detector. Each H-disk is made from 24 wedges,

each wedge is constructed from back to back single sided silicon modules. The

H-disk extend to coverage of the SMT tracking in the forward region up to

|η| < 3.0.

The pitch of the strips is predominantly 50 µm (p-side) and 62.5 µm (n-side),

with hit resolutions of ∼ 10 µm. The signal to noise ratio varies from 12:1 to 18:1

depending on the detector type. Towards the end of Run IIa ∼ 15% of the barrel,

∼ 5% of the F-disk and ∼ 15% of the H-disk silicon modules were disabled [32].
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Figure 2.6: The silicon microstrip tracker.

As part of the Run IIb upgrade an additional layer of silicon has been added to

the DØ detector, referred to as Layer-0. Layer-0 is located inside the current barrel

detector at a radius of 1.6 cm, and as well as recovering any performance loss due

to radiation damage, will also improve the b-tagging resolution by a factor of 2 for

low pT tracks [33].

2.2.1.2 The Central Fibre Tracker

The CFT provides tracking in the region |η| < 1.6. Fibres are arranged in layers of

concentric circles around the beam pipe. A doublet layer is made from 256 fibres

divided into two layers of 128 fibres offset by half the diameter of a fibre. A ‘super

layer’ is made from two doublet layers, one parallel to the beam pipe providing r−φ

information and one at an angle of ±2◦ providing r − z information. There are 8

super layers covering 20 cm < r < 52 cm, |z| < 1.26 m in the outer 6 super layers

and |z| < 0.88 m in the two inner super layers.

The scintillating fibres are constructed from doped polystyrene surrounded by

a double cladding with a total diameter of 835 µm. The scintillating fibres are

connected to clear fibre waveguides which carry the light to visible light photon

counters (VLPC) where the light is converted to an electrical signal. The VLPCs

have a fast response time, a quantum efficiency of greater than 75% and a high gain

of 22,000 - 65,000. The central fibre tracker has ∼ 99.0% of the VLPCs functional

[32].

2.2.1.3 The Solenoid

The 2 T superconducting solenoid was designed to optimise the momentum reso-

lution. The size of the solenoid was determined by the size of the calorimeter and

the tracking requirements and it is 2.73m in length, 1.42 m in diameter, and is 1.1

radiation lengths thick. The field is uniform to 0.5% within the tracking volume.
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2.2.1.4 The Pre-Shower Detectors

The pre-shower (PS) functions as a calorimeter as well as a tracking detector, and

is used for electron identification, background rejection and aides in matching cen-

tral tracks to calorimeter clusters. The pre-showers are triangular scintillator tiles

placed in between the solenoid and the central calorimeter for the central pre-shower

covering |η| < 1.3, and attached to the inner faces of the end calorimeters for the

forward pre-shower covering 1.5 < |η| < 2.5 (see Fig. 2.4).

2.2.2 The Calorimeter

The calorimeter, shown in Fig. 2.7, measures the energy of electrons, photons and

jets, as well as the transverse energy balance. The calorimeter is a liquid argon

sampling calorimeter and consists of three sections: the central calorimeter (CC)

which provides coverage up to |η| ∼ 1 and two end caps (EC) which provide

coverage up to |η| ∼ 4.

Figure 2.7: The central and two end cap calorimeters.

The calorimeter uses different absorbers in different sections: the electromagnetic

(EM) layers use 3–4 mm thick uranium, the fine hadronic (FH) layers use 6 mm

thick uranium and the coarse hadronic (CH) layers use 46.5 mm thick plates of

copper (CC) or stainless steel (EC). The EM layers are designed to collect most of

the EM energy, the FH layers most of the hadronic energy and the CH layers any
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leakage. The EC is split into three sections, each of which has a different make-up

of absorber layers, starting from the beampipe these are referred to as the inner,

middle and outer sections (see Fig. 2.7). The number of layers in the CC and EC

and their electromagnetic (X0) and nuclear absorption lengths (λA) 2 are:

Central Calorimeter - The CC has 4 EM layers (20 X0), 3 FH layers (3.1 λA)

and 1 CH (3.2 λA) layer.

End Cap Calorimeter - The EC has 4 EM layers (inner: 21.4 X0), 4 FH layers

(inner: 4.4 λA, middle: 3.6 λA) and 1 CH layer (inner: 4.1 λA, middle: 4.6 λA,

outer: 6.0 λA).

Each layer is subdivided into calorimeter cells which have an area of ∆η×∆φ ∼
0.1×0.1, except the third EM layer (where the maximum EM energy deposit occurs)

which has a finer granularity of ∆η × ∆φ ∼ 0.05 × 0.05, and all cells at η > 3.2

which have an area ∆η × ∆φ ∼ 0.2 × 0.2.

The calorimeter is currently operating with 99.9% of the 55,000 channels op-

erational, and has had a full cell-by-cell EM and hadronic calibration [32]. The

resolution of the calorimeter for electrons and pions was measured from test beam

data to be [34]:

EM :
σE

E
=

0.15√
E

+ 0.003 (2.1)

π± :
σE

E
=

0.45√
E

+ 0.04. (2.2)

2.2.2.1 The Intercryostat Detector

The region 0.8 < |η| < 1.4 has incomplete coverage from the calorimeter and sub-

stantial unsampled material; the intercryostat (ICR) detector is designed to provide

additional sampling in this region and improve the energy resolution. The ICR

covers the region 1.1 < |η| < 1.4 and consists of scintillating tiles mounted on the

cryostat walls of the EC calorimeters (see Fig. 2.4). There are 16 tiles in total, each

of which is subdivided into twelve readout tiles of size ∆η × ∆φ ∼ 0.1 × 0.1.

2The absorption length is the mean free path of a particle before undergoing a non-elastic
interaction in a given medium.
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2.2.3 The Muon Detector

The muon system is the outermost layer of the detector and provides efficient muon

triggering and identification up to |η| ∼ 2. There are two sections of the detector,

the central muon system up to |η| < 1 and the forward muon system in the region

1 < |η| < 2, each of which has a series of drift tubes and scintillators.

Each system has three layers of drift tubes; Layer A lies inside a 1.8 T solid

iron toroid magnet and B/C which lie outside. The central muon system uses

proportional drift tubes (PDT) and the forward system mini drift tubes (MDT). A-

layers have 4 decks of drift tubes and the B/C-layers have 3. The PDTs are broken

down into cells of 10.1 cm and have a maximum drift time of 500 ns. The MDTs

are subdivided into cells of 1 cm and have a maximum drift time of 60 ns.

The central muon system has two scintillator counters, one before Layer A and

one after Layer C. The forward muon system has three scintillator counters located

before Layers A and C, and one after Layer B. The scintillator counters are used to

trigger on muons, and to provide accurate timing information for track reconstruc-

tion in the drift chambers.

The central muon system has 98.6% of the 8k tubes active and 99.8% of the

scintillator counters active. In the forward region 99.7% of the 50k wires are active

and 99.9% of the 4608 scintillator counters are active. The muon system is stable

over time to ∼ 1% [32]. The scintillator counters have a time resolution of ∼ 2 ns,

and both the PDT and MDT have a hit resolution of ∼ 1 mm. The momentum

resolution of the muon system is defined by the central tracking system for muons

with momentum up to 100 GeV, after this the muon systems improve the resolution.

The central muon system has a momentum resolution of 0.36(p − 3.1)/p
⊕

0.03p%

(where p is in GeV) and the forward muon system of ∼ 20%.

2.2.4 Luminosity Monitor

The luminosity monitor is used to determine the luminosity (L ) at the DØ interac-

tion point by detecting inelastic pp̄ collisions. Two arrays of 24 plastic scintillation

counters are placed at z = ±140 cm, just in front of the EC calorimeter and in

the region between the beampipe and the frontal pre-shower detectors, covering the

region 2.7 < |η| < 4.4 (see Fig. 2.4).

The luminosity is calculated from the average number of inelastic pp̄ collisions

per bunch crossing (NLM), using the following formula:

L =
fNLM

σLM
, (2.3)
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where f is the bunch crossing frequency and σLM is the cross section of inelastic

pp̄ collisions taking into account both the acceptance and efficiency of the luminosity

monitor.

2.2.5 The Trigger

The vast majority of all collisions at a hadron collider result in what are considered

to be ‘background’ events. The production cross section for background processes is

several orders of magnitudes larger than that for most signal processes. A trigger is

designed to retain the signal events to be kept from this overwhelming background.

The trigger at DØ has three layers of increasing complexity referred to as Level

1 (L1), Level 2 (L2) and Level 3 (L3). Each level has increasingly sophisticated

event reconstruction, and an event will proceed through each of the trigger levels

dependent on conditions being meet. The trigger rates at each level of the trigger

and the latency are shown in Table 2.2. A program called COOR handles the overall

coordination and control of the trigger system, and interacts directly with the trigger

framework (which makes the L1 and L2 trigger decisions) and the data acquisition

supervisor (for L3). An overview of the DØ trigger and data acquisition systems is

shown in Fig. 2.8.

Rate Latency

Collisions 1.7 MHz n/a

L1 1.6 kHz 3.6 µs

L2 800 Hz ∼100 µs

L3 50 Hz ∼150 ms

Table 2.2: Approximate trigger rates and latency for the three trigger levels.

2.2.5.1 Level 1

The L1 trigger is hardware based and uses a reduced form of the detector readout,

information from the CFT, PS, Muon and Calorimeter sub-detectors is used. The

calorimeter trigger decision is based upon the transverse energy, ET , sum in ∆η ×
∆φ ∼ 0.2 × 0.2 towers of calorimeter cells called ‘trigger towers’. The trigger

towers can either be summed to give a total ET for the calorimeter or the number of

trigger towers with an ET deposit above a threshold can be calculated and used to

trigger events. The track trigger groups fibres from the CFT into 4.5◦ sections, and
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Figure 2.8: The DØ trigger and data acquisition systems.

matches the hits to pre-programmed patterns representing different pT thresholds.

The tracks are also matched to hits in the pre-shower detector. The muon trigger

looks for patterns consistent with muons using the scintillator hits, wire hits and

the tracks from the track trigger.

If a trigger has passed, then the ‘trigger bit’ corresponding to that trigger is said

to have ‘fired’ and the event is passed into a buffer for evaluation by the L2 trigger.

2.2.5.2 Level 2

The L2 trigger is firmware based and uses the L1 data, with the addition of the SMT

data. The data from each sub-detector is processed to produce physics objects (such

as muons, jets, tracks, electrons) which are then passed onto a global processor. The

global processor creates global physics objects from one or more of the sub-detector

physics objects (such as matching a track to an EM object to make an electron

object), and allows event wide correlations between all the L2 objects to be tested.

Each L1 trigger bit corresponds to one or more L2 triggers. If a L1 trigger bit is

set, each of the corresponding L2 triggers is processed. This involves generating all

the physics objects required by the trigger, and checking them against the thresholds

defined in the trigger. If any of the L2 trigger thresholds pass then the event is passed

on to the L3 trigger.

2.2.5.3 Level 3

The L3 trigger is fully software based and reconstructs events based upon the full

detector readout on a farm of standard PCs running Linux. Events are reconstructed

using two types of tool:

Unpacking Tools - Read in the raw data and convert it into a form usable by the

physics tools.
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Physics Tools - Reconstruct physics objects in the detector using the output from

the unpacking tools and/or other physics tools.

Each tool has a set of parameters which are defined at runtime to control the

algorithm’s behaviour. A limited number of parameter sets are defined for each

tool, referred to as the tool’s ‘refset’, these are the only instances of the tool which

triggers can call.

Each L2 trigger bit corresponds to one or more L3 triggers. If a L2 trigger bit

is set, the corresponding L3 triggers are processed. Each L3 trigger consists of a

‘filter script’ which contains one or more ‘filters’, and each ‘filter’ defines a condition.

For a trigger to pass an event, each of the ‘filters’ in a filter script has to pass its

condition. There are two kinds of ‘filters’:

Physics Object Filters - Compares the physics objects obtained from a physics

tool to predefined thresholds. If the physics tool has been run by another tool

it will return the already calculated physics objects, otherwise the tool will be

executed on the event.

Relational Filters - Executes other filters and combines the filters’ results.

If an event passes a trigger, then the event is written out to tape for processing

by the offline reconstruction code. A collection of all the ‘filter scripts’ and the

‘refsets’ is referred to as a ‘trigger list’.

2.2.6 Analysis Tools

After an event has been passed by the trigger system and written out to tape, it

will undergo a full event reconstruction on the offline CPU farm at Fermilab. The

‘offline’ reconstruction code will typically take ∼ 10 s per event at an instantaneous

luminosity of 60×1032 cm−2s−1 on a 2.4 GHz CPU. Section 2.2.6.2 contains a brief

overview of the offline reconstructed physics objects used throughout this thesis,

and should be referred to when relevant. Section 2.2.6.3 contains an introduction

to b-tagging, and the b-tagging tools available at DØ which are frequently used in

this thesis.
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2.2.6.1 Reconstruction Code Versions

The various versions of DØ code which are used to reconstruct the offline physics

objects are referred to by the terminology pXX, where the XX is an integer which

is incremented for each new major release of the code. Two versions of the offline

reconstruction code are used in this thesis, p14 and p17. All the work in this thesis,

apart from the latest version of the analysis, were reconstructed with the p14 version

of the code.

2.2.6.2 Physics Objects

The following physics objects are used in this thesis:

Tracks - Tracks are reconstructed using a combination of three algorithms. Two of

the algorithms search for potential track candidates, and the third algorithm

propagates the track candidates through the full detector.

The first algorithm [35, 36] searches for tracks starting from seeds of 3 SMT

or CFT hits. The seed tracks are then propagated through the SMT and CFT

detectors and at each layer a new seed track is created for every hit within

the predicted trajectory. The second algorithm [37] uses a histogram based

Hough transformation [38] to locate tracks.

Both the track finding algorithms are run by default, and all the track candi-

dates from both algorithms are ranked together according to quality criteria.

All the tracks which fulfil certain quality criteria are kept and the tracks are

fitted using the 3rd algorithm [39], based on a Kalman Track Fitter, which

propagates the candidates through the detector taking account of the varia-

tions in the magnetic field, multiple scattering and energy loss [40].

Primary Vertex - A 2-pass probabilistic primary vertex (PV) algorithm was used

to reconstruct PVs [41], except for the latest p17 version of the analysis which

used an adaptively fitted vertex [42].

Jets - Calorimeter jets are reconstructed using a cone jet algorithm [43] of radius

0.5 in η × φ space. Jet energy scale (JES) corrections are applied to jets

to correct the energy of the jet to account for the calorimeter response to the

hadronic jet, the fraction of the energy actually contained with the jet cone,

and for other sources of energy within the calorimeter [44].
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Flavoured Jets - In Monte Carlo (MC) events jets were identified as being b-jets

if they had a b-hadron within dR < 0.5 of the jet. c-Jets had a c-hadron but

no b-hadron. uds-Jets or fake jets, which included gluon jets, had no heavy

flavour at all present in the jet.

Track Jets - Track jets are formed from the tracks found within dR < 0.5 of a

seed track. All tracks used in a track jet must have at least 2 SMT hits, the

seed track must have pT > 1.0 GeV, and a track jet must consist of at least

two tracks [46].

Taggable Jets - A taggable jet is a calorimeter jet matched to a track jet within

a cone of dR < 0.5. The taggability definition is designed to select a sample

of jets which satisfy basic tracking criteria [45].

Muons - All muons used in this thesis were required to be Medium muons (have

at least two wire hits and a scintillator hit in both the A and BC layers), have

a pT >4 GeV and be matched to a track with χ2< 100 [47].

2.2.6.3 b-Tagging at DØ

A b-jet, as shown in Fig. 2.9, can be identified by its relatively long lifetime and/or

the presence of a high pT lepton3. A track’s impact parameter (IP) is defined as the

perpendicular distance from the track to the PV, at the track’s distance of closest

approach to the PV. The IP is negative, if the track crosses the jet axis on the

opposite side of the PV with respect to the jet. There are five tools available at DØ

to identify (‘tag’) whether a jet was produced from a b or not. Three use lifetime

information, one uses lepton information, and the fifth is a NN based b-tagging tool.

The NN b-tagging tool, which was developed as part of this thesis, is now the official

DØ b-tagger and is outlined in detail in Chapter 4. There follows a brief description

of the other four b-tagging tools:

Counting Signed Impact Parameters (CSIP) Tagger [48] - Counts the num-

ber of tracks identified in a jet (tracks are matched to jets if they have a

dR < 0.5) which have a large IP significance4 with respect to the primary ver-

tex. Events must have at least 3 tracks with an IP significance greater than 2

or 2 tracks with an IP significance greater than 3 to be considered tagged.

3A b-jet will decay semi-leptonically ∼ 10% of the time.
4The significance of a measurement is defined as the measurement divided by its error.
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Jet Lifetime Probability (JLIP) Tagger [49] - Combines the impact parame-

ter information from all the tracks identified in a jet into one variable called

the Jet Lifetime Probability (JLIP Prob). JLIP Prob is the probability that

all tracks originate from the primary vertex. The closer to zero the more likely

that the jet originated from a b. The current operating points for the tagger

range from 0.002 (Very Tight5) to 0.04 (Super Loose6).

Secondary Vertex Tag (SVT) Tagger [50] - Uses tracks which are significantly

displaced from the primary vertex to reconstruct secondary vertices (SV). A

jet is considered tagged if a secondary vertex is located within dR < 0.5 of the

jet. Cuts on the decay length significance (DLS) of secondary vertices range

from 5 (Loose) to 7 (Tight).

Soft Lepton Tag (SLT) Tagger [51] - A jet is tagged if a muon is matched to

the jet within dR< 0.5.

Figure 2.9: The different characteristics used to identify b-jets: a displaced secondary vertex,
displaced tracks with large impact parameters and high pT leptons.

5Very Tight: Low b-efficiency, low fake rate.
6Super Loose: High b-efficiency, high fake rate.
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Chapter 3

Level 3 Trigger

3.1 Introduction

This chapter records the Level 3 (L3) trigger work undertaken as part of this thesis.

Section 3.2 describes the L3 tools used. Section 3.3 describes improvements to the

tracking, Section 3.4 covers the development of the new L3 trigger terms for the

Higgs multi-jet triggers and Section 3.5 discusses a new secondary vertex tagger

(SVT) b-tagging tool. The author is solely responsible for the work documented in

Sections 3.3 and 3.4; Section 3.5 was carried out with assistance from a fellow PhD

student.

3.2 Tools

3.2.1 Unpacking Tools

Unpacking tools read in the raw data and convert them into a form usable by the

L3 ‘physics’ tools, which reconstruct physics objects in the detector. L3 unpacking

tools exist for the SMT, CFT, calorimeter, pre-shower and muon detectors.

3.2.2 Tracking

The SMT [52, 53] and CFT [54] unpacking tools read in the raw data from the SMT

and CFT sub-detectors and construct clusters which are used to reconstruct tracks.

The position of a cluster represents a point where a charged particle passed through

the detector. At L3 clusters are constructed in the x-y (axial) and z (stereo) planes.

Clusters in the SMT are formed by joining together consecutive ‘hit’ strips in

the detector. Strips are considered ‘hit’ if, after pedestal subtraction, they have an
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ADC count above the predefined strip threshold. Clusters are kept if their total

ADC count is above a predefined cluster threshold. The position of a cluster is

calculated from the weighted mean of the strip positions with the strips weighted

by their charge.

In the CFT clusters are formed by joining together consecutive fibres which,

after pedestal subtraction, have an ADC count above a predefined fibre threshold.

Clusters are kept if their total ADC count is above the predefined cluster threshold.

The position of a cluster is calculated from the weighted mean of the fibre positions

with the fibres weighted by their light yield.

The tracking tool [55, 56] uses clusters from the SMT and CFT unpacking tools

to reconstruct tracks. The tracking tool has a very tight time budget and is limited

to ∼ 100 ms/event. Consequently the L3 tracking tool is simpler than the tracking

in the offline reconstruction code.

The tracking algorithm first searches for axial tracks. Potential tracks are created

between all pairs of hits in the outer two layers of the CFT and the tracks are kept

if they have a pT greater than a predefined threshold. The potential tracks are

propagated through the remaining axial layers of the CFT and SMT identifying

clusters consistent with the track’s predicted position at each layer. New potential

tracks are created for each potential cluster if the addition of the cluster increases

the χ2 of the track by less than 10. Any track which has missed more than 1

layer is discarded. Of the remaining tracks only the 3 or 4 tracks (depending on

the layer) with the best quality are kept. After all the layers have been traversed

the tracks which share more than 2 hits are identified and the worst quality track

discarded. The axial tracking parameters are calculated using a simplified circle

fitting algorithm [57].

Stereo tracking is carried out for each axial track using a fast histogramming

method based on the Hough transformation [38]. Any stereo cluster lies on an

infinite number of possible stereo tracks. If the parameters of all these potential

tracks are plotted in Z0 − tanλ1 phase space, they will map out a straight line of

all the possible parameter values a line through that cluster could take; this line

is referred to here as a ‘parameter line’. The parameter lines from all the stereo

clusters of a track will intersect at the point which represents the stereo parameters

of the track. A quick method to find the point of intersection of several parameter

lines is to fill a 2 dimensional histogram with the parameter lines from all the stereo

clusters associated to an axial track. The most populated bin in the histogram

1Z0 and tanλ are the two parameters which describe a helix shaped track in the z direction.
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will normally correspond to the parameters of the correct stereo track. The stereo

clusters in that bin are then used in a fast linear sequential fitter to calculate the

best stereo track fit.

Due to the simplified algorithm used at L3 the tracking is less accurate, efficient

and pure than the offline tracking tool; however it does run one hundred times faster.

3.2.3 Vertexing

The vertexing tool [58] uses the tracks to reconstruct the hard scatter primary vertex

(PV). The z-vertex is reconstructed first by binning the z values of all the tracks

at the distance of closest approach to (0,0) in a pT weighted histogram. The z

value of the PV is determined using the tracks in the two adjacent bins with the

highest population. Tracks which are consistent with the z-vertex are then used

in an impact parameter (IP) minimisation technique, using the beam spot as an

additional constraint, to calculate the most probable location of the x − y vertex.

The vertexing has a resolution of ∼44 µm in x-y and ∼1.9 mm in z.

3.2.4 Jets

The jet tool [59] uses calorimeter clusters from the calorimeter clustering tool [60]

to construct 0.5 radius cone jets. The jets are similar to the offline reconstructed

jets [61] but constructed without jet splitting/merging to save time.

3.2.5 Impact Parameter b-tagging Tool

The IP b-tagging tool [62] uses the jets, tracks and PV as inputs to calculate track, jet

and event probabilities based upon the signed IPs of the tracks. The IP significance

of each track in a jet is combined into a jet probability, and the jet probabilities are

combined into an overall event probability. The event probability is the probability

that all the jets originated at the PV: a value of 0 indicates that it is highly likely

that there is one or more b-jets in the event, a value of 1 that it is highly unlikely.

In addition to the IP b-tagging tool, a low pT track IP filter also exists which

allows triggering on individual tracks to identify low pT B physics events [63].

3.2.6 Muons

The L3 muon reconstruction code [64] is very similar to the offline muon reconstruc-

tion code [47], although fewer potential tracks in the muon detector are tested to

reduce the time taken. The various muon classifications are detailed below:
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Loose - Two out of the three following conditions are required:

Condition 1: 2 or more wire hits or at least one scintillator hit in the A-layer.

Condition 2: Two or more wire hits in the BC-layer

Condition 3: One or more scintillator hits in the BC-layer.

Medium - At least one wire and one scintillator hit in the A-layer and at least

two wire and one scintillator hits in the BC-layer.

Tight - At least two wire and one scintillator hit in the A-layer and at least two

wire and one scintillator hits in the BC-layer.

3.3 Tracking and SMT Studies

The tracking is a vital component of the trigger. The vertexing, b-tagging, lepton

and jet finding tools all make use of the tracking, and almost all the physics triggers

make use of at least one of these tools. Monitoring and improving the performance

of the tracking tool is therefore an extremely important aspect of the work of the

L3 algorithms group.

The author conducted studies into measuring, comparing and bench marking

the performance of the tracking tool on data; these studies are briefly mentioned

in Section 3.3.1. As a result of these studies it was found that the tracking tool’s

performance and the track quality (due to wrongly assigned SMT hits and a generally

low number of SMT clusters per track) needed improving. The author’s work in this

area centred on studying the SMT unpacking tool and comparing its performance

to the offline SMT clustering. The studies resulted in the identification of several

problems and potential improvements. The author carried out the implementation

of the fixes and improvements in early 2004, and they were approved by the Level

3 group. The new version of the L3 SMT unpacking tool was approved for use in

June 2004. These studies are outlined in Section 3.3.2.

3.3.1 Measurement of the Tracking Performance

The performance of a tracking tool can easily be measured on Monte Carlo (MC)

as the found tracks can be compared to the ‘truth’ tracks. However the tracking

performance measured in MC tends to be over-optimistic in the number and quality

of the found tracks; additionally the MC does not replicate many of the effects

seen with data. It was therefore necessary to develop a method to measure and

benchmark the tracking tool on data.
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The most accurate tracking information available for data is the offline tracks,

these were used as the ‘truth’ tracks with respect to which the L3 efficiency and

purity were measured. The L3 tracks were ‘matched’ to the offline tracks using two

different methods.

The first method compares the online and offline CFT and SMT clusters assigned

to the tracks. If clusters share a majority of the same strips or fibres, then the

clusters are considered to be matched. The online track which shares the most

clusters with an offline track is considered ‘matched’ to it. Tracks which share more

than 8 axial CFT and 2 axial SMT hits are considered to be a ‘good’ match. This

matching method was primarily used to diagnose problems with the L3 tracking and

the clustering by directly comparing the clusters the L3 and offline tracks shared.

The second method compares the five track parameters which describe a track’s

helix shape. A cut of 15 on the χ2 agreement of the five tracking parameters is used

to decide whether a L3 track is a ‘good’ match to an offline track or not. All other

matched tracks are considered ‘bad’ matches and those not matched at all ‘fake’

tracks. The χ2 matching was used to measure the performance of the tracking.

There are hence three categories of tracks:

‘Good’ Matched Tracks - L3 tracks which are matched to an offline track.

‘Bad’ Matched Tracks - L3 tracks which are the best match to an offline track,

but which fail the ‘good’ matching criteria.

‘Fake’ Tracks - L3 tracks which are not matched to any offline tracks.

The efficiency of the L3 tracking is defined as:

Efficiency =
Number of Good Matched L3 Tracks

Number of Offline Tracks
(3.1)

and the purity as:

Purity =
Number of Good and Bad Matched L3 Tracks

Total Number of L3 Tracks
. (3.2)

3.3.2 SMT Problems

SMT cluster and tracking comparisons were carried out using data run 189917 which

is marked as ‘good’ in the runs quality database [65] for all the detector subsystems

and was recorded at an instantaneous luminosity of ∼ 25 × 1030 cm−2s−1.

Comparisons of the performance of the L3 tracking tool and the offline tracking

tool revealed several problems. Figure 3.1 shows the number of offline and L3 axial
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and stereo SMT clusters associated with each track. The L3 tracks typically had

fewer clusters associated with each track. This is most apparent in the case of the

stereo clusters where the L3 tracks had only ∼ 40% of the number of clusters of

the offline tracks. Additionally, L3 and offline tracks which share 8 CFT clusters

regularly had different SMT hits assigned to the tracks resulting in large discrepan-

cies between the L3 and offline tracking parameters. The most likely explanation

for these differences was a problem with either the L3 tracking, the clustering or

both. A comparison of the number of clusters found per event is shown in Fig. 3.2.

A large difference existed between the old L3 and offline clustering. The differences

and their causes are discussed in the following sections along with other clustering

issues and improvements implemented in the L3 SMT unpacking tool.
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Figure 3.1: For data run 189917 the number of axial (left) and stereo (right) SMT clusters
assigned to the L3 (green) and offline (red) tracking tools. The distributions were normalised to

be of equal integral.

Number of Clusters per Event
0 500 1000 1500 2000 25000

50

100

150

200

250

Offline Clusters

Mean: 791.32

L3 Clusters

Mean: 560.85

Number of Clusters per Event
0 500 1000 1500 2000 25000

50

100

150

200

250

300

350

Offline Clusters

Mean: 537.63

L3 Clusters

Mean: 403.76

Figure 3.2: For data run 189917 the number of axial clusters (left) and stereo clusters (right)
found by the L3 (green) and offline (red) SMT unpacking tools.

3.3.2.1 ‘Hot’ Silicon Vertex Chips

The old L3 SMT unpacking tool regularly found 180+ clusters in some ladders,

whereas the offline clustering would find only a couple of clusters. This problem was
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found to be due to malfunctions in the silicon vertex (SVX) chips, which read-out

the SMT detector, resulting in the majority of the SMT strips being registered as

‘hit’.

The number of hit strips per SVX chip is shown in Fig. 3.3 for data run 189917.

The vast majority of SVX chips have a low hit occupancy. However, a small number

of chips have a high occupancy, with the peak at 128 corresponding to SVX chips

which have registered every strip as being hit. These problematic SVX chips will

result in hundreds of (most probably fake) extra clusters if they are not discarded.

This problem had been identified and fixed by the offline clustering group, but

the fix had not been propagated into the L3 SMT clustering code. The offline

clustering group defined any SVX chip with > 25% occupancy in an event as a ‘hot’

chip, which should be rejected for that event only. This cut was also implemented

in the L3 SMT unpacker.

The total number of clusters per event due to ‘hot’ SVX chips is shown in Fig. 3.4.

An average of ∼340 fake clusters per event are found in the data sample due to ‘hot’

SVX chips, this is almost a third of the average number of clusters per event (∼1000).
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Figure 3.3: The number of hit strips in each SVX chip (left) and on a log scale (right) for 2500
events from data run 189917. Each SVX chip reads out 128 strips.
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Figure 3.4: The number of clusters per event found due to ‘hot’ SVX chips.
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3.3.2.2 Pedestal Values

The L3 unpacking code found fewer clusters than the offline code. This was partly

due to the higher strip and cluster thresholds. The thresholds used in the L3 un-

packing code were therefore loosened, to increase the strip and cluster acceptance,

by measuring the efficiency whilst maintaining a reasonable purity. The new thresh-

old cuts are given in Table 3.1. The new cuts are set slightly looser than the offline

code.

SMT Unpacker
Threshold (ADC)

Channel Cluster

Old L3 10 10

L3 7 9

Offline 8 10

Table 3.1: The threshold cuts used in the old L3, new L3 and offline SMT unpacking tools.

3.3.2.3 Merging Clusters

Due to hardware problems and radiation damage various strips in the SMT are

‘dead’ (pedestal less than 10 ADC counts) or ‘noisy’ (pedestal RMS more than 6

ADC counts). These strips are marked as such in the SMT calibration database,

and any hits marked as ‘dead’ or ‘noisy’ have their ADC pedestal set to 999 to mask

any output from the strip.

To account for ‘noisy’ and ‘dead’ strips, the old L3 SMT unpacker merged any two

strips which were separated by an unhit strip. The new SMT unpacker takes a more

sophisticated approach and only merges two strips together if they are separated by

a ‘dead’ or ‘noisy’ strip. An example of this situation is shown in Fig. 3.5, which

shows 5 consecutive strips in the SMT detector. The distribution of the number

of clusters per event which contain a dead strip when using the new algorithm is

shown in Fig. 3.6. The average number of affected clusters is ∼ 6, which compared

to the total number of clusters (∼ 1500) is negligible. However, this algorithm will

become more important as the SMT detector degrades due to radiation damage.

3.3.2.4 Splitting Clusters

Clusters of multiple strips may actually be overlapping clusters. The old L3 SMT

unpacker would just consider overlapping clusters as one long cluster, with a cluster

position somewhere in between the two actual clusters. A splitting algorithm was
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Figure 3.5: An example from a data event of consecutive strips in the SMT detector, all of which
registered a hit except strip 2 which is a ‘dead’ or ‘noisy’ strip.
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Figure 3.6: The number of merged clusters which contain a ‘dead’ or ‘noisy’ strip per event,
based on 2500 events.

therefore developed and implemented in the L3 SMT clustering which identifies

merged clusters and splits them into their component clusters.

The splitting algorithm is applied to any cluster which is constructed from 2 or

more strips. Each strip is considered in turn and assigned to a ‘level’. The ‘level’

is a number assigned to a group of strips which do not deviate by more than the

average strip noise (± 2.2 ADC counts [66, 67]). If a strip deviates by more than

this from the first strip in that level, then the strip is considered to be in the level

above or the level below. This is repeated for each strip in the cluster, until they

have all been assigned to a level.

Once the strips are divided into different levels, the numbers and locations of

the peaks and troughs (if any) are identified. A peak is a level which is higher

than both its neighbouring levels; a trough is a level which is lower than both its

neighbouring levels. Levels at the beginning or end of a cluster only need to be

higher or lower than their one neighbouring level. If there is more than one peak in

the cluster then the cluster is divided up into smaller clusters. The strips found in

the trough between two peaks are considered to be the dividing point between the
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two clusters. If there are an even number of strips in the trough then the strips are

divided equally between the two clusters. If there is an odd number of strips then

the middle strip is divided into two with both clusters getting one strip with half

the ADC count. Figure 3.7 shows an eleven strip cluster which has been divided

into three clusters by the algorithm.

The total number of new clusters per event created due to the splitting algorithm

is shown in Fig. 3.8, along with the number of clusters each split cluster was divided

into. The average number of clusters created from splitting merged clusters is 126

per event, this equates to an additional ∼ 76 clusters per event. The majority of

split clusters form two new clusters.

3.3.2.5 SMT Cluster Errors

The old L3 SMT cluster errors were determined from a tt̄ MC sample by examining

the cluster residuals, namely the distance between the found cluster and the MC

‘truth’ cluster [53]. However as these errors were measured on MC samples they

were an underestimate of the error on the cluster’s position. The inaccurate errors

assigned to the cluster’s position was found to be one of the main contributions to

the low number of SMT hits per track when compared to the offline tracks.

New errors were measured by examining the residuals between the cluster and

L3 tracks in data run 189917, as shown in Fig. 3.9 for axial and stereo clusters for

a selection of ‘good’ matched tracks.

The half width half maximum of the residual distributions was used to assign

errors to the SMT clusters. The old and new errors are shown in Table 3.2. The

new axial errors are a factor of ∼3 larger, and the stereo errors a factor of ∼7 larger.

The new errors are a measurement of the spread of the SMT clusters around the

tracks. The measured uncertainties contain a component from the displacement of

the clusters with respect to their true position and a component from the simplified

L3 tracking circle fit which will cause an additional displacement between the track

and cluster positions.

L3 Unpacking Tool
Error (µm)

Axial Stereo

Old 7.5 20

New 20 150

Table 3.2: The errors assigned to the SMT hits in the new and old versions of the L3 SMT
unpacking tool.
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Figure 3.7: An example from a data event of consecutive strips in the SMT detector which are
divided by the splitting algorithm. Three distinct peaks are found at strips 2, 5+6 and 8+9, and
two troughs are found at 3+4 and 7. The large cluster is therefore split into 3 smaller clusters
corresponding to the three peaks. The strips in the troughs are split amongst the clusters. The
first cluster gets strip 3 and the second strip 4. The second and third clusters both get half of strip

7.
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Figure 3.8: The number of clusters per event created by cluster splitting (left) and the number
of clusters each split cluster produces (right) based on 2500 events.
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Figure 3.9: The residuals between the L3 tracks and the closest L3 cluster for the axial layers
(left) and the stereo layers (right). The tracks were all required to have 8 CFT and at least 2 SMT

hits matched to an offline track.

3.3.3 Results

3.3.3.1 Number of Clusters

The numbers of clusters found by the offline, the old L3 and the new L3 SMT un-

packing tools are shown in Fig. 3.10. The number of clusters found by the new L3

SMT unpacking tool is now in much better agreement with the number found by the

offline unpacking tool. The new clustering code actually finds slightly more clusters

than the offline code due to the lower ADC threshold cuts and the splitting algo-

rithm, which had no equivalent in the offline code. The cluster splitting algorithm

has since been implemented in the offline clustering code.

3.3.3.2 Tracking

The efficiency and purity of the L3 tracking tool when using the old and new SMT

unpacking tools is shown in Fig. 3.11. Both the tracking efficiency and purity are

improved using the new L3 SMT unpacking tool. Absolute gains in efficiency of

∼5% and in purity of ∼1 – 2% at low pT increasing up to ∼ 8% at high pT are

achieved. The L3 tracking efficiency and purity both fall with increasing pT , the

reasons for this are still under investigation. The fall in efficiency is thought to be

partly a consequence of the efficiency being derived from a comparison to the offline

tracks. The high pT tracks in data found by both trackers have a higher proportion

of fake tracks than compared to the low pT region, and the fake tracks found by the

trackers are different due to the different fitting and track finding algorithm used.

As the L3 tracking efficiency is calculated with respect to the offline tracks this leads

to an apparent drop in efficiency.

Figure 3.12 shows the number of axial and stereo clusters associated with ‘good’

matched L3 tracks for the old and new unpacking tool. Increases of ∼ 10% and
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Figure 3.10: The number of axial clusters (top) and stereo clusters (bottom) per event found by
the old L3 (blue), offline (red) and new L3 (green) SMT unpacking tools.
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Figure 3.11: The track efficiency (left) and purity (right) found with the old L3 (red) and new
L3 (green) SMT unpacking tools.

∼ 70% in the number of axial and stereo clusters per track is achieved using the

new L3 unpacking tool. As the new unpacker significantly increases the number

of clusters associated with ‘good’ matched tracks, this adds confidence that the

additional clusters are genuine.
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Figure 3.12: The number of axial (left) and stereo (right) SMT clusters associated with ‘good’
matched tracks (at least 8 CFT and 2 SMT clusters matched with an offline track) found using

the old L3 (green) and new L3 (red) SMT unpacking tools.

3.3.3.3 Tool Times

Due to the limited time available at L3, the amount of time each tool takes to run

needs to be carefully studied. Timing tests are carefully conducted on the same

machine and under the same conditions to ensure consistency between different

timing measurements - in this case a 2.4 GHz Linux machine with no other jobs

running. The timing results are shown in Table 3.3 and in Fig. 3.13. The new L3
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unpacking tool takes longer than the old tool due to the lower thresholds and the

splitting algorithm. The increase in time taken is at a reasonable level and is an

acceptable increase given the gain in the performance and quality of the tracking.

Tool
Timing (ms)

Old New

SMT Unpacker 9.0 14.0

Tracker 10.2 9.6

Table 3.3: The times measured for each component of the tracking before and after the upgrade
of the L3 SMT unpacking tool. Errors on timing tests were estimated to be ∼ 10% from repeated

measurements.
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Figure 3.13: The timing distributions, in milliseconds, for the SMT unpacking tool (left) and the
tracking tool (right) over 2500 events, when using the old (red) and new (green) SMT unpacking

tools.

3.3.4 Conclusion

Studies into the L3 tracking efficiency and quality revealed problems with the L3

SMT clustering. Several improvements and fixes were implemented in the unpacking

tool, namely: new pedestal thresholds, cluster errors, splitting and merging algo-

rithms and ‘hot’ SVX chip protection. The improvements substantially increased

the purity, efficiency and quality of the L3 tracks.

3.4 SUSY Higgs Trigger Development

3.4.1 Introduction

Triggers are arguably the first and most important (as they are irreversible) set of

analysis cuts. A trigger which can efficiently select the signature of interest whilst
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minimising the acceptance of background events is therefore one of the most vital

components of any analysis at a hadron collider. This section covers the development

of the triggers for the multi-jet MSSM Higgs analysis. This multi-jet analysis is a

search for the associated production of a Higgs with a b-quark, where the Higgs

decays to bb̄ resulting in a final state including 3 or more b-jets (see Section 5.1.1

for further details of this channel). The trigger is designed to select hb → bbb events

whilst rejecting multi-jet QCD background.

This trigger study was conducted at the beginning of 2004, when two basic

Higgs multi-jet triggers were running online as part of version 12 (v12) of the trig-

gerlist. The v12 triggers were designed to cope with average luminosities of around

∼ 15 × 1030 cm−2s−1 and have a rate of ∼ 1.5 Hz. Instantaneous luminosities aver-

aging ∼ 60 × 1030 cm−2s−1 were expected by summer 2004. The triggers therefore

needed upgrading to achieve a factor of 4 extra rejection to stay within their in-

dividual bandwidth allowance of ∼1.5 Hz averaged over the full range of expected

luminosities; preferably whilst maintaining or improving the current signal efficiency.

This study outlines the L3 trigger work the author carried out to improve the trig-

gers to cope with the new high luminosity environment; the new triggers started

running online in the summer of 2004 in version 13 (v13) of the triggerlist.

3.4.1.1 Historical hb Triggers

Data have been collected with three different generations of the hb multi-jet trigger,

referred to as versions v9/10, v11 and v12. The triggers have become increasingly

sophisticated as greater rejection has been required due to the increasing instanta-

neous luminosities.

The lowest level, L1, constructs calorimeter jet towers (CJT) which are charac-

terised by the sum of the transverse energy (ET ) in 0.2 × 0.2 ∆φ vs ∆η cells in the

calorimeter. The L1 trigger counts the number of CJTs with ET above a predefined

threshold, from examining all the CJTs in an event. The L1 trigger then cuts on

the number of CJTs fulfilling the predefined ET criteria.

The second level, L2, constructs simple jets from 5×5 CJT grids centred around

seed CJTs which have ET above a predefined threshold; the jets stay centred on

the seed tower and are not allowed to move. Depending on the number of shared

towers (also set by a predefined threshold), overlapping L2 jets or either classified

as separate jets or only the highest ET tower is kept. The L2 triggers cut on the

number of jets with ET above a threshold and on the the total scalar sum of the ET

of the jets, HT .
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The highest trigger level, L3, constructs jets using a simple cone algorithm using

a radius of either 0.5 (SC5) or 0.7 (SC7). Triggers cut on the ET and HT of the jets.

A terminology is adapted for the L3 jets of JT(n,c) where n is the number of jets

and c is the energy threshold.

In v11 and v12 the requirement of a PV with |z| < 35 cm was added at L3. This

cut ensures only events which are within the fiducial range of the SMT are selected,

and provides additional background rejection for a negligible loss in efficiency.

In v12 of the triggerlist a ‘Muon’ branch was introduced to complement the ‘Jet’

branch. The ‘Muon’ branch has the additional requirement of a L2 muon, taking

advantage of the fact that a b-jet has a 10% probability of decaying into a high pT

muon whereas < 1% of light jets will [51]. The extra rejection gained from a muon

requirement can then be used to loosen the L3 jet cuts. A terminology is adapted for

the L3 Muons of MU(n,q,c) where n is the number, q is the quality (loose, medium

or tight) and c is the pT cut on the muon.

The three generations of the hb multi-jet trigger are outlined below:

Triggerlist - v9/10

Name - 3JT15

L1 - 4 CJT with ET > 5 GeV

L2 - 3 L2 Jets with ET > 8 GeV and HT > 50 GeV constructed using jets with

ET > 5 GeV

L3 - 3 SC7 L3 Jets with ET > 15 GeV and |η| < 3

Triggerlist - v11

Name - 3JT15 PV ‘Jet’ Branch

L1 - 3 CJT with ET > 5 GeV

L2 - 3 L2 Jets with ET > 8 GeV and HT > 50 GeV constructed using jets with

ET > 5 GeV

L3 - 3 SC7 L3 Jets with ET > 15 GeV, 2 with ET > 25 GeV and all with

|η| < 3, and a PV with |z| < 35 cm

Name - 3JT15 L2L0 PV ‘Muon’ Branch

L1 - 3 CJT with ET > 5 GeV
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L2 - 3 L2 Jets with ET > 8 GeV, HT > 50 GeV constructed using jets with

ET > 5 GeV and a Loose L2 Muon

L3 - 3 SC7 L3 Jets with ET > 15 GeV and |η| < 3, and a PV with |z| < 35 cm

Triggerlist - v12 ‘Jet’ Branch

Name - 3JT15 2J25 PV

L1 - 3 CJT with ET > 5 GeV

L2 - 3 L2 Jets with ET > 8 GeV and HT > 50 GeV constructed using jets with

ET > 5 GeV

L3 - 3 SC5 L3 Jets with ET > 15 GeV, 2 with ET > 25 GeV and all with

|η| < 3, and a PV with |z| < 35 cm

Name - 3JT15 PV ‘Muon’ Branch

L1 - 3 CJT with ET > 5 GeV

L2 - 3 L2 Jets with ET > 8 GeV, HT > 50 GeV constructed using jets with

ET > 5 GeV and a Loose L2 Muon with no pT cut

L3 - 3 SC5 L3 Jets with ET > 15 GeV and |η| < 3, and a PV with |z| < 35 cm

3.4.2 Trigger Development

Trigger development is a delicate balance between several considerations: the signal

efficiency, the rate and available bandwidth for the trigger, the evolution of the

instantaneous luminosity and any resulting pre-scales which may be applied to the

triggers, and the overlap between different triggers.

3.4.2.1 Level 1 and Level 2 Trigger Development

The total number of L1 trigger bits and the total bandwidth available at L1 is

limited. L1 trigger bits are therefore shared between physics channels with similar

topologies. Each L1 trigger term is agreed upon by the various analyses whose

triggers will branch from the L1 trigger term. The final decision is taken by the

Trigger Board who make the final decision on all trigger related matters [68]. Their

considerations are based upon the total bandwidth available, the evolution of the

instantaneous luminosities and the Collaboration’s physics goals and priorities.



3.4 SUSY Higgs Trigger Development 75

The triggers used in the hb analysis share L1 trigger terms with other multi-jet

topologies, such as ZH → ννbb̄ and tt̄ all of which have at least 2 jets and no

charged leptons in the final state. For the v13 triggerlist a new L1 trigger term for

the multi-jet events of 2 CJT with ET > 5 GeV and |η| < 2.6, and 3 CJT with

ET < 4 GeV and |η| < 3.2 was introduced. The new L1 term increases the signal

efficiencies for all the channels whilst remaining within the L1 bandwidth restraint

of ∼5 kHz. Due to the looser L1 requirements the L2 trigger requirements needed

redesigning to remain within the L2 constraints. Two new L2 trigger terms were

developed after a detailed optimisation [69]. The optimal ‘Jet’ branch trigger cuts

were selected as 3 L2 jets with ET > 6 GeV and a HT > 60 GeV cut constructed

from jets with ET > 6 GeV. The optimal ‘Muon’ branch trigger cuts were selected

as HT > 60 GeV with a Loose L2 muon with no pT cut.

3.4.2.2 Level 3 Trigger Development

Signal Efficiency: The trigger efficiency is defined as:

Efficiency =
Number of L1L2L3 Triggered Events

Number of L1L2 Triggered Events
, (3.3)

where L1L2 refers to events which have passed the L1 and L2 trigger condi-

tions and L1L2L3 refers to events which have passed the L1, L2 and L3 trigger

conditions. The signal efficiency is measured relative to the number of events with

three offline jets with ET > 8 GeV, which represents the minimum offline analysis

criteria. Trigger efficiencies are measured relative to the loosest possible analysis

criteria, as opposed to using the tighter final analysis cuts, to minimise any bias

during development.

The efficiencies were measured using 24000 hb → bbb Pythia [70] MC events with

a Higgs mass, mh = 100 GeV, which is the lowest mh considered in the hb analysis.

The mass of the Higgs particle is unknown, and so a Higgs trigger has to be designed

to work effectively for a range of Higgs masses. It is preferable to optimise a Higgs

trigger for the lowest potential Higgs mass, as on average these events have the

softest spectrum, and correspondingly need the loosest cuts. A trigger optimised

for the lowest Higgs mass will work more effectively for higher Higgs mass points as

they have a harder spectrum [71].

Background Rejection: The background rejection efficiency is defined as:

Rejection Efficiency = 1 − Number of L1L2L3 Triggered Events

Number of L1L2 Triggered Events
. (3.4)
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The rejection was measured on data, as MC is not an entirely realistic repre-

sentation of the background data, assuming that there is a negligible contribution

from any actual signal. ‘Special Runs’, taken using the finalised L1L2 trigger list

with no L3 terms, were used to measure the final trigger rate. The trigger rate was

measured at the instantaneous luminosity of the ‘Special Run’, and was given by:

Rate = L1L2 Rate × Number of L1L2L3 events

Number of L1L2 events
(3.5)

where the L1L2 Rate is the trigger rate for the L1L2 trigger terms measured in

the ‘Special Run’. The rates and background rejection are measured on run 191322

which was taken at an instantaneous luminosity of 60 × 1030 cm−2s−1.

Trigger Development Strategy: The desired extra rejection was achieved in

both trigger branches by using new tools which provided a more powerful handle on

background rejection; any extra rejection above the desired level was used to loosen

the other cuts.

As the extra trigger requirements lead to a loss of efficiency, the second part of

the strategy was to consider the joint efficiency of the ‘Jet’ and ‘Muon’ branches

to ensure that the overall efficiency was maintained or even improved. The v12

triggers had a 100% overlap in the L3 trigger terms, leading to a large replication

in triggered signal events. Making the v13 triggers sufficiently different reduced this

overlap, and allowed a higher joint efficiency, even though each trigger had a lower

individual efficiency compared to the v12 triggers.

The ‘Jet’ branch gained extra rejection by requiring a b-jet using the L3 IP

b-tagging tool. The v12 trigger had no b-jet requirement and so significant gains

were possible as the signal consists of at least three b-jets and the majority of the

background consists of light-jets. The ‘Muon’ branch trigger, which already required

a L2 muon, used the additional requirement of a L3 muon to gain the extra rejection.

The efficiency and rejection given by various L3 variables were examined in order

of discriminating power. For the ‘Jet’ branch, the L3 IP b-tag cut was examined

first, followed by the ET cut on the 1st, 2nd and 3rd leading jets. For the ‘Muon’

branch the L3 Muon pT cut was optimised first, followed by the ET cut on the

1st, 2nd and 3rd leading jets. The final trigger cuts were selected by scanning all the

possible different cut combinations and selecting those which produced the necessary

rejection with the highest joint trigger efficiency.



3.4 SUSY Higgs Trigger Development 77

3.4.2.3 ‘Jet’ Branch

The signal and background rejection efficiencies of the L3 IP b-tagging tool relative

to events which have passed the L1L2 trigger conditions are shown in Fig. 3.14.

The L3 IP b-tagging tool is a very powerful tool and a large background rejection is

possible for a minimal loss in efficiency. A L3 IP b-tag < 0.05 (IP(0.05)) cuts 90%

of the background events whilst maintaining a signal efficiency of > 80%.
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Figure 3.14: Left: The L3 IP b-tag distribution for the hb signal sample (green) and the back-
ground (red). Right: The signal (green circles) and background (red squares) efficiencies as a

function of the L3 IP b-tag cut. The black dotted lines are at a cut value of 0.05.

The signal and background efficiencies of the 1st, 2nd and 3rd leading jets relative

to the number of events which have passed the L1L2 and L3 IP(0.05) cuts are

shown in Fig. 3.15. The signal jets have a harder ET spectrum than the background

jets. This allows background events to be rejected by cutting on the jet’s ET without

hurting the signal efficiency. However not much can be gained by altering the current

jet cuts (25, 25 and 15 GeV respectively).

3.4.2.4 ‘Muon’ Branch

The signal and background rejection efficiencies for various L3 muon pT cuts, relative

to the number of events which have passed the L1L2 trigger conditions, are shown

in Fig. 3.16. By requiring a Loose L3 muon, a background rejection efficiency of
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Figure 3.15: Left: The 1st (top), 2nd (middle) and 3rd (bottom) leading jet ET for the hb signal
sample (green) and the background (red). Right: The trigger efficiencies for signal (green circles)
and background (red squares) as a function of the jet ET cut on the 1st (top), 2nd (middle) and
3rd (bottom) leading jets after the L1L2 cuts and a L3 b-tag IP cut < 0.05. The black dotted lines

are at the v12 cut values.
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∼ 90% is achieved at the expense of ∼ 45% drop in the signal efficiency. The large

rejection achieved by the L3 muon can be used to loosen the L3 jet cuts to recover

some of the lost efficiency. A ‘Loose’ muon is one which has passed through the

iron toroid, and so will therefore most likely have pT > 3 GeV, which is the optimal

threshold.
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Figure 3.16: Left: The L3 Loose muon pT distribution in the hb signal sample (green) and the
background (red), before (top) and after (bottom) requiring a Loose L3 muon. Right: The signal
(green circles) and background (red squares) efficiencies as a function of the L3 muon pT cut before
(top) and after (bottom) requiring a Loose L3 muon. The black dotted lines are at a cut value of

3.0 GeV.

The signal and background rejection efficiencies for various ET cuts on the 1st,

2nd and 3rd leading L3 jets, relative to the number of events which have passed the

L1L2 and Loose L3 Muon pT > 3 GeV cuts, are shown in Fig. 3.17. Signal jets

have a harder ET spectrum than the background jets. This allows background to

be rejected by cutting on the jet’s ET , whilst not hurting the signal efficiency. The

current cut of 15 GeV on each of the 3 leading L3 jets does not cut hard enough

on the leading jet and cuts too hard on the 3rd leading jet. Rejection gained by

tightening the cut on the first leading jet can therefore be used to lower the cut

on the 3rd leading jet, which is currently rejecting approximately a third of the

signal. This will increase the signal efficiency whilst having a negligible effect on the

background rate.
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Figure 3.17: Left: The 1st (top), 2nd (middle) and 3rd (bottom) leading jet ET distributions
for the hb signal sample (green) and the background (red). Right: The trigger efficiencies for
signal (green circles) and background (red squares) as a function of the jet ET cut on the 1st

(top), 2nd (middle) and 3rd (bottom) leading jets, after the L1L2 cuts and a Loose L3 Muon with
pT > 3 GeV. The black dotted lines are at the v12 cut values.
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3.4.2.5 L3 Impact Parameter b-tagging Tool Data Tests

The L3 IP b-tagging tool had not been used in any triggers prior to these studies

and it was important that the tool was thoroughly tested on data. Various tests

were carried out on the L3 IP b-tagging tool to ensure that it functioned as expected

on data events. These tests were all carried out using a ‘special run’, run number

179621 which was recorded at a instantaneous luminosity of 13 × 1030 cm−2s−1,

which consists of high pT muon triggered data and is therefore b-enhanced. The

IP significance of the L3 tracks is shown in Fig. 3.18 for all jets (left) and for jets

from events with at least one offline JLIP Prob < 0.003 tag (right). The fit to the

negative IP significance is reflected into the positive IP significance distribution to

highlight the large excess of tracks with positive IP significance. A clear excess of

tracks with large positive IP significance is seen for those events with an offline JLIP

b-tag. This large excess demonstrates that the L3 tool is correctly identifying the

displaced tracks from b-jets.
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Figure 3.18: The L3 track IP (IP) significancies for all events (left) and for those with at least
one offline JLIP tag (right) in a b-enriched ‘special run’. The fit is a double exponential and a

gaussian.

The L3 IP probability for jets which pass an offline JLIP probability cut of 0.003,

0.01 and 0.02 are shown in Fig. 3.19. The L3 IP b-tagging tool either correctly tags

the jets (peak at 0) or does not have the necessary tracks (peak at 1). A L3 IP cut

of 0.05 has an efficiency of ∼ 60% for the tightest JLIP cut. The efficiency to tag

an offline JLIP tagged jet is shown in Fig. 3.20 (left) as a function of the L3 IP jet

probability. The single jet efficiencies can then be used to calculate the probability

to tag an event with three offline JLIP jets using the following equation:
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P 3
JLIP = 1 − (1 − P 1

JLIP )3 (3.6)

where P 1
JLIP is the probability to tag an offline tagged JLIP jet and P 3

JLIP is the

probability to tag an event with three offline tagged JLIP jets. The efficiency to

tag an event with three offline JLIP tags is shown in Fig. 3.20 (right). For a cut of

IP(0.05) the probability to tag an event with three JLIP(0.003) jets is estimated to

be > 90%.
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Figure 3.19: The L3 IP b-tagging tool output for jets which pass a JLIP probability cut of 0.003
(blue line), 0.01 (green line) and 0.02 (red line). The spike at one corresponds to jets with too few

tracks at L3 with which to calculate a b-tag.

L3 IP Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ff

ic
ie

n
cy

0

0.2

0.4

0.6

0.8

1

1.2

JLIP Probability < 0.003

JLIP Probability < 0.01

JLIP Probability < 0.02

L3 IP Probability
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ff

ic
ie

n
cy

0

0.2

0.4

0.6

0.8

1

1.2

JLIP Probability < 0.003

JLIP Probability < 0.01

JLIP Probability < 0.02

Figure 3.20: Left: The L3 IP b-tagging tool’s efficiency to tag jets which have a JLIP cut of
0.003 (blue line), 0.01 (green line) and 0.02 (red line). Right: The L3 IP b-tagging tool’s efficiency
to tag events which have three jets with JLIP cuts of 0.003 (blue line), 0.01 (green line) and 0.02

(red line).
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3.4.2.6 Final Trigger Selection

The final L3 trigger terms were selected by scanning all the possible cut combina-

tions, and selecting the triggers which gave the highest joint efficiency for individual

rates of 1.5 Hz. The final trigger selections for the ‘Jet’ and ‘muon’ triggers are

shown below:

Triggerlist - v13 ‘Jet’ Branch

Name - JT2 3JT15L IP VX

L1 - 2 CJT with ET > 5 GeV and 3 CJT with ET > 4 GeV with |η| < 2.4

L2 - 3 L2 Jets with ET > 6 GeV and HT > 70 GeV constructed with jets with

ET > 6 GeV

L3 - L3 IP b-tagging Prob < 0.05, 3 SC5 L3 Jets with ET > 15 GeV and |η| < 3,

2 with ET > 25 GeV and |η| < 3, and a PV with |z| < 35 cm

Triggerlist - v13 ‘Muon’ Branch

Name - JT3 3JT10L LM3 V

L1 - 2 CJT with ET > 5 GeV and 3 CJT with ET > 4 GeV with |η| < 2.4

L2 - HT > 30 GeV constructed with jets with ET > 6 GeV and a Loose L2 Muon

L3 - L3 Muon with pT > 3 GeV, 3 SC5 L3 Jets with ET > 15 GeV and |η| < 3,

1 with ET > 25 GeV and |η| < 3, and a PV with |z| < 35 cm

The signal efficiency versus rate for the ‘Jet’ branch of the trigger is shown in

Fig. 3.21 as the L3 conditions are varied. Each line represents a cut on a L3 tool after

previous cuts have been applied and the points along the line represent the different

cut values for that tool. The majority of the rejection at L3 comes from the L3 IP

b-tagging tool which reduces the rate from 113 Hz to 11 Hz, with a relative loss in

signal efficiency of only 10%. The cut on the 1st leading jet (red line) decreases the

rate to about 8 Hz with minimal loss of efficiency. The cut on the 2nd leading jet

(green line) results in a 10% relative loss in efficiency whilst decreasing the rate to

4 Hz. The cut on the 3rd leading jet (blue line) also results in a relative loss of 10%

in efficiency whilst decreasing the rate from 4 to 2 Hz.

The signal efficiency versus rate for the ‘muon’ branch of the trigger is shown in

Fig. 3.22 as the L3 conditions are varied. Each line represents a cut on a L3 tool
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Figure 3.21: The L1L2L3 signal efficiency of various trigger cuts versus the rate to tape at a
luminosity of 60×1030 cm−2s−1. Each line represents a cut on a L3 tool and the points along the

line represent the different cut values. The black star is the final trigger.

after the previous cuts have been applied, and each point represents a different cut

values for that tool. The majority of the rejection for the ‘muon’ branch comes from

the L3 Muon requirement (pink line) which reduces the rate from 15 Hz to 0.9 Hz,

with the efficiency decreasing from 14% to 7.4%. The cut on the 1st leading jet (red

line) decreases the rate to about 3 Hz with minimal loss of efficiency. The cut on

the 2nd leading jet (green line) has a minimal effect on either the efficiency or rate.

The cut on the 3rd leading jet (blue line and triangle points) cuts the rate from 3

Hz to 1 Hz and the efficiency from 7.2% to 6.2%.

3.4.3 Trigger Performance

The efficiencies of the triggers measured on the hb MC sample are shown in Table 3.4.

The new triggers have a joint efficiency which is ∼ 40% higher than the v12 triggers

whilst obtaining the necessary additional factor of 4 rejection for both triggers.

3.4.4 Online and Future Performance

The rate of the triggers running online for various instantaneous luminosities are

shown in Table 3.5, with both triggers having performed within their design goals.
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Figure 3.22: The L1L2L3 signal efficiency of various trigger cuts versus the rate to tape at a
luminosity of 60×1030 cm−2s−1. Each line represents a cut on a L3 tool and the points along the

line represent the different cut values. The black star is the final trigger.

Trigger
Trigger

Efficiency (%)

List L1 L2 L3 L1L2L3

v12

3JT15 PVZ 44.4±2.6 6.3±0.4 35.0±2.0 4.3±0.3

3J15 2J25 PVZ 44.4±2.6 12.5±0.8 21.4±1.3 7.1±0.5

OR/Both 44.4±2.6 12.5±0.8 35.0±2.0 7.8±0.5

v13

JT3 3JT10L LM3 V 54.1±3.1 26.1±1.5 13.2±0.8 7.2±0.5

JT2 3JT15L IP VX 54.1±3.1 7.6±0.5 18.1±1.1 4.8±0.3

OR/Both 54.1±3.1 29.8±1.7 27.3±1.6 11.0±0.7

Table 3.4: Efficiency (%) of the v12 and v13 triggers on events which have a minimum of 3
offline jets with ET > 8 GeV, measured on the hb (mh = 100 GeV) MC sample. The OR of the
triggers measures the joint efficiency of the two triggers. The errors contain both a statistical and

systematic (∼ 5.5% [71]) component.



3.5 Secondary Vertex Tagger 86

Trigger
Instantaneous Rate (Hz)

Luminosity (cm−2s−1) L1 L2 L3

JT2 3JT15L IP VX

40×1030 167 47.2 0.95

60×1030 206 65.7 1.26

80×1030 327 93.1 1.91

Average 233 68.7 1.37

JT3 3JT10L LM3 V

40×1030 167 25.4 0.72

60×1030 206 34.0 1.06

80×1030 327 56.0 1.75

Average 233 38.5 1.18

Table 3.5: The rates for the two v13 hb triggers for an average instantaneous luminosity of
40×1030 cm−2s−1 measured on run 207292, 60×1030 cm−2s−1 measured on run 206944 and
80×1030 cm−2s−1 measured on run 206692. The rates for trigger JT3 3JT10L LM3 V in run
206944 are corrected to account for a pre-scale of 5. The average rates over the range of instanta-

neous luminosities are within the design goals.

The L3 ‘Jet’ term remained unchanged through the v13 (June 2004 to July 2005)

and the v14 (July 2005 to June 2006) triggerlists collecting ∼ 600 pb−1 of data, and

was used in the 0.9 fb−1 ICHEP 2006 hb analysis (more detail on the performance

of this trigger in the analysis can be found in Section 5.4.1). The ‘Muon’ trigger

was split into two branches in v14, one branch had the additional requirement of a

L3 IP b-tag < 0.05 added and the other had tighter muon cuts imposed to allow the

triggers to run without pre-scales at the highest luminosities. It is planned to add

these triggers into the next version of the hb analysis.

3.4.5 Conclusion

New triggers were designed for the multi-jet Higgs analysis. The new triggers ob-

tained a factor of four extra rejection and improved the overall efficiency by ∼ 40%.

The L3 IP b-tagging tool, demonstrated and tested in a trigger for the first time,

allowed large gains in rejection to be achieved for very little loss in signal efficiency.

The L3 IP b-tagging tool was measured to have an efficiency of ∼ 90% on a 3 b-jet

sample whilst reducing the background to a tenth of the level.

3.5 Secondary Vertex Tagger

The L3 secondary vertex tag (SVT) b-tagging tool uses tracks, jets and the PV

to reconstruct secondary vertices (SVs) in the x-y plane in jets. The vertexing
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algorithm is described in Section 3.5.1, the optimisation and performance of the

algorithm in Section 3.5.2 and the timing studies in Section 3.5.3.

3.5.1 Vertexing Algorithm

Due to time constraints at L3 a fast algorithm has been implemented to search for

SVs. SVs are calculated using a fast impact parameter (IP) minimisation technique

developed for use in the L3 vertexing tool [58].

SV ‘evaluation points’ (EP) are selected along the jet axis at intervals of 30 µm

up to a distance of 0.9 cm from the PV. At each SV EP the tracks not used in

the PV reconstruction and which pass a track pT and track χ2
dof cut (χ2

Track) are

approximated as straight lines at their distance of closest approach (DCA) to the

EP. Tracks are then used if they have an IP significance with respect to the PV of

greater than a threshold, SPV
Track, and an IP significance with respect to the EP of

less than a threshold, SSV
Track.

If there is more than one track left, the χ2 of the vertex is calculated by min-

imising the χ2 function (the origin is centred at the EP):

χ2 =
Ntracks∑

a

(da
0)

2

(σa
d0

)2
+

∑

i=x,y

(ji − Vi)
2

(σj
i )

2
, (3.7)

where NTracks is the number of tracks, V is the vertex position, j is the EP

position, d0 the distance of closest approach from the track to the vertex, σj is

a jet constraint term (explained below), a refers to the individual tracks and i to

the spatial dimensions. Figure 3.23 illustrates the process of linearising the tracks

at each EP, and the quantities used in the χ2 minimisation. The first term is

the contribution from the tracks and the second term is a jet constraint (when

this method is used to calculate the PV this term corresponds to the beam spot

constraint), which constrains the vertex position within the jet (see Section 3.5.1.1

for more details).

Vertices are calculated using an iterative method. The χ2
dof of a vertex is firstly

calculated using the following equation:

χ2
dof =

χ2

2 × NTracks − 2
. (3.8)

Each track is removed in turn and the χ2
dof of the vertex recalculated. The track

which causes the largest difference (δχ2
Max) in χ2

dof with respect to the original vertex

is removed if δχ2
Max > χ2

Cut. This is repeated until either there are two tracks left

or a vertex has been found which is stable, i.e. δχ2
Max < χ2

Cut for all tracks used to

reconstruct the vertex. The χ2
dof of the vertex at each EP is stored, and these are

used to calculate the location vertices in the jet, as outlined in Section 3.5.1.2.
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Figure 3.23: A single track in a jet which is linearised at the DCA to the EP (jx, jy). The vertex
position (V) is found by minimising the d0 of all the tracks, with an additional constraint from σj .

3.5.1.1 Jet Constraint

Figure 3.24 (top left) shows the distance from the jet axis (dR) as a function of

distance along the jet axis (dj) for offline ‘Tight’ SVs. Secondary vertices found

within a jet are distributed around the jet axis, with an increasing spread as the

distance along the jet axis increases. This relationship is used as a constraint on

the vertex position in the IP minimisation. A straight line fit (Fig. 3.24 (bottom

right)) to the spread of the SVs around the jet axis as a function of dj is used to

parameterise the jet constraint.

3.5.1.2 Vertex Identification

The χ2
dof as a function of distance along the jet axis (dj) is shown in Fig. 3.25 for

a data event. There are two distinct local minima which represent two potential

vertices. Local minima are defined by two low χ2
dof values (χ2

Low), separated by a

higher χ2
dof (χ2

High) value. If the two low points both have χ2
High − χ2

Low > χ2
Split,

then there are two local minima and therefore two vertices.

3.5.1.3 Tool Output

The output of the tool is a list of all the secondary vertices found in the event. The

vertices contain information on their decay length, decay length significance (DLS),

number of tracks (NTracks) and χ2
dof . The SV ‘filter’ (see Section 2.2.5.3) can use

any of these variables to make a trigger decision. In the remainder of this chapter

the DLS is used as the discriminating variable.
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Figure 3.24: The distance from the jet axis (dR) as a function of distance along the jet axis
(dj) for offline ‘Tight’ SVs (top left). The distribution of SVs around the jet axis is characterised
by fitting gaussian functions to slices along the jet axis. The three gaussian fit parameters, the
constant (top right), mean (bottom left) and sigma (bottom right), are shown as a function of the

distance along the jet axis.
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Values of dj with no χ2

dof value occur due to there being no SVs reconstructed due to a lack of
tracks.

3.5.2 Data Optimisation

The L3 SVT algorithm has six thresholds which need to be optimised. These are:

the iterative χ2 threshold (χ2
cut), the split vertex threshold (χ2

split), PV significance

threshold (SPV
Track), SV significance threshold (SSV

Track), the track χ2
dof (χ2

Track) thresh-

old and the track pT threshold.

3.5.2.1 Optimisation Strategy

Each variable was optimised in turn whilst keeping all other variables constant. Each

variable is optimised by considering the signal efficiency versus rate performance

curves (defined below), produced by varying a cut on the DLS of the SVs found.

The most powerful variable will be selected to provide several operating points with

differing efficiencies and purities whilst the other variables will be fixed.

3.5.2.2 Signal Efficiency

The signal efficiency was measured on events (which span the data-taking period

November 2002 – June 2004) which have two offline SVT tags. The signal efficiency

is defined as:

Signal Efficiency =
Number of L3 SVT Tagged Events

Number of Signal Events
. (3.9)

Signal events are defined as events with two L3 jets ET > 12 GeV, a L3 PV with

|z| < 35 cm and 2 offline SVT tags. Events are tagged by the L3 SVT tool if at

least one SV, which satisfies the DLS cut, is found in the event.
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3.5.2.3 Rate

The ‘rate’2 was measured on data run 188676 which was taken at an instantaneous

luminosity of ∼ 15 × 1030 cm−2s−1. The rate is defined as:

Rate =
Number of L3 SVT Tagged Events

Number of Background Events
. (3.10)

Background events are defined as events with two L3 jets ET > 12 GeV and a

L3 PV with |z| < 35 cm. Events are tagged by the L3 SVT tool if at least one SV

is found in the event which satisfies the DLS cut. The data run, and therefore the

rate, will include some events which contain real heavy flavour.

3.5.2.4 Iterative Track Selection

The iterative χ2 vertexing threshold removes tracks from a vertex if they contribute

a δχ2
dof larger than χ2

Cut. If the threshold is set correctly it will remove tracks

wrongly assigned to the vertex whilst not removing those correctly assigned.

The performance of the SVT for four representative χ2
Cut thresholds is shown in

Fig. 3.26. There is not a significant difference between the thresholds of 0.1, 0.5 and

1.0. However, a threshold of 0.5 has consistently slightly better performance than

the other three operating points and so was chosen.

3.5.2.5 Split Vertex

The split vertex threshold defines the depth that a local minimum in χ2 along the

jet axis has to be to be considered as a separate vertex. A low threshold will result

in more vertices being found in a jet and a larger value will result in fewer vertices

being found.

The performance of the SVT tagger for four representative split vertex thresholds

is shown in Fig. 3.27. The lower the splitting threshold the higher the maximum

efficiency. The optimal threshold is 0.0.

3.5.2.6 Track Primary Vertex Significance

Tracks which originate from a SV are likely to have a large IP significance with

respect to the PV. The larger the threshold on the IP significance of a track with

respect to the PV, SPV
Track, the purer the selection of tracks, however this will come

at the expense of the efficiency. The significance of the track with respect to the

2Rate is used here in relative terms, and is therefore measured as a percentage. The term rate
is used instead of background rate or background efficiency as the ‘background’ sample actually
contains signal (∼ 50% of the tagged sample will be b-jets for a 1% fake rate operating point).
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Figure 3.26: The performance of the L3 SVT b-tagging tool as a function of the iterative χ2

threshold. A representative sample of thresholds of 0.1 (red circles), 0.5 (green squares), 1.0 (blue
triangles) and no iteration (purple diamonds) are shown. Errors shown are statistical.

Rate (%)
10 15 20 25 30 35 40 45

E
ff

ic
ie

n
cy

 (
%

)

40

50

60

70

80

90

100

L3 SVT: Vertex Split Cut

 > 0.0
split
2χ

 > 0.5
split
2χ

 > 2.0
split
2χ

 > 8.0
split
2χ

Figure 3.27: The performance of the L3 SVT b-tagging tool as a function of the split vertex
threshold, χ2

split. A representative sample of thresholds of 0.0 (red circles), 0.5 (green squares), 2.0
(blue triangles) and 8.0 (purple diamonds) are shown. Errors shown are statistical.
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PV is calculated taking into account the primary vertex errors as well as the track

errors.

The performance of the SVT tagger as a function of SPV
Track is shown in Fig. 3.28.

This threshold provides a very powerful handle on the purity and efficiency of the

L3 SVT tagger and allows a range of operating points to be defined with a wide

performance range. For the tighter operating points a large fraction of the rate will

consist of events with real heavy flavour jets.
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Figure 3.28: The performance of the L3 SVT b-tagging tool for various values of the threshold
SPV

Track. The thresholds are 0 (red circles), 1 (green squares), 2 (blue triangle), 3 (purple diamond),
4 (cyan cross) and 5 (grey star). Errors shown are statistical.

3.5.2.7 Track Secondary Vertex Significance

Tracks which have a large IP significance with respect to the SV EP can be excluded

from the SV reconstruction using the threshold SSV
Track.

The performance of the L3 SVT tagger as a function of SSV
Track is shown in

Fig. 3.29. Varying this threshold does not have a large effect on the performance.

Tightening the threshold shifts the performance curve to a position with a lower

efficiency and rate.
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Figure 3.29: The performance of the L3 SVT b-tagging tool for various values of the threshold
SSV

Track. The thresholds are 4 (red circles), 6 (green squares), 8 (blue triangles) and no threshold
(purple diamonds). Errors shown are statistical.

3.5.2.8 Track χ2
dof

The track χ2
dof is an important indicator of the quality of the track. A tight threshold

on the χ2
dof of the tracks will reduce the contribution from fake and badly recon-

structed tracks; however this comes at the expense of the tracking efficiency.

The performance of the SVT tagger for track χ2
dof thresholds from 1.0 to 5.0 is

shown in Fig. 3.30. A sufficiently tight value for this threshold shifts the performance

of the SVT tagger to a less efficient but purer operating point.

3.5.2.9 Track pT

Varying the pT of tracks used in the SV reconstruction provides a handle on the

quality of the tracks. The performance of the SVT tagger for track pT thresholds

from 0.5 to 1.5 GeV is shown in Fig. 3.31. Varying this threshold alters the efficiency

and purity of the tagger. A high pT threshold results in a less efficient but purer

tagger.

3.5.2.10 Optimised Variable Selection

The final optimised variable selection is shown in Table 3.6. The PV significance

threshold is the most powerful handle on the performance of the SVT tagger and will
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Figure 3.30: The performance of the L3 SVT b-tagging tool for various track χ2

dof thresholds.
The lines represent the thresholds 1.0 (red circles), 2.0 (green squares), 2.5 (blue triangles) and 5.0

(purple diamonds). Errors shown are statistical.
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therefore be used to define several operating points. The remaining thresholds are

selected to produce the highest efficiency. If two values produced a similar efficiency

then the one with the lowest rate was chosen as the optimal value.

Variable Optimised Value

Iterative χ2
dof 0.5

Split χ2
dof 0.0

Track χ2
dof 5.0

Track pT 0.5 GeV

Track SV Significance 8.0

Track PV Significance Varied

Table 3.6: The final optimised thresholds used in the L3 SVT b-tagging tool

The performance for the optimised SVT b-tagging tool is shown in Fig. 3.32.

Representative signal efficiencies and rates for each of the operating points are shown

in Table 3.7.

Name SPV
Track Efficiency (%) Rate (%)

PV0 0 93 43

PV1 1 89 25

PV2 2 82 15

PV3 3 75 10

PV4 4 63 6

PV5 5 51 4

Table 3.7: Representative signal efficiencies and rates for the six operating points defined for the
L3 SVT b-tagging tool.

3.5.2.11 Vertex Parameter

A comparison of the SV variables, namely: DLS, χ2
dof , decay length, NTracks and

the number of vertices for the signal and background samples is shown in Fig. 3.33.

The SVs in the signal and background samples demonstrate the characteristics of

b and light-jets respectively. The separation between the variables in the signal

and background samples would be suitable for use in a neural network, which could

potentially further improve the b-tagging performance.
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Figure 3.32: The performance of the optimised L3 SVT b-tagging tool for the six operating points:
PV0 (red circles), PV1 (green squares), PV2 (blue triangles), PV3 (purple diamonds), PV4 (cyan

crosses) and PV5 (grey stars). Errors shown are statistical.
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(middle right) and the number of vertices (bottom) for the signal sample (red line) and background
sample (green line) for the operating point PV0.
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3.5.3 Timing Studies

Due to the limited time available at L3 the time taken by each tool needs to be

carefully studied. Timing tests are carefully conducted on the same CPU and under

the same conditions to ensure consistency between different timing measurements

- in this case a 2.4 GHz Linux machine with no other jobs running. The timing

results are shown in Table 3.8 and in Fig. 3.34.

The time taken as a function of the number of tracks in the event is shown in

Fig. 3.35. There is an approximately linear dependency between the time taken and

the number of tracks.

Tool
Timing (ms)

Signal Background

SMT Unpacker 5.2 5.2

CFT Unpacker 2.7 2.3

Tracker 203.2 93.2

Primary Vertexing 0.6 0.3

Secondary Vertexing 3.4 1.4

Table 3.8: The time taken by the L3 SVT b-tagging tool, and the tracking and vertexing tools
for comparison, in the signal and background samples. Errors on the times were estimated to be

∼ 10% from repeated measurements.
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Figure 3.34: The timing distributions for the L3 SVT b-tagging tool operating point PV0 on the
signal events (red line) and background events (green line).

3.5.4 Conclusion

A new b-tagging tool which locates displaced secondary vertices in jets has been de-

veloped and optimised for use in the L3 trigger. The new tool has a large potential

for reducing background rates at little expense to the trigger efficiency. Six potential
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Figure 3.35: The time taken as a function of the number of tracks in the signal events for the
operating point PV0.

operating points have been identified for use; the points have signal efficiencies vary-

ing from 93% to 54% for rates ranging from 43% to 4%. The tool’s time consumption

was measured as 1.4 ms at an instantaneous luminosity of ∼ 15 × 1030 cm−2s−1 for

the PV0 operating point (which has the highest time consumption). The SVT tool

will now be combined with the IP b-tagging tool and the individual and joint results

will be commissioned for use in the next version of the trigger list.
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Chapter 4

The Neural Network b-Tagger

4.1 Introduction

b-jets are a key signature of a wide range of physical processes of interest, including

many Higgs search channels. The ability to accurately identify b-jets is vital in

reducing the otherwise overwhelming background to these channels from processes

involving light-jets.

This chapter covers the development and testing of the first (and currently only)

Neural Network (NN) b-tagging tool at DØ. The new b-tagging tool has signifi-

cantly enhanced performance compared to the other b-tagging tools available, and

consequently has become the default b-tagging tool at DØ. The improved tagging

has significantly increased the sensitivity of the Higgs search at DØ. The benefit

from the new tagger is equivalent to a doubling of the luminosity [72].

Two main components of the study of the NN tagger are covered in this chapter.

Firstly, the development of the NN tagger, which includes the selection of input vari-

ables, optimisation of the NN and the performance on Monte Carlo (MC). Secondly,

the measurement and testing of the performance on data, referred to as the ‘certi-

fication’ of the tagger. The certification procedure is necessary due to the different

tagging performance in MC and data, and all taggers must be ‘certified’ before they

can be used in any analyses shown external to DØ.

An introduction to the certification procedure, along with other important con-

cepts, is outlined in the remainder of this introduction. Full details of the develop-

ment and certification of the NN tagger can be found in [73] and [74] respectively.

The input variables tested are outlined in Section 4.2, the optimisation of the NN on

MC in Section 4.3, the MC performance in Section 4.4, a comparison of the MC and

data inputs in Section 4.5, the b-efficiency measurement in Section 4.6, the fake rate
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measurement in Section 4.7 and the overall performance on data in Section 4.8. The

development of the NN tagger was all the author’s own work, and the ‘certification’

of the tagger was carried out with the help of another PhD student.

4.1.1 Procedure for Data Certification

The tracking in the p14 MC simulation of the DØ detector is not an entirely realistic

simulation of data. The tracking is over optimistic in both the quality and number

of tracks found. This results in the b-tagging efficiency in MC being over estimated

by 10 – 20% when compared to data [74].

b-tagging is applied to MC and data differently, as is outlined in Fig. 4.1, due to

the differences in the b-tagging. To accurately b-tag jets in MC tag rate functions

(TRFs) for b, c and fake-jets1 need to be measured for data at various ‘operating

points’. An operating point (OP) is a version (or cut on the output) of a tagging

tool which has a particular fake rate. b-tagging in data and MC can only therefore

be carried out at particular OPs which have been measured on data.

The b-tagging is run directly on the data, and the jets either pass or fail at a

particular operating point. For MC, the TRFs measured for the operating point

are used to predict the probability that the b, c and fake-jets in the events are

tagged. The probabilities for each of the jets are combined into an event weight

which represents the probability that the event passed the tagging criteria. The

weighted MC sample is equivalent to the b-tagged data sample. Four functions are

used in the b-tagging correction:

Scale Factor (SF) - The factor by which the b and c MC tagging efficiencies have

to be multiplied by to obtain the data tagging efficiencies.

TRFb - The efficiency to tag a b-jet in data.

TRFc - The efficiency to tag a c-jet in data.

Fake-Tag Rate (FTR) 2 - The efficiency to tag a fake-jet in data.

These functions are parameterised in terms of the pT and η of the jets. The

NN tagger’s performance on data was measured following the b-ID group’s standard

certification procedure [75]. Techniques developed and employed in the Jet Lifetime

Impact Parameter (JLIP) [76] and the Secondary Vertex Tag (SVT) [77] Pass2

certifications were used in this certification and developed further. The concepts

outlined in the following sections are integral to the certification of the NN tagger.

1The term fake-jets refers to uds and gluon-jets.
2This could also be referred to as the light-jet TRF.
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Figure 4.1: The two methods used to apply b-tagging to MC and data.

4.1.1.1 Operating Points

In the certification, the NN tagger has its performance evaluated at various OPs.

Six OPs were chosen, to give fake rates on data close to those outlined in Table 4.1.

Name Tight Medium Loose L2 L3 L4

NN Cut > 0.775 > 0.65 > 0.5 > 0.325 > 0.25 > 0.2

Fake Rate (%) 0.3 0.5 1.0 2.0 3.0 4.0

Table 4.1: The NN tagger’s OPs with their corresponding design fake rates.

4.1.1.2 Negative and Positive Tags

The majority of fake-tags are due to resolution effects affecting the reconstruction of

the PV and tracks. The impact parameters (IP) of such tracks should be symmet-

rically distributed around zero (there will actually be slightly more with positive IP

due to some long lived ‘light’ particles), whereas tracks from b and c particles will

predominantly have positive IPs due to their long lifetimes.

Taggers use the symmetrical distribution of the track IPs from fake-jets and

the asymmetrical distribution from heavy-flavour jets to construct two types of tag.

Tags constructed from tracks with negative IPs have very little contribution from

heavy flavour and therefore approximately describe the fake rate. Tags constructed

from tracks with positive IPs will contain the vast majority of the heavy flavour

signal, with only approximately half the component of fake-tags.
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Each tagger provides negative tag (NT) and positive tag (PT) results for each

jet. The definition of what constitutes a NT result varies for each tagger and is

detailed below:

CSIP NT - Calculated from tracks which have a negative IP significance with

respect to the primary vertex.

JLIP NT - Calculated from tracks which have a negative IP significance with re-

spect to the primary vertex.

SVT NT - Secondary vertices (SV) which have a negative decay length and a

dR < 0.5 with respect to the jet.

For the NN tagger, a NT result is defined as the output from the NN when all

of the NN inputs come from the NT results for the individual taggers.

4.1.1.3 Away Tag

An ‘away tag’ is an indirect method of tagging a jet without actually performing

any cuts on the jet and thereby biasing the jet sample. A jet is defined as having an

away tag if it is in an event with exactly two jets, and the other jet has passed some

b-tagging criteria. An away-tagged jet has a considerably enhanced probability of

being heavy flavour.

4.1.1.4 Calorimeter Regions

It is sometimes useful when undertaking performance studies to consider the DØ de-

tector in three distinct η regions which have different detector responses and track-

ing capabilities: the Central Calorimeter (CC), Inter-Cryostat Region (ICR) and

the End Cap (EC) as outlined in Table 4.2.

Calorimeter Region Physical η

Central Calorimeter (CC) 0 < |η| < 1.2

Inter-Cryostat Region (ICR) 1.2 < |η| < 1.8

End Cap (EC) 1.8 < |η| < 2.4

Table 4.2: Calorimeter regions (which have different detector responses) in the DØ detector.
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4.1.1.5 Statistical Errors

Statistical errors are accounted for in the certification by calculating ±1 sigma curves

which represent the ±1 sigma deviation from the central fit value. The deviation of

the fit from the central value is calculated at each point of the fit function using:

∆f =
n∑

i

n∑

j

Eij
∂f

∂pi

∂f

∂pj

, (4.1)

where ∆f is the change in the central fit value, Eij is the error matrix for the

parameters, i and j relate to the fit parameters, n is the number of fit parameters

and the derivatives are calculated with respect to the appropriate fit parameters.

4.1.2 Neural Networks

A Root based Neural Network (NN) package, TMultiLayerPerceptron [78], which

was inspired by the mlpfit package [79] was used to construct the NN. For the

training stage the NN package takes as input a tree of the examples to be trained

upon, which in this instance is jets.

A multilayer perceptron (MLP) NN is a simple feed-forward network which con-

sists of a layer of input nodes, one or more layers of hidden nodes and one layer

of output nodes. The nodes, called neurons, are connected to each of the nodes

in the consecutive layers by links called synapses that have a weight wj and bias

w0 representing the strength of the signal between the two nodes. The neuron j of

the hidden or output layer computes a linear combination xj of the neurons in the

previous layer yi with a bias:

xj = w0j +
∑

i

wijyi. (4.2)

The output zj of the neuron j is then a function of the input xj. The function is

either linear:

zj = xj (4.3)

or a sigmoid function

zj =
1

1 + e−xj
(4.4)

depending on the layer. The different layers carry out the following operations.

Input Nodes - Receive their input from the external sample which is scaled and

then output to the nodes in the first hidden layer.
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Hidden Layers - Output a sigmoid function of a linear combination of the outputs

from the nodes in the previous layer.

Output Layer - Creates a linear combination of the outputs from the nodes in the

previous layer which is then an output of the NN.

A NN is a linear combination of sigmoid functions and constructed in such a way

as to take advantage of two very important theorems involving the computation of

linear combinations of sigmoid functions.

1. A linear combination of sigmoid functions can approximate any continuous

function [80].

2. When trained with a desired output of 1 for signal and 0 for background, the

output for a set of inputs is, approximately, the probability that the inputs

are signal [81].

Initially the weights for each of the synapses are set randomly between -0.5 and

0.5. The NN output, op, is compared to the desired output, tp, on a set of examples

p. The training algorithms try to minimise the error on the training samples by

altering the weights. The total error, E, on the training samples (training error) is

given by

E =
∑

p

1

2
ωp(op − tp)

2, (4.5)

where ωp is an event weight. All the training algorithms compute the first order

derivative of the error with respect to the weights

dEp

dwij

=
∑

p

dep

dwij

, (4.6)

where p is the set of examples and ep is the error on each example. This is called

back-propagation of the errors. A loop over all the examples is called an epoch.

There are six learning methods implemented. They are:

Stochastic - Uses the Robbins-Monro stochastic approximation method to update

the weights after each input example [82].

Batch - Is the same as the stochastic algorithm but the weights are only updated

after considering all the input examples.
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Line Search Methods - The following algorithms all rely on the theory of uncon-

strained minimisation [83]. Each of these methods works in a similar manner.

For a set of examples t:

1. A direction ~st is computed from the gradient ∇E.

2. The α which minimises E( ~wt + α~st) is found (this part is called the line

search).

3. The weights are updated by ~wt+1 = ~wt + α~st

4. Goto 1)

The variations of the line search method differ in the way that step 1) is carried

out. The simplest is the steepest descent [83] algorithm where ~st = −
∇(E). There are two conjugate gradient methods using the Polak-Ribiere

[83] and Fletcher-Reeves [83] updating formulas. The Broyden, Fletcher,

Goldfarb, Shanno (BFGS) algorithm relies upon the computation of the

second derivatives of the error with respect to the weights, and uses the first

and second derivatives in a quasi-Newton fitting method [83].

4.1.3 Data and MC Samples

The data samples used are derived from the b-ID, EM1TRK (EM) and QCD ‘skims’3

consisting of data taken from July 2002 to August 2004 [84]. The skimming criteria

are outlined with the number of events in Table 4.3. The skims were processed

excluding bad calorimeter data and runs marked as bad in the runs quality database

[65]. A larger skim (COMB) combining all the selected jets in the EM and QCD

skims was also created. Any overlap between the EM and QCD skims was assumed

to be small, with any corresponding effect on the fake rates to be negligible.

The MC samples used are outlined in Table 4.4. All the jets from the different

MC samples were ‘combined’ into large samples of jets, which are referred to as the

c, b, muonic c and muonic b-jet samples in the rest of the text. The two types of

sample are typically referred to as muonic and inclusive jet samples. Muonic jets are

those with a muon within the jet (semi-leptonic decays), and inclusive jets contain

both the semi-leptonic and the hadronic decays (i.e. all b-jets). The distinction is

important as the two types of jets have different b-tagging properties. The different

pT QCD jet samples were also merged into continuous pT samples using the fall off

3Subsets of data, known as skims, are produced for use in similar analyses by ‘skimming’ the
data for events which fulfill specific criteria.
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in jet pT , as seen in data, to appropriately weight the different samples. The number

of jets in each of these samples is outlined in Table 4.5. In the remainder of this

chapter the b, c and fake-jet samples produced from the different MC samples are

referred to using the notation X → j, where X is the MC sample name and j is the

jet flavour. For example tt̄ → b → µ is the notation for the sample of muonic b-jets

from the tt̄ sample.

Skim Skim Criteria Events

EM 1 Electron with pT > 4 GeV 64 M

QCD Jet Triggers 58 M

COMB Combination of the QCD and EM skims 122 M

b-ID One loose µ, with a pT > 4 GeV inside a 0.7 cone jet 91 M

Table 4.3: Data skims used in the certification of the NN tagger.

Sample Number of Events

tt̄ 390,000

Z → bb̄ 200,000

Z → bb̄ with µ 100,000

Z → cc̄ 210,000

Z → cc̄ with µ 100,000

Z → qq̄ 250,000

QCD pT = 20 − 40, 40 − 80, 80 − 160, 160− 320 1,160,000

QCD bb̄ pT = 20 − 40, 40 − 80, 80 − 160, 160 − 320 570,000

QCD cc̄ pT = 20 − 40, 40 − 80, 80 − 160, 160− 320 620,000

Table 4.4: MC samples used in the development and certification of the NN tagger. All the
samples were generated using Pythia [70], except for the tt̄ sample which was generated using
Alpgen [85] before being processed through Pythia to simulate the hadronisation and showering.

4.2 Input Variables

The following variables are potentially good discriminators between fake and b-

jets. All the following plots are from the merged QCD MC samples, and the input

variables are from the standard DØ taggers.
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Flavour Sample Number of Jets

inclusive b b (Combined) 1,800,000

inclusive b QCD bb̄ (Merged) 270,000

muonic b b → µ (Combined) 180,000

inclusive c c (Combined) 1,500,000

inclusive c QCD cc̄ (Merged) 300,000

muonic c c → µ (Combined) 90,000

udsg Z → qq̄ 375,000

udsg QCD Fake (Merged) 500,000

udscbg QCD (Combined) 1,100,000

Table 4.5: Number of MC jets of each flavour available in each of the combined and merged
samples after data processing and jet selection.

4.2.1 JLIP Variables

The variables of interest from the JLIP tagger [76] are listed below and shown in

Fig. 4.2.

JLIP Prob - The probability that the jet originated from the PV. The closer to 0

the more likely that the jet was a b-quark. If there is not enough information

in the event to calculate a probability this value is set to 1.

JLIP ProbRed - The JLIP probability re-calculated with the most b-like track re-

moved from the calculation. This identifies jets where a mismeasured or fake

track causes a mistag of the jet. If there is not enough information to calculate

the reduced probability the value is set to 1.

JLIP NTracks - The number of tracks used in the JLIP probability calculation. b-

jets will typically have more tracks than fake-jets for a give pT .

4.2.2 SVT

The SVT [77] tagger finds secondary vertices (SV). As multiple SVs can be found

in each jet, SVs are ranked in order of their most powerful discriminator, the decay

length significance (DLS). The SV with the largest DLS within a jet is used to

provide the SVT input variables. Potential variables from the Loose SVT (SVTL)

tagger are listed below and shown in Fig. 4.3. If no secondary vertex is found, the
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Figure 4.2: JLIP tagger variables Prob (top left), −Log10(Prob) (top right), ProbRed (bottom
left) and the NTracks (bottom right) for QCD bb̄ (red) and fake (green) MC jets. See the text for

the full definitions of variables.

SVT values are set to 0, apart from the SVT χ2
dof which is set to 75 corresponding

to the upper bound of χ2
dof values.

SVT DLS - The decay length significance of the secondary vertex with respect to

the primary vertex.

SVT χ2
dof - The χ2 per degree of freedom of the secondary vertex.

SVT NTracks - The number of tracks used to reconstruct the secondary vertex.

SVT Mass - The mass of the secondary vertex. Calculated from the combined

rest mass of the tracks assuming all tracks were pions.

SVT Num - The number of secondary vertices reconstructed in the jet.

SVT dR - The dR between the vertex and the jet axis.

The standard SVT tagger operating points are not ideal for use in a NN. They

find a very pure selection of secondary vertices, but, if SVT reconstruction in a

jet fails, no information is available. This results in no information being available

for a large number of the jets. A NN performs best with the maximal amount of
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Figure 4.3: Variables for the Loose SVT tagger, DLS (top left and right), χ2

dof (middle left),

NTracks (middle right), Mass (bottom left) and number of vertices (bottom right) for QCD bb̄

(red) and fake (green) MC jets. See the text for a full description of the variables.
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information, and therefore it is better to have information on all possible SVs in an

event, even if they are poorly reconstructed.

To increase the amount of information available, a ‘Super Loose’ version of the

SVT tagger was defined (SVTSL). The SVTSL has a looser track selection criteria

than that used by the standard SVT tagger operating points. The track selection

used for the standard SVT tagger operating points and those used for the SVTSL

are shown in Table 4.6. Figure 4.4 shows the efficiency and fake rate of the SVTL

and SVTSL taggers on QCD b and fake-jet samples. The SVTSL tagger provides

information on ∼ 90% of the b-jets compared to ∼ 65% for the SVTL tagger. The

larger number of both fake and b-jets is advantageous as it provides a larger training

sample.

Track Cuts Tight Medium Loose Super Loose

χ2 3 10 10 15

IPsig 3.5 3.5 3 0.0

pT GeV 1.0 1.0 1.0 0.5

Num SMT Hits 2 2 2 2

Table 4.6: The track selection cuts used for the standard SVT operating points and the Super
Loose SVT tagger. The tracks are selected based upon their χ2, impact parameter significance

(IPsig), transverse momentum (pT ) and number of SMT hits.
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Figure 4.4: SVTSL (red circles) and SVTL (green squares) efficiencies for QCD bb̄ and QCD fake
MC jets.

4.2.3 CSIP Variables

Potential variables from the Loose CSIP tagger [48] are listed below and shown in

Fig. 4.5.



4.2 Input Variables 113

CSIP 3s - The number of tracks with a decay length significance greater than 3.

CSIP 2s - The number of tracks with a decay length significance greater than 2.

CSIP 3w - The number of tracks with a negative decay length significance greater

than 3 and an angle to the jet axis < 1.15 radians.

CSIP 2w - The number of tracks with a negative decay length significance greater

than 2 and an angle to the jet axis < 1.15 radians.

All the CSIP variables are small integer values which are not ideal inputs for a

NN. NNs perform best when provided with continuous values spread over a range.

Therefore, the standard CSIP variables were combined into a single variable, spread

over a greater range. Replacing four variables with one also had the advantage of

reducing the number of input variables and so simplifying the NN. The weights were

determined in an entirely empirical manner to give optimum performance:

CSIP Comb = 6 × 3s + 4 × 2s + 3 × 3w + 2 × 2w (4.7)

Using the variables as separate inputs was also investigated.

CSIP 2s
1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

180

200

310×
QCD Fake

bQCD b

CSIP 3s
1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

180

200
310×

QCD Fake

bQCD b

CSIP Combined
5 10 15 20 25 30 35 40

0

10000

20000

30000

40000

50000

60000

70000

80000

QCD Fake

bQCD b

Figure 4.5: Variables from the Loose CSIP tagger, the number of tracks with a significance ≥ 2
(top left), the number of tracks with a significance ≥ 3 (top right) and the combination variable
(bottom) for QCD bb̄ (red) and fake (green) MC jets. See the text for a full description of the

variables.
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4.2.4 SLT

No input from the Soft Lepton Tag (SLT) tagger [51] was used in the NN. The

reasons for this are twofold. Firstly, the SLT is used in the ‘System8’ efficiency

calculation to measure a tagger’s efficiency on data [86]. The System8 measurement

requires two taggers which are uncorrelated and using the SLT as a NN input would

correlate the output of the two taggers. The SLT tagger has been shown to be

uncorrelated with the JLIP [76], SVT [77] and CSIP [48] taggers. Secondly, from a

performance perspective, the SLT returns no output for the majority of events and a

variable which is zero for the majority of events has very little benefit. Tests showed

that the addition of SLT variables on an inclusive jet sample did not improve the

performance.

4.2.5 Primary Vertex

The quality of the primary vertex (PV) is a very important indicator of the tracking

quality in an event. However, the PV variables are not used in the NN due to

possible, currently unstudied, correlations that may arise between jets when using a

global event variable. However, if these correlations can be shown to be small, then

these variables could be included in future versions of the NN tagger. Tests showed

this to be a powerful variable.

4.2.6 Jet Variables

In order to construct a generic tagger, which is independent of any particular jet

reconstruction algorithm, jet algorithm-dependent variables like jet pT are not used.

4.3 Neural Network Optimisation

Six attributes need studying to produce an optimised NN: the input variables (num-

ber and type), the input selection criteria (the selection of jets to be separated by the

NN), the structure, the training algorithm, the training sample and the number of

training epochs. In addition, a benchmark with which to measure the performance

needs to be defined.

The most important attribute which needs optimising is the input variables. The

input variables were optimised by selecting interim values for the other attributes

whose optimisation would depend upon the final choice of input variables. Initial

values, which were later re-optimised, were set for the structure (N:2N:1, where N

is the number of input variables), number of training epochs (500) and the input jet
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cuts (SVT DLS > 2 or CSIP COMB > 8 or JLIP Prob < 0.02). The training samples

and training algorithms were optimised prior to the input variable optimisation as

they did not depend on the input variable optimisation.

4.3.1 Training Samples

Trees of 270,000 signal (QCD bb̄) and 470,000 background (QCD fake) jets, weighted

to be of equal number (after input selection cuts), were used in the training and

testing of the NN. The signal and background samples were split in half, with half

used for the test sample and the other half for the training sample. Figure 4.6 shows

the pT and η of the training and testing sample. Signal and background training

samples have approximately equal pT and η spectra to avoid any pT and η biases

that may be caused by using different spectrums for the signal and background.
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Figure 4.6: The pT (left) and the η (right) of the training and test samples.

4.3.2 Training Algorithms

Figure 4.7 shows the comparative training curves for six different training algorithms

for a simple NN consisting of JLIP Prob, SVT DLS, CSIP Comb and SVT χ2
dof for

a fixed amount of CPU processing time. The BFGS training algorithm is the most

consistent and systematic method to minimise the error on the fit, and was therefore

used as the minimisation algorithm.

4.3.3 Performance Benchmark

Each of the attributes in the following sections were optimised according to the

fake rate achieved for a fixed b-efficiency (the lower the fake rate the better the

performance). The performance of the NN was measured by comparing the fake

rates at four fixed b-efficiencies 75%, 70%, 60% and 50%.
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Figure 4.7: Training curves for the various training algorithms for a fixed amount of CPU time.

All the training was carried out on the QCD samples, and the performance

measurements were carried out on the Alpgen [85] tt̄ MC. The performance mea-

surements were also cross checked on the merged Pythia [70] QCD MC samples (see

Section 4.1.3 for a description of the different samples).

4.3.4 Variable Optimisation

The most time-consuming part in constructing a NN is selecting the input variables.

The greater the number of variables, the greater the amount of information, and

therefore the better the discrimination, but to reduce systematic uncertainties, it is

desirable to have the minimum number of variables possible. Another problem is

the selection of which variables to use together. Although variables on their own

might not have much effect, in combination with another variable a powerful pattern

could emerge.

It would be very time consuming to test all the possible combinations of vari-

ables. If all the different possible NNs for the 14 variables identified above were

tested, it would take the construction of 16,368 different networks to identify the

optimal solution. This is obviously impractical. One solution to this problem is to

individually identify the most powerful variables. If we have an initial NN with n

variables and a list of m variables we want to rank in order of power, the following

procedure can be carried out to identify the most powerful variables:
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1. Individually add each of the m variables to be tested to the initial n variable

NN so we have m NNs each with n + 1 variables.

2. Identify the variable whose addition improved the NN’s performance the most,

and add this variable permanently to the n variable NN.

3. Go to step 1) and test each of the remaining m − 1 variables with the new

n + 1 variable NN.

Although this method has its limitations, such as possibly missing an optimal

combination of variables that did not have any discrimination when added sepa-

rately, it is an effective way of systematically identifying the best variables and the

optimal number to use for a specific operating point.

To identify the most powerful variables the above procedure was followed, start-

ing with an initial two variable NN which was identified by testing every possible

combination of variables in a two input NN. The remaining variables were then

ranked in order of power by examining the fake rate at the 70% b-efficiency operat-

ing point.

As a cross check the procedure was repeated for signal efficiencies of 50, 60 and

70%. The same set of variables was found to give the greatest reduction in fake rate

in each case. Two extreme efficiencies are shown by way of example in Fig. 4.8 and

the variables are listed in order of power in Table 4.7.

Rank Variable

1 SVTSL DLS

1 CSIP Comb

3 JLIP Prob

4 SVTSL χ2
dof

5 SVTL NTracks

6 SVTSL Mass

7 SVTSL Num

8 JLIP Probred

9 SVTSL dR

Table 4.7: NN input variables ranked in order of power.

The NNs with 5, 7 and 9 variables were identified for further study, and Fig. 4.9

shows the performance when using 5, 7 and 9 variables. The NN with 5 variables
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Figure 4.8: Fake rate for fixed signal efficiencies of 75% (top), and 50% (bottom) as a function
of additional NN variables. The NN variables were added to the NN in order of performance. The

fit is intended to guide the eye only. The errors are statistical only.
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benefits from the majority of the improvements in performance and has the advan-

tage of being the simplest. However, the NNs with 7 and 9 variables have a better

performance, but at the price of an increased number of variables. When going from

7 to 9 variables there is very little improvement. Therefore the 7 variable NN is the

optimal solution. The final selected variables were SVTSL DLS, CSIP Comb, JLIP

Prob, SVTSLχ2
dof , SVTL NTracks, SVTSL Mass and SVTSL Num.
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Figure 4.9: Performance curves for the 5 (red circles), 7 (green squares) and 9 (blue triangles)
variable NN. The 7 and 9 variable NNs have better performance than the 5 variable NN, although

there is no improvement in going from 7 to 9 variables.

4.3.5 Number of Training Epochs

This was varied from 50 up to 2000 training epochs, with the results presented in

Fig. 4.10. For each of the operating points the majority of the minimisation is

reached by ∼ 200 epochs, with only additional small improvement thereafter. To

ensure optimised NNs the number of training epochs was set to 1000.
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Figure 4.10: Fake rate for fixed signal efficiencies of 75% (left) and 50% (right) as a function
of the number of training epochs. The majority of the minimisation is achieved by 200 epochs
for each of the operating points with only small increases in performance thereafter. The fit is

intended to guide the eye only.

4.3.6 Neural Network Structure

During the optimisation of the input variables, the number of hidden nodes was set

to 2N, where N is the number of input nodes. The number of hidden nodes was

optimised by varying their number from 7 through 34. The results are shown in

Fig. 4.11. 24 is the optimal number of hidden nodes for each operating point.
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Figure 4.11: Fake rate for fixed signal efficiencies of 75% (left) and 50% (right) as a function of
the number of hidden nodes in a single hidden layer. There is a minimum at 24 hidden nodes for

each of the operating points. The fits are designed to guide the eye only.

The NN output using the structure 7:24:1, is shown in Fig. 4.12 (left). The

single hidden layer NN does not produce an output normalised between 0 and 1.

However, it should be possible to replicate any continuous function with only one

hidden layer. This situation occurs as a NN will provide only an approximate fit to

a function. The fit may not therefore necessarily be constrained between 0 and 1

unless the output node is set to normalise the output. In the TMultiLayerPerceptron

implementation, the output node is not a sigmoid function4, and consequently does

4In the latest versions of the TMultiLayerPerceptron code the output node is now capable of
normalising the output. However, when this work was undertaken this was not the case.
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not normalise the output from the single layer to be between 0 and 1.

From this reasoning it follows that by adding an extra hidden layer with 1 node

the output will be correctly normalised. The extra sigmoid should not alter the

performance of the NN, but should normalise the output to ensure that it is between

0 and 1. Figure 4.12 (right) shows the output of such a NN, which retains the same

shape in the regions > 0 and < 1, but with all the outlying points collected into the

peaks at 0 and 1. This NN had a marginally improved performance when compared

to the single layer NN.

This happens as the single hidden layer of 24 nodes achieves the optimal fit, which

the extra layer then normalises between 0 and 1. This was corroborated by adding

12 nodes into the second hidden layer and verifying that neither the performance or

shape of the output was altered by the additional nodes.
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Figure 4.12: The NN output for MC QCD bb̄ (red) and fake-jets (green) for the case of a single
hidden layer 7:24:1 (left) and double hidden layer 7:24:1:1 (right). The extra hidden layer constrains

the NN between 0 and 1.

4.3.7 Input Selection Cuts

One of the most important aspects of the NN is the selection of the jets which will

be input into the NN. Too loose a selection will mean a loss of performance and

resolution as the NN is separating signal from background which could have been

carried out with a simple cut. However, too stringent a selection will cause a signifi-

cant loss of b-jets and therefore limit the NN’s performance at high efficiencies. Cuts

are necessary so that jets have information for at least one of the input variables.

The input selection cuts were optimised in order of the input tagger’s input

tagging efficiency (the efficiency of an input tagger to have a non-zero tagging result

for a jet). The variables were optimised in the order SVTsl DLS, JLIP Prob and

CSIP Comb.
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The SVTSL DLS is the most important variable as small variations in its value

can make large differences to the number of b and fake-jets inputted to the NN.

The SVTSL DLS cut was varied from 0.5 to 4.0, with the results shown in Fig. 4.13

(top). A cut value of 2.5 benefits from the vast majority of the gains in tightening

this cut, whilst being slightly conservative.

The JLIP Prob cut was altered from 0.005 to 0.4, with the results shown in

Fig. 4.13 (middle). A cut value of 0.02 substantially lowers the fake rate at the 50%

and 60% operating points whilst having a negligible effect on the higher efficiency

operating points.

The CSIP Comb cut was varied between 2 and 14 as shown in Fig. 4.13 (bottom).

Varying the cut value does not have a significant effect on the fake rate and deviations

between different cut values are mostly within errors. A cut value of 8 does however

consistently appear to minimise the fake rate for the majority of operating points.

4.3.8 Optimised NN Parameters

The optimised parameter values for the NN tagger are shown in Table 4.8.

Parameter Value

NN structure 7:24:1:1

Input Variables (1) SVTSL DLS (2) CSIP Comb

(Ranked) (3) JLIP Prob (4) SVTSL χ2
dof

(5) SVTSL NNum (6) SVTL NTracks

(7) SVTSL Num

Jet input selection cuts SVTSL DLS > 2.5

(failure results in NN output of 0) or JLIP Prob < 0.02

or CSIP Comb > 8

Number of training epochs 1000

Number of b-jets used in training 135,000

(after jet selection cuts) (110,000)

Number of fake-jets used in training 235,000

(after jet selection cuts) (20,000)

Table 4.8: Optimised NN parameters.
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Figure 4.13: Fake rate for fixed signal efficiencies of 75% (left) and 50% (right) as a function of
the SVTSL DLS cut (top), JLIP Prob cut (middle) and CSIP Comb cut (bottom) on the input

jets. The fits are designed to guide the eye only.
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4.4 Monte Carlo Performance

The NN output for the optimised NN b-tagger on the signal and background training

samples is shown in Fig. 4.14. The NN achieves a significant separation between

the b-jets and b-like fake-jets. A b-like fake-jet is one which has passed the input

selection cuts for the NN tagger, i.e. it has (a loosely defined) b-tag.

The performance of the NN tagger compared to the JLIP tagger is shown in

Fig. 4.15. There is a substantial improvement over the JLIP tagger, with relative

increases in the efficiency of ∼ 50% for a fake rate of 0.2%, and ∼ 15% for a fake

rate of 4.0%. The fake rate is reduced by a factor of five for fixed signal efficiencies.

The performance of the NN tagger compared to the SVT, CSIP and JLIP taggers

is shown in Fig. 4.16 as a function of pT and η. The Loose versions of the SVT and

CSIP taggers are used and the JLIP tagger is set to JLIP Prob < 0.006 to ensure

similar fake rates. The NN tagger has a significantly better efficiency compared to

the individual input b-tagging tools over all η and pT , although this improvement

falls off at high pT . At the high pT values, the NN tagger has a substantially lower

fake rate than the SVT and CSIP taggers. At high η values the fake rate of the NN

tagger appears to be higher than the constituent input b-taggers, although there are

low statistics in this region.

4.5 Data and Monte Carlo Variable Comparison

As the NN is trained on MC events, but is to be applied to both data and MC events,

the input variables were compared in MC and data to ensure good agreement. This

comparison was carried out in two stages. Firstly, the input variables were compared

on an individual basis for both fake and b-jets to ensure that there are no major

disagreements. Secondly, to check the correlations between input variables, the

NN output was compared between the data and MC b and fake-jet samples. Any

problems caused by different correlations between the variables would have been

evident in the NN output.

4.5.1 b-Jet Input Variables

A b-enriched jet data sample was obtained from the muonic jets in the b-ID skim.

The b-content of the sample was enhanced, without biasing the variable comparison,

by applying SLT and an away tag (see Section 4.1.1.3).
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Figure 4.14: NN output for QCD MC b (green) and fake-jet (red) samples, after the NN jet input
selection cuts.
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and NN (red circles) taggers on QCD b (top) and fake-jet (bottom) samples in pT (left) and η

(right) projections.

The SLT tag was defined as a muon with a pTRel > 0.7 GeV 5. Applying a SLT

tag will not bias the variable comparison as the SLT tagger has been shown to be

uncorrelated with the other taggers (see Section 4.2.4). The away tag used the cuts

outlined in Table 4.9 which were designed by examining b, c and fake-jet tagging

variables in MC and selecting values which maximised the b-efficiency relative to the

c-efficiency. The efficiency of the away tag was estimated from QCD MC. Events

were selected which had exactly two taggable jets, and the probability that the fake,

c and b-jets present in the events had an away tag was measured. This measurement

takes into account the effects of possible gluon splitting to collinear heavy flavour

in the away jet and QCD production of jets of different flavours. Although these

efficiencies are measured entirely on MC, they should prove sufficient as a rough

estimate of the flavour content of the b-enriched sample. The away tag efficiencies

along with the SLT tagging efficiencies and the estimated flavour content of the

b-enriched sample are given in Table 4.10. The fact that the overall b-efficiency is

very small is not a problem due to the large data sample available.

The b-enriched data sample is compared to b-jets from a QCD MC sample. All

jets have passed the NN jet input selection cuts. The input variables from both

samples are shown in Fig. 4.17.

5pTRel is the pT of the muon relative to the combined jet and muon pT axis.
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Variable Cut Value

JLIP Prob < 0.002

JLIP ProbRed < 0.02

Tight SVT DLS > 10

CSIP 3s > 2

CSIP Mass > 3.0

Table 4.9: Away tag cut applied to the b-ID skim. Designed to primarily reduce the c-jet content
in the b-enriched sample.

Flavour QCD Content SLT Eff Away Tag Eff Content

b 3% 23.0% 2.40% 96.5%

c 5% 8.4% 0.25% 3.2%

Fake 92% 0.05% 0.24% 0.3%

Table 4.10: The QCD content (estimated from QCD MC) along with the SLT and away tag
efficiencies used to estimate the flavour content in the b-enriched sample.

The data b-jets have less b-like tagging results than those in MC. This is expected

due to the MC’s over-optimistic tagging results and the udscg contamination in the

data sample which degrades the measured data tagging results. Although the MC

and data do not agree exactly, there is no major disagreement, and enough agreement

between the variables to justify training on MC for application to data, subject to

further crosschecks in the following sections.

4.5.2 Fake-Jet Input Variables

Obtaining a sample of fake-jets without any, or with minimal heavy flavour con-

tamination is challenging. Any cuts placed on the jet will bias the input variable

comparison and little would be gained by using an away tag method to enrich a

sample with fake-jets. However, by using NT results (see section 4.1.1.2) instead of

PT results, a good approximation to a sample of fake-jets can be achieved. Heavy

flavour fractions of approximately 5% c and 3% b were measured using QCD MC.

When the jet input selection cuts are applied the fraction of heavy jets in the sample

increases to ∼ 10% c and ∼ 10% b. However, as the NT results are being used, any

b-like contribution from the heavy flavour component will be heavily suppressed.

The NT data sample is compared to the NT results from the MC QCD sample

and is shown in Fig. 4.18. There is generally good agreement between the fake-jet
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variables in MC and data, with the main differences existing between the low JLIP

Prob values. The disagreement between data and MC in this region is likely caused

by the presence of b and c-jets in the NT samples which are responsible for the

majority of results at low JLIP Prob values. The over optimistic tagging results for

MC b and c-jets will produce a discrepancy between the data and MC samples in

this region.

4.5.3 Data and Monte Carlo Neural Network Output Com-

parison

The NN outputs for the EM and QCD and the b-enriched samples compared to their

corresponding MC samples are shown in Fig. 4.19.

There is good agreement between data and MC with any differences explained

by the discrepancies in the input variable comparisons. The data b-jet NN output is

more peaked due to a combination of contamination from udscg-jets and the lower

tagging efficiency in data. The fake-jets show very good agreement as would be

expected from the good agreement between the data and MC input variables. The

good agreement in these plots suggests that the input variables and their correlations

are similar between data and MC.

4.6 b-Efficiency Measurement

The efficiency of the NN tagger on data is measured in the following section for

inclusive b and c-jets; the statistical and systematic error associated with the mea-

surement are also derived.

The process by which the TRF for inclusive b and c-jets for data are measured

is illustrated in Fig. 4.20, is briefly outlined below, and is explained in more detail

in the rest of this section:

1. A b-jet TRF is measured for data using muonic b-jets6. This muonic b-jet TRF

is not however equivalent to the inclusive b-jet TRF7 [77].

2. A muonic b-jet TRF is measured for MC.

3. A data/MC scale factor (SF) is measured from the ratio of the data and MC

muonic b-jet TRFs.

6Muonic b-jets are used to measure the b-jet TRF for data, see Section 4.6.1.
7This is due to the presence of a high pT track from the muon.
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Figure 4.17: NN input variables in QCD bb̄ (red line) MC and the b-enriched data sample
(green squares) after the NN jet input cuts. The variables are JLIP Prob (top left), −Log10 (JLIP
Prob)(top right), CSIP Comb (2nd left), SVTL NTracks (2nd right), SVTSL DLS (3rd left), SVTSL

χ2

dof (3rd right), SVTSL Mass (bottom left) and SVTSL (bottom right). Comparisons should be
made between the shape and not the absolute levels of the input variables, as their areas have been

normalised to be equal.
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4. Inclusive b and c-jet TRFs are measured for MC.

5. Inclusive b and c-jet TRFs for data are produced by multiplying the inclusive

MC b and c-jet TRFs by the SF8.

Figure 4.20: The process to measure the TRFs for inclusive b and c-jets.

The measurement of the muonic b-jet data TRF is described in Sections 4.6.1 –

4.6.4, the data/MC scale factor in Section 4.6.5, the TRFs for inclusive b and c-jets

in Section 4.6.6 and the errors on the TRFs in Section 4.6.7.

4.6.1 System8 Method

The b-jet efficiency on data was measured using the System8 (S8) formalism [86]

which is the official DØ method for measuring the b-efficiency on data. A system of

8 equations with 8 unknowns is constructed by equating the number of tags found

by two different taggers on two different samples. The solutions to the equations

include the b-tagging efficiencies of the two taggers.

8The DØ certification assumes that the scale factor is the same for inclusive and muonic b-jets.
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In order that the equations are solvable the two taggers need to be uncorrelated

and have different b-efficiencies, the two data samples also need to have different

b-content.

The NN and SLT taggers are used as the two taggers. A SLT tag was defined as

a muonic jet where the muon satisfied a pTRel cut > 0.6 GeV. The two data samples

used were the b-ID muonic jet sample and a b-enriched subset consisting of muonic

jets with an away tag of JLIP Prob < 0.01.

Correlation coefficients are introduced in the S8 formulation to account for the

following effects:

α - Differences in the NN udsc-tagging efficiency between the two samples.

β - Differences in the NN b-tagging efficiency between the two samples.

κb - Correlation between the NN tagger and the SLT tagger for b-jets.

κudsc - Correlation between the NN tagger and the SLT tagger for udsc-jets.

There is an additional correlation coefficient, τslt, which accounts for the dif-

ferences between the SLT tagging efficiency on c and fake-jets. This correlation

coefficient is not included in the S8 formulation and is evaluated separately.

The correlation coefficients are measured using MC. The errors on these mea-

surements are used to estimate systematic errors. The S8 equations are defined

as:

n = nb + nudsc

p = pb + pudsc

nSLT = εSLT
b nb + εSLT

udscnudsc

pSLT = εSLT
b pb + εSLT

udscpudsc

nNN = εNN
b nb + εNN

udscnudsc

pNN = βεNN
b pb + αεNN

udscpudsc

nSLT,NN = κbε
SLT
b εNN

b nb + κudscε
SLT
udscε

NN
udscnudsc

pSLT,NN = κbβεSLT
b εNN

b pb + κudscαεSLT
udscε

NN
udscpudsc,

where n is the number of jets in the muonic jet sample, p is the number in the

b-enriched sample and ε is the efficiency of the tagger. The superscripts refer to the

NN and SLT taggers and the subscripts refer to the flavour of the jets, b or udsc.
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4.6.2 Measurement of the Correlation Coefficients

4.6.2.1 α

The correlation coefficient α, representing the difference between the NN tagging

efficiency for udsc-jets in the two samples, is not calculated from MC due to the

difficulty in producing the necessary MC samples. α is instead set equal to 1, and

the error due to the uncertainty in the value is estimated by varying this value from

0.2 to 1.8.

4.6.2.2 β

β represents any differences between the NN b-efficiencies in the two samples. β

was measured using the muonic b-jet MC, by calculating the ratio of the tagging

efficiency for b-jets with an away tag9 to that for all b-jets, and is shown in Fig. 4.21

(top).
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Figure 4.21: Top: The Loose NN tagging efficiency on muonic b-jets (green squares), the tagging
efficiency on muonic b-jets with an away tag (red squares), and their ratio, β (blue line) in the
b → µ MC sample as a function of jet pT (left) and η (right). The fit error on β is represented
by two black dotted lines although the error is to small for these to be seen. Bottom: The ratio
between β found in the Z → bb̄ → µ and tt̄ → b → µ samples in pT (left) and η (right) projections.

9An away tag is used to produce the b-enriched sub-sample (see Section 4.6.1)
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As well as the statistical uncertainty, another source of uncertainty exists due

to the sample dependency of β. As shown in Fig. 4.21 (bottom) the ratio of the β

value calculated in the Z → bb̄ and the tt̄ → b samples is not unity. The uncertainty

caused by the sample dependency is calculated by taking half the average deviation

from unity in the η and pT projections. The sample dependency error is added to

the statistical error in quadrature to give the total error on β.

4.6.2.3 κ

κb and κudsc represent the correlations between the NN and SLT taggers, and are

determined from the following relationship

κb,udsc =
εNN

b,udsc × εSLT
b,udsc

εNN&SLT
b,udsc

, (4.8)

where ε is the efficiency, the subscripts refer to the jet flavour, the superscripts

refer to the taggers and the ampersand to both tags being present.

κb was measured in the muonic b-jet MC sample and is shown in Fig. 4.22 (top).

A linear dependency exists in pT and it is therefore modelled using a straight line.

The error on the fit is determined from the full covariant error matrix and is therefore

also a function of pT . As the fit value and error are a function of pT the systematic

error due to the uncertainty in the measurement of κb also becomes a function of

pT .

Another source of uncertainty exists due to the sample dependency of κb. As

shown in Fig. 4.22 the ratio of the κb value calculated in the Z → bb̄ and the tt̄ → b

samples is not unity. An uncertainty is estimated for this effect by taking half

the average deviation from unity in the η and pT projections. The η projection is

restricted to a limited range in pT due to the pT dependence of κb and the difference

in the pT spectra in the two samples. The sample dependency error is added to the

statistical error in quadrature to give the total error on κb.

κudsc was measured in a similar manner to κb, but using the c → µ MC sample.

The statistical error was again added in quadrature with a sample dependency error,

calculated from the Z → cc̄ and the tt̄ → c samples, to give the total error on κudsc.

4.6.2.4 τslt

The correlation coefficient τslt, representing the differences between the SLT tagging

efficiency on c and udsg-jets, is not represented in the S8 equations. Instead the

uncertainty caused by this assumption is evaluated by recalculating the S8 efficiency

at different SLT operating points. The SLT pTRel cut is varied from 0.4 to 0.8. The
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Figure 4.22: Top: The efficiency of the SLT tagger (red circles), the Loose NN tagger (green
squares), the AND of the NN and SLT taggers (blue triangles), and κb (upside down purple
triangles), measured in the b → µ MC sample in the jet pT (left) and η (right) projections. The
black dotted line represents the error on the fit calculated from the full covariant fit error matrix.
Bottom: The ratio of κb measured in the Z → bb̄ → µ and tt̄ → b → µ MC samples in pT (left)

and η (right).

values of κb and κudsc are dependent on the value of the SLT pTRel cut and therefore

both these values are recalculated at each SLT operating point.

4.6.2.5 Correlation Coefficient Values

The values of the correlation coefficients are given in Table 4.11. The values and

errors are consistent between the η and pT projections. As the κb value and error are

pT dependent, the values are evaluated at the average jet pT value for the sample.

4.6.3 System8 Solution and Systematic Errors

The S8 equations were solved using TMinuit [87], for all the jets in the b-ID sample

and in several pT and η regions to create a profile over the pT and η phase space.

The systematic uncertainties, due to the errors in the correlation coefficients, are

determined by varying the coefficients by their aforementioned errors and resolv-

ing the equations. The relative differences in the efficiencies between the solutions

provide the systematic errors.
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Correlation Coefficient pT η

α 1.0 ± 0.8 1.0 ± 0.8

β 1.016 ± 0.004 1.016 ± 0.004

κb 1.000 ± 0.003 0.998 ± 0.003

κudsc 0.970 ± 0.026 0.975 ± 0.026

τslt (GeV) 0.6 ± 0.2 0.6 ± 0.2

Table 4.11: The S8 correlation coefficient values for the Loose operating point measured in the
pT and η projections. κudsc is evaluated at pT = 39 GeV in the pT projection (the average pT of

the sample). The values measured in the pT and η projections are consistent within errors.

The S8 efficiencies along with the systematic errors calculated for the b-ID sample

are shown in Table 4.12. The efficiency ranges from 50% for the tightest operating

point to 70% for the loosest operating point. The relative systematic uncertainties

vary from 1.5 − 2.1%.

L4 L3 L2 Loose Medium Tight

Efficiency 71.4% 68.8% 65.3% 59.0% 54.0% 48.6%

α 1.70% 1.14% 0.81% 0.73% 0.85% 0.69%

β 0.31% 0.39% 0.41% 0.48% 0.45% 0.65%

κb 0.55% 0.75% 0.67% 1.13% 1.19% 1.21%

κudsc 0.80% 0.71% 0.75% 0.29% 0.15% 0.16%

τslt 0.70% 0.78% 0.69% 0.63% 0.67% 0.49%

Total 2.11% 1.76% 1.52% 1.59% 1.67% 1.61%

Table 4.12: The b-efficiencies and their relative systematic uncertainties measured on the b-ID
skim. The total systematic uncertainty was determined by adding the individual uncertainties in

quadrature.

4.6.4 Efficiency and Scale Factor Parameterisation

The efficiency (and scale factor) in pT is parameterised using

ε(pT ) =
c

1 + ae−bpT
, (4.9)

where ε is the efficiency and a, b, and c are constants to be determined. The

efficiency is parameterised in η using
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ε(η) = d + eη + fη2 + gη3 + hη4, (4.10)

where ε is the efficiency and d, e, f , g and h are constants to be determined. To

create a 2D parameterisation it is assumed that the efficiency can be factorised into

η and pT components. A 2D parameterisation is created from the product of the

two projections scaled by the overall efficiency, εAll, of the sample

ε(pT , η) =
1

εAll
(

c

1 + ae−bpT
) × (d + eη + fη2 + gη3 + hη4). (4.11)

These functions were selected after testing several different functions in both the

pT and η projections, and selecting the functions which gave the smallest fit error.

4.6.5 Data/MC Scale Factor

The data efficiency for the b-ID skim calculated from the S8 equations is shown in

Fig. 4.23, along with the MC b → µ sample efficiency and the data/MC SF produced

by dividing the two. The SF measures the difference in the tagging rate caused by

the various tagging differences in data and MC. The profile of the SF allows tagging

rates to be corrected over the full pT and η phase space.

It was assumed that the SF could be applied to any MC tagging efficiency to

correct to the data tagging efficiency. This assumption allows the SF, which is

measured only on muonic jets, to be applied to both muonic and inclusive jets. The

validity of this assumption has not been tested and it is assumed that any effect will

be small in relation to the other errors. Further studies into this systematic error

were planned in the next round of certification.

The S8 errors evaluated on a bin-by-bin basis in the pT and η projections are

shown in Fig. 4.24 for the Loose operating point. Evaluating the S8 errors in each

bin produces a larger systematic error than calculating the S8 errors for the entire

sample. The S8 errors have very little η dependence, apart from at high η where

the τslt uncertainty is substantially larger. The S8 error calculated for each bin was

combined quadratically with the Minuit fit error on the b-efficiency to provide the

total uncertainty on the b-efficiency for each bin.

4.6.6 Tag Rate Functions

The inclusive b-jet TRF (TRFb) for data is calculated by multiplying the inclusive

b-jet MC TRF (produced from the inclusive b-jet MC sample) by the SF. The TRFbs

for data and MC are shown in Fig. 4.25.
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A similar procedure is used to determine the inclusive c-jet TRF (TRFc) for

data, the inclusive c-jet MC TRF (produced from the inclusive c-jet MC sample) is

multiplied by the SF to give the data TRFcs as also shown in Fig. 4.25.

 (GeV)
T

p
20 30 40 50 60 70 80 90 100

E
ff

ic
ie

n
cy

0.4

0.5

0.6

0.7

0.8

0.9

MC b
bTRFηTagger: Medium Range: All 

|η|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

E
ff

ic
ie

n
cy

0.3

0.4

0.5

0.6

0.7

0.8

0.9
MC b

bTRF > 15
T

Tagger: Medium Range: p

 (GeV)
T

p
20 30 40 50 60 70 80 90 100

E
ff

ic
ie

n
cy

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

MC c
cTRFηTagger: Medium Range: All 

|η|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

E
ff

ic
ie

n
cy

0.05

0.1

0.15

0.2

0.25

MC c
cTRF > 15

T
Tagger: Medium Range: p

Figure 4.25: NN tagger inclusive b-jet efficiency (top) and c-jet efficiency (bottom) as a function
of pT (left) and η (right) in both data (green line) and MC (red circles). The data TRF is calculated
by multiplying the MC TRF by the data/MC SF. The dotted black lines represent the error on
the fit which is almost entirely inherited from the error on the scale factor. The functions used for

the parameterisation are outlined in the text.

4.6.7 Systematic Uncertainties

It was assumed that there were two main sources of error in the TRFs:

Parameterisation Error - The parameterisation of the efficiency into η and pT

has a systematic uncertainty attributed to it, due to possible correlations be-

tween pT and η and the non-perfect parameterisations.

Sample Dependency - Differences exist between the tagging efficiencies in the

different samples and therefore a systematic uncertainty exists due to these

differences.
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4.6.7.1 Closure Tests

The systematic errors from the parameterisation and MC sample dependency are

both quantified in one measurement. The uncertainty is measured using the frac-

tional difference between the number of actual (TObs) and predicted (TPred) tags in

various bins in pT and η measured on the various MC samples:

Fractional Diff =
TObs − TPred

TObs
. (4.12)

Percentage differences are calculated in each pT bin in the CC, ICR and EC

calorimeter regions, for each TRF’s component MC samples. For each MC sample a

distribution is constructed from the fractional differences weighted by TObs. The root

mean squared (RMS) of the resulting distribution is then used as an estimate of the

uncertainty on the TRF for that particular MC sample. The fractional differences

are shown in Fig. 4.26 for two representative MC samples from the inclusive b-jet

TRF for the Loose operating point. Similar plots have been produced for the c-jet

and muonic b-jet TRFs.

The errors derived from the RMS of the closure tests are presented in Tables

4.13, 4.14 and 4.15 for the b, muonic b and c-jet TRFs respectively. The final

systematic uncertainty for each TRF was taken from the MC sample with the largest

uncertainty. The total uncertainty estimated from the closure test was larger than

the combined parameterisation and sample dependency uncertainty when they were

measured individually [74].

Error L4 L3 L2 Loose Medium Tight

b 0.94% 1.03% 1.16% 1.36% 1.53% 1.75%

QCD bb̄ 0.95% 0.98% 1.13% 1.42% 1.58% 1.78%

tt̄ → b 1.05% 1.12% 1.25% 1.4% 1.55% 1.78%

Z → bb̄ 1.04% 1.12% 1.21% 1.41% 1.49% 1.66%

Table 4.13: The b-jet TRF error for the b-jet sample and each of the constituent MC samples.
The sample with the largest error is used as the error on the TRF.

4.6.7.2 Total Systematic Errors

The final systematic errors for TRFb, TRFc and the SF are calculated as detailed

below, and are shown in Table 4.16.

SF - The RMS closure test error for the b → µ TRF.
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Error L4 L3 L2 Loose Medium Tight

b → µ 1.00% 1.10% 1.13% 1.34% 1.57% 1.74%

QCD cc̄ → µ 1.41% 1.51% 1.62% 2.03% 2.30% 2.44%

tt̄ → b → µ 1.63% 1.72% 1.86% 2.22% 2.56% 2.92%

Z → bb̄ → µ 1.14% 1.13% 1.10% 1.32% 1.48% 1.66%

Table 4.14: The muonic b-jet TRF error for the muonic b-jet sample and each of the constituent
MC samples. The sample with the largest error is used as the error on the TRF.

Error L4 L3 L2 Loose Medium Tight

c 1.66% 1.7% 1.86% 2.25% 2.53% 2.79%

QCD cc̄ 2.03% 2.01% 2.14% 2.59% 2.73% 2.86%

tt̄ → c → µ 4.08% 4.05% 4.04% 3.59% 4.17% 3.52%

Z → cc̄ 1.89% 1.85% 1.86% 2.25% 2.80% 2.89%

Table 4.15: The c-jet TRF error for the c-jet sample and each of the constituent MC samples.
The sample with the largest error is used as the error on the TRF.

TRFb - The SF systematic error added in quadrature with the RMS error for the

b-jet TRF.

TRFc - The SF systematic error added in quadrature with the RMS error for the

c-jet TRF.

Error L4 L3 L2 Loose Medium Tight

MC b → µ 1.63% 1.72% 1.86% 2.22% 2.56% 2.92%

MC b 1.05% 1.12% 1.25% 1.42% 1.58% 1.78%

MC c 4.08% 4.05% 4.04% 3.59% 4.17% 3.52%

SF 1.63% 1.72% 1.86% 2.22% 2.56% 2.92%

TRFb 1.94% 2.05% 2.24% 2.64% 3.01% 3.41%

TRFc 4.39% 4.40% 4.45% 4.22% 4.89% 4.57%

Table 4.16: Total systematic errors on the MC sample parameterisations, the SF and the TRFs.

4.6.7.3 Statistical Error

The overall statistical error, σstat, is calculated by evaluating
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σstat =
f±1σ(pT ) × f±1σ(η)

f±1σ
All

− f(pT ) × f(η)

fAll
, (4.13)

where f is the parameterised fit in pT and η, fAll is the overall value of the

parameterised value when calculated for the entire sample and ±1 σ refers to the

±1 sigma statistical fits. The fluctuation which produces the largest deviation is

taken as the statistical error.

4.6.7.4 Total Error

The total errors, given by the statistical and systematic errors combined in quadra-

ture, for the SF, TRFb and TRFc are shown in Fig. 4.27 as a function of pT and η.

Statistical errors dominate at low pT and high η values, where the curves deviate

from the constant systematic error values (outlined in Table 4.16).
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Figure 4.27: The total relative error (combined systematic and statistical) for the Scale Factor
(SF) (top), TRFb (middle) and TRFc (bottom) for the L4 (red circles), L3 (green squares), L2 (blue
triangles), Loose (purple triangles), Medium (cyan empty circles) and Tight (grey empty squares)

NN operating points in terms of pT (left) when η = 1.2 and η (right) when pT = 45 GeV.
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4.7 Fake Rate

The DØ fake rate measurement is different to that used for the b and c-jet efficiency

measurements. The fake rate is measured, as illustrated in Fig. 4.28, by making use

of the negative tags in data, which provide an approximate description of the fake

rate (see Section 4.1.1.2). The negative tag rate (NTR) is corrected to the fake rate

by NT scale factors, which correct for the presence of heavy flavour in the NTs, and

for the asymmetry between the NTs and PTs caused by long lived ‘light’ particles.

Figure 4.28: The process used to measure the fake rate in the DØcertification.

The measurement of the NTR is outlined in Section 4.7.1, the NT scale factors

in Section 4.7.2, the fake rate in Section 4.7.3 and the errors on the fake rate in

Section 4.7.4.

4.7.1 Negative Tag Rate

The negative tag rate (NTR) is measured using the COMB data skim (EM and

QCD combined). The NTR is parameterised in pT in the three η regions outlined in

Section 4.1.1.4. The NTR is given in Table 4.17 and is shown for the Loose tagger

in Fig. 4.29.
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Region L4 L3 L2 Loose Medium Tight

CC 5.36% 4.13% 2.96% 1.54% 0.89% 0.50%

ICR 4.92% 3.75% 2.65% 1.34% 0.75% 0.42%

EC 4.74% 3.58% 2.48% 1.18% 0.61% 0.30%

Table 4.17: NTR measured for the COMB skim, for all pT in the three calorimeter regions.
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Figure 4.29: The NTR parameterisation for the COMB skim in the CC (red circles), ICR (green
squares) and EC (blue triangles). The NTR is parameterised with a second order polynomial and

the dotted lines show the ±1σ fit error.
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4.7.2 Negative Tag Rate Scale Factors

The NTR is not a perfect approximation for the fake rate, as a contribution exists

in the NTR from c and b-quarks and an asymmetry exists between the NTs and

PTs due to long lived light particles. To correct the NTR to the fake rate, two NT

correction scale factors (NTSF) are applied.

SFhf - The ratio of the light jet NTR to the total NTR. This corrects for the heavy

flavour component in the NTR.

SFll - The ratio between the light jet PTR and the light jet NTR. This corrects for

the long lifetime fake decays not found in the NTR.

Applying these two correction factors to the NTR yields the data FTR:

FTR = SFhf × SFll × NTR. (4.14)

The NTSFs as a function of pT in the three η regions are shown in Fig. 4.30 for

the L4 operating point measured on a MC sample consisting of all the different pT

QCD samples outlined in Table 4.4. The fit error on the NTSFs are scaled up by

the
√

χ2/NDF of the fit to account for the uncertainty in the fit parameterisations.
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Figure 4.30: The heavy flavour correction, SFhf (red circles), light jet asymmetry correction,
SFll (green squares), and total NT SF correction (blue triangles) in the CC (top left), ICR (top

right) and EC regions (bottom) for the L4 operating point. For fit details see the text.
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In the EC a constant fit is used. However, in the ICR and CC regions the NTSF

is observed to be constant at high pT but with a dip at medium pT . Several fit

functions were tested to try and model this function. Fitting a straight line fit at

high pT and a parabola at low pT was tested; however this produced discontinuities

in both the value of the NTSF and the gradient. To overcome these problems a

fourth order polynomial was used between 15 < pT < 95 GeV in the CC region

and 15 < pT < 135 GeV in the ICR region. These ranges include the beginning

of the constant region at high pT so that the fit reproduces the dip and finds a

maximum at the beginning of the constant region. The fit value and error at the

maximum can then be used to continue the curve as a constant value. This method

ensures a FTR which is a continuous function in both value and gradient and which

correctly describes the constant at high pT .

4.7.3 Fake Rate

The FTR parameterisations and rate for the COMB skim are shown in Fig. 4.31

and Table 4.18 respectively.

Region L4 L3 L2 Loose Medium Tight

CC 4.13% 3.09% 2.14% 1.03% 0.57% 0.29%

ICR 4.22% 3.14% 2.17% 1.06% 0.56% 0.29%

EC 4.86% 3.62% 2.49% 1.19% 0.63% 0.30%

Table 4.18: The data FTR calculated on the COMB skim, in the three calorimeter regions for
all pT .

4.7.4 Systematic Uncertainties

Systematic uncertainties exist due to: differences in the NTRs for the EM and QCD

skims, the parameterisation of the NTRs into three η regions and the uncertainty in

the determination of the NTSFs. The calculation of these uncertainties is outlined

below, along with a determination of the total statistical and systematic uncertain-

ties on the fake rate.

4.7.4.1 Sample Dependency Systematic Error

The COMB skim consists of two component data samples, the QCD and EM skims.

A systematic uncertainty exists due to the difference in the NTRs for these two
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Figure 4.31: The FTRs parameterised in the CC (red), ICR (green) and EC (blue)for the Loose
operating point. The dotted black lines represent the fit error.

samples. The NTRs in the EM and QCD skims, along with their ratio in the CC,

ICR and EC calorimeter regions are shown in Fig. 4.32.

A small discrepancy exists between the NTRs in the QCD and EM skims, al-

though the observed differences are much smaller than those for the JLIP and SVT

taggers [76, 77]. In the CC and ICR regions the differences are less than 1%, al-

though in the EC region a difference of 4% exists. Numerous studies have been

conducted into the NTR differences between the EM and QCD skims [76, 77]. Sev-

eral possible explanations have been suggested, although no single reason has been

shown to be the cause. The two most important conditions are the trigger conditions

and the skimming criteria, both of which can cause biases towards different types

of jets with differing tagging rates. The SVT and JLIP taggers obtained improved

agreement between the EM and QCD skims by only using jets with EMF10 < 0.8

(‘low EMF’). However, repeating this cut for the NN tagger made the agreement

worse.

A systematic error was estimated due to the differences between the QCD and

EM skims. The systematic error is calculated from a constant fit to the EM and

QCD ratio. Half the difference between the fit value and unity is taken as the

systematic error, or if the ratio is consistent with unity within the fit error scaled

by
√

χ2/NDF , then the scaled fit error is taken as the error. The systematic errors

are shown in Table 4.19 when using all jets and in Table 4.20 when comparing only

10The fraction of the energy deposited in the EM layers of the calorimeter .
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Figure 4.32: The NTR parameterisation for the EM skim (top left) and the QCD skim (top right)
in the CC (red circles), ICR (green squares) and EC (blue triangles). The NTR is parameterised
with a second order polynomial and the dotted lines show the ±1 σ fit error. The ratio of the
EM and QCD NTRs in the CC (middle left), ICR (middle right) and EC (bottom) regions is also

shown.
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‘low EMF’ jets. The comparison which showed the largest discrepancy, in this case

the ‘low EMF’ comparison, is used as the uncertainty.

Region L4 L3 L2 Loose Medium Tight

CC 0.46% 0.42% 0.51% 0.36% 0.34% 0.58%

ICR 0.34% 0.35% 0.39% 0.47% 0.52% 0.72%

EC 1.81% 1.87% 1.96% 2.13% 1.77% 1.20%

Table 4.19: Errors assigned to the difference in the NTRs for the EM and QCD skims..

Region L4 L3 L2 Loose Medium Tight

CC 3.90% 4.23% 4.92% 5.78% 6.70% 8.00%

ICR 3.14% 3.53% 3.93% 4.53% 5.58% 6.84%

EC 2.89% 2.92% 3.16% 3.68% 3.34% 3.27%

Table 4.20: Errors assigned to the difference in the NTRs for the EM and QCD skims for jets
with EMF < 0.8.

4.7.4.2 Parameterisation Systematic Error

The uncertainty caused by the parameterisation of the NTR in the three η regions

is estimated by comparing the number of tags found by the tagger and the number

predicted from the NTR. Figure 4.33 shows the actual and the predicted number

of tags as a function of pT in each of the η regions for the COMB data sample.

A systematic error due to the parameterisation of the NTR is calculated from the

straight line fit to the ratio of the actual and predicted number of tags. The error is

taken as the deviation of the ratio from 1, or if the ratio is consistent with 1 within

the error scaled by
√

χ2/NDF , then the error is taken to be the scaled fit error.

The systematic errors are shown in Table 4.21.

As a cross check the actual and predicted number of tags found in the QCD and

EM skims when using the COMB parameterisation were compared. The differences

were found to be small, < 1% except for the EC, and were well within the errors

assigned to account for the discrepancies between the skims (shown in Table 4.20).

4.7.4.3 Negative Tag Rate Scale Factors Errors

Correcting the NTR with the NTSFs introduces a systematic error due to the un-

certainty in the proportions of b and c in the Pythia MC simulation. A systematic
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Figure 4.33: The predicted and actual number of NTs in the three eta regions for the Loose tagger
on the COMB skim (top) and the relative difference between the actual and predicted number of

NTs in the CC (middle left), ICR (middle right) and EC (bottom) η regions.



4.7 Fake Rate 154

Region L4 L3 L2 Loose Medium Tight

CC 0.14% 0.16% 0.19% 0.26% 0.34% 0.45%

ICR 0.17% 0.20% 0.23% 0.32% 0.43% 0.58%

EC 0.23% 0.26% 0.31% 0.07% 0.62% 0.88%

Table 4.21: The systematic uncertainties on the COMB skim parameterisation.

error is estimated by varying the number of b and c quarks present in the MC by

±20% [48]. The fake rate was recalculated and the largest discrepancy in the fake

rate taken as the systematic error on the b/c content. The errors are outlined in

Tables 4.22 and 4.23.

Region L4 L3 L2 Loose Medium Tight

CC 3.11% 3.49% 3.97% 5.01% 5.93% 7.21%

ICR 2.88% 3.26% 3.75% 4.84% 5.69% 6.89%

EC 1.32% 1.51% 1.59% 2.13% 2.78% 3.41%

Table 4.22: The systematic error in the FTR due to the uncertainty in the b-content in the MC.

Region L4 L3 L2 Loose Medium Tight

CC 2.48% 2.64% 2.83% 3.00% 3.10% 3.08%

ICR 2.28% 2.38% 2.56% 2.80% 2.99% 3.08%

EC 1.30% 1.40% 1.49% 1.67% 1.98% 2.18%

Table 4.23: The systematic error in the FTR due to the uncertainty in the c-content in the MC.

4.7.4.4 Total Systematics

The total systematic error for the FTR is calculated by adding the systematic un-

certainties on the b and c content (as they are likely to be highly correlated) and

then adding this in quadrature with the parameterisation and EM/QCD ratio errors.

The total systematics are shown in Table 4.24.

4.7.4.5 Total Errors

The total errors on the fake rate, given by the statistical (shown in Fig. 4.31) and

systematic errors combined in quadrature are shown in Fig. 4.34. The dominant
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Region L4 L3 L2 Loose Medium Tight

CC 6.81% 7.43% 8.37% 9.83% 11.10% 12.90%

ICR 6.02% 6.64% 7.38% 8.87% 10.30% 11.90%

EC 3.88% 4.08% 4.3% 5.16% 5.74% 6.24%

Table 4.24: Total systematic errors on the FTR.

error is the systematic error although the statistical error on the fits has an increasing

contribution as the operating point becomes tighter, and at high and low pT values.
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Figure 4.34: The total relative error (combined systematic and statistical) for the L4 (red circles),
L3 (green squares), L2 (blue triangles), Loose (purple triangles), Medium (cyan empty circles) and
Tight (grey empty squares) NN operating points on the Fake-Tag Rate in the CC (top left), ICR
(top right) and EC (bottom) as a function of pT . The error on the L4 operating point in the CC

increases at large pT due to the uncertainty in the NTSF fits.

4.8 Data Performance

Using the b-efficiencies and fake rates measured in the previous two sections, it is

now possible to construct a profile of the performance of the NN b-tagger on data

and accurately compare it to other b-tagging tools. The performance of the NN and

JLIP taggers measured on data, including full statistical and systematic errors, is
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shown in Fig. 4.35 for all jets. The NN tagger shows a significant gain in performance

compared to the JLIP tagger, with relative increases in efficiency of up to 40% for

a fixed fake rate. Fake rates are typically reduced to between a quarter and a third

of their value for a fixed signal efficiency.

The performance of the NN tagger evaluated on a MC sample, but with the

tagging performance and error calculated jet by jet using the data derived TRFs

for b, c and fake-jets is shown for all jets in the Z → bb and Z → qq MC in

Fig. 4.36. This demonstrates the overall performance and uncertainty of the NN

tagger on a real physical process of interest. The NN tagger has a significantly better

performance when compared to the JLIP tagger. The uncertainty on the b-efficiency

is about half that of the JLIP tagger, although the looser operating points have a

larger uncertainty on the fake rate.

4.9 Conclusion

DØ’s first Neural Network b-tagging tool has been developed and certified11 for

use at DØ. The performance of the NN tagger was measured and parameterised

into TRFs for six operating points with fake rates ranging from 0.3% to 4.0%.

The performance of the NN tagger on data compared to the JLIP tagger showed

considerable improvement, although the improvement was smaller than that in MC.

For a fixed fake rate relative improvements in signal efficiency range from ∼ 40% for

the tightest operating to ∼ 15% for the loosest operating point. Fake rates, for a

fixed signal efficiency, are typically reduced to between a quarter and a third of their

value. The improved tagging has significantly increased the sensitivity of the Higgs

search at DØ. The benefit from the new tagger is expected to be the equivalent of

doubling the luminosity on a double b-tag analysis.

11Measured, tested and approved for use on data after being reviewed by the DØ collaboration.
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Figure 4.35: Performance profile of the NN (blue circles) and JLIP (green squares) taggers on the
b-ID and COMB skim. The errors represent the total uncertainty, statistical and systematic. The
NN tagger shows large performance gains over the JLIP tagger, with relative increases in efficiency
of up to 50% for a fixed fake rate. Fake rates are typically reduced to between a quarter and a

third of their value for a fixed signal efficiency.
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Figure 4.36: ‘Data’ performance profile of the NN (blue circles) and JLIP (green squares) taggers
on Z → bb̄ and Z → qq̄ MC samples. The performance is calculated on a jet by jet basis. The

error represents the full statistical and systematic error.
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Chapter 5

Search for Neutral
Supersymmetric Higgs Bosons

5.1 Introduction

The largest production cross section for the SM Higgs at the Tevatron, as shown

in Fig. 5.1, is gg → H. However, a low mass Higgs will decay into a pair of b-

quarks ∼ 90% of the time, as shown in Fig. 5.2. This results in the signal becoming

indistinguishable from the overwhelming gg, qq̄ → bb̄ background.
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_
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Figure 5.1: The production cross section [88] for the SM Higgs Boson at the Tevatron.

Higgs searches are therefore carried out in associated production channels. Such

channels tend to have a more distinctive signature with correspondingly smaller
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Figure 5.2: The branching ratio [88] for the SM Higgs Boson.

backgrounds. Even with their lower production cross sections they are more sensitive

search channels. The associated production channels with the largest cross sections

are WH and ZH, both of which are around an order of magnitude lower than

gg → H.

The associated production of a Higgs with a bottom quark (bH) allows suppres-

sion of backgrounds due to the presence of an additional b-quark. It has a production

cross section a factor of 2 smaller, whilst bbH production is an order of magnitude

less (than the WH and ZH channels). Additionally the sensitivity of these channels

is orders of magnitudes smaller due to the prohibitively high multi-jet background.

However, there are several Higgs schemes where the coupling of the Higgs to the b

is enhanced and consequently bH production becomes the single largest source of

Higgs bosons. Searches in the bH/bbH channel allow such theories to be investi-

gated. The Minimal Supersymmetric extension of the Standard Model (MSSM) is

such a scheme, where the coupling of the Higgs to the bottom-quark is enhanced by

a factor of tan β, and therefore the production cross section is enhanced by tan2 β

(see Section 1.2.1).

There are two major search channels in the MSSM scheme hb → bbb and hb →
bττ (where h = A, h and H) which correspond to the two largest branching ratios for

a low mass Higgs. This chapter documents three iterations of the hb → bbb search

channel, which follows past searches at CDF in Run I [22] and at DØ in Run II [23].

The next section gives a brief overview of this analysis and the strategy used.
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5.1.1 Analysis Overview

The tree level processes which contribute to the associated production of a neutral

MSSM Higgs boson with a b-quark, when the Higgs decays to two b-jets, are shown

in Fig. 5.3 and outlined below:

• qq,gg→bbh→bbbb

• qq,gg→bg→hb→bbb

Figure 5.3: Leading–Order Feynman diagrams showing gb→hb and gg,qq→bbh production.

The signal is selected by requiring three b-jets. The main backgrounds are QCD

production of heavy flavour jets such as bbjj (j represents udsg here), bbbb and

bbcc. The uncertainty on the Monte Carlo production of such processes can only be

calculated to LO at the moment, and the associated uncertainty on the cross section

is up to 100% (see Section 5.3.2). These large errors mean that the simulation is

unsuitable for use in the background prediction. A method was therefore developed

to predict the background distributions from data.

The triple tagged background distributions are predicted from data in three

stages. Firstly, a tag rate function (TRF) for jets is measured using the data sample.

Secondly, the TRF is used to predict the shape of the triple tagged background

distributions by weighting the double tagged events by the probability that the

non-b-tagged jets in the event would be tagged according to the TRF. Finally, the

predicted shape of the triple b-tagged background distributions is normalised to data

outside the signal region. A flowchart outlining the background prediction method

is shown in Fig. 5.4.
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The di-jet mass distributions from the data background prediction, the signal

simulation and the data are then used to set limits on the production of the neutral

MSSM Higgs bosons.

5.1.2 The Three Analysis Generations

The author has participated in the three versions of the hb analysis described in this

chapter. The first analysis documented in Section 5.5 is the ‘p14 Pass1’ [71] analysis

which was approved by the Collaboration and published in Physical Review Letters

[24]. The author carried out trigger studies for this analysis.

The second analysis, documented in Section 5.6, is the ‘p14 Pass2’ analysis. The

aim of the Pass2 analysis was to investigate the effect of the higher performance

b-tagging from the Neural Network tagger in the hb analysis and was not aimed

at external publication. The author undertook all the work in this version of the

analysis, and co-developed a new analysis method and background model1 which

was needed due to the improved b-tagging.

The above analyses are jointly referred to as the p14 analyses due to the version

of the offline reconstruction code used.

The last analysis, documented in Section 5.7, is the ‘p17’ analysis. The author’s

contribution included the design of the triggers (see Section 3.4) which collected two

thirds of the data, the joint development of the new background model and analysis

method, and the Neural Network b-tagging. This version of the analysis has been

approved as a preliminary result by the collaboration for ICHEP 2006 [26], and is

aiming for publication in early 2007.

The data used in the analyses are outlined in Section 5.2, the Monte Carlo

samples in Section 5.3 and the triggers in Section 5.4.

5.2 Data

The Pass1 and Pass2 p14 analyses were conducted on data collected from Novem-

ber 2002 – June 2004 and the p17 analysis was conducted on data collected from

November 2002 – April 2006. Three ‘versions’ of the data were used in the analyses,

referred to as ‘Pass1’, ‘Pass2’ and ‘p17’.

Pass1 consists of physics objects reconstructed from the raw data. Pass2 data

had calorimeter fixes for known problems and t422 cell killing applied before the

1This work was jointly carried out with members of the Saclay group.
2The suppression of calorimeter cells whose energy is less than 2σ above noise, unless they have

a neighbouring cell whose energy is 4σ above noise.
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Figure 5.4: The hb analysis triple b-tagged background prediction method. The different coloured
boxes correspond to: data samples (blue), derived samples (green) and processes (red).
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reconstruction of the physics objects [89]. p17 data included full hadronic and

EM calorimeter calibrations and the jet reconstruction threshold was lowered from

pT > 8 GeV to pT > 6 GeV, in addition to the Pass2 improvements.

5.2.1 Skimming

Suitable data were ‘skimmed’ from the full data set; events were required to have

three jets with uncorrected transverse momentum pT > 15 GeV with two having

pT > 25 GeV. The pT and η distributions of the jets in the Pass1, Pass2 and p17

skims are shown in Fig. 5.5. The p17 data has a much smoother η distribution due

to the calorimeter and jet data quality improvements.

5.2.2 Data Quality

All runs flagged as having detector problems in either the tracking (SMT and CFT),

calorimeter (Cal) or muon systems were removed. This resulted in the loss of 14 –

15% of the data as outlined in Table 5.1. All events with bad luminosity information

were also excluded, resulting in the loss of < 1% of the data.

Epoch Luminosity (pb−1) SMT CFT Muon Cal Any

Pre-v12 122 6.7% 1.5% 9.4% 9.0% 24.6%

v12 219 0.5% 0.2% 3.6% 5.4% 9.4%

All pre-v13 341 2.7% 0.7% 5.7% 6.7% 14.8%

v13 379 2.8% 1.1% 1.5% 7.3% 12.2%

v14 324 2.6% 1.2% 2.0% 10.7% 16.1%

All 1044 2.7% 1.0% 3.0% 8.2% 14.3%

Table 5.1: The percentage of runs in the different trigger list epochs which are classed as bad in
the SMT, CFT, Muon, Cal and Any detector subsystems [90]. The ‘All pre-v13’ epoch corresponds

to the p14 analyses and the ‘All’ epoch corresponds to the p17 analysis.

5.3 Event Simulation

Due to differences between MC and data, all simulated events have their jet reso-

lution [91], jet taggability [45], jet reconstruction efficiency [92] and b-tagging [74]

corrected to match those seen in data. The signal and background MC samples are

outlined in more detail in the following two sections.
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Figure 5.5: The pT (left) and η distribution (right) of the jets in the Pass1 (top), Pass2 (middle)
and p17 data sets from the highest pT (1st jet) to the lowest pT jet (4th or 5th). The jets have

passed the skimming, trigger, data quality and taggability requirements.
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5.3.1 Signal Samples

Due to radiative effects the two hb production processes, outlined in Section 5.1.1,

are nearly indistinguishable in the 3/4-jet channels [93, 94]. Kinematic comparisons

of the two processes using Pythia [70] samples produced with initial state radiation

(ISR) and final state radiation (FSR) turned on demonstrated that the two samples

have almost identical kinematic distributions [95]. Thus to avoid double counting

of events, only one of the processes is used to model the signal. The hb process was

chosen as it has a simpler NLO calculation with smaller scale uncertainties.

The hb MC is produced using Pythia with ISR and FSR, a hard scatter of

pT > 15 GeV and no rapidity cuts. For the p14 analyses 100,000 events were

produced for each of the following Higgs masses: 90, 100, 110, 120, 130, 150 GeV.

For the p17 analysis ∼50,000 events were produced for Higgs masses of 100, 110,

120, 150 and 170 GeV.

The Pythia events were compared to those from the NLO calculation from

MCFM [96]. The events were weighted so that the pT and η spectrum of the Higgs

matched the NLO spectrum predicted by MCFM. Cross sections were calculated

using the NLO calculations from MCFM and are shown in Table 5.2. The renor-

malisation and factorisation scales (µ) used in the MCFM simulation were fixed to

the same value of µ = (2mb +Mh)/4 motivated by the studies in [95, 97]. The cross

sections used in the p14 and p17 analyses had a ∼ 15% difference in the NLO values

due to different versions of the CTEQ PDFs [98] being used in MCFM. The p14

analysis used CTEQ5 and p17 CTEQ6. A larger error was used in the p17 analysis

to reflect this difference.

The jet pT and η distributions are shown in Fig. 5.6 for the Pass2 signal sample

as a representative distribution.
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Figure 5.6: pT (left) and η distribution (right) for the Pass2 MC samples from the highest pT (1st
jet) to the lowest pT jet (5th). The jets have passed the skimming, trigger, quality and taggability

requirements.
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mh (GeV)
hb (fb) (pT > 15 GeV)

p14 p17

90 9.99 10.93

100 6.45 7.28

110 4.42 5.00

120 3.03 3.52

130 2.16 n/a

150 1.12 1.29

170 n/a 0.71

Table 5.2: Signal production cross sections used to normalise the hb MC samples. The values are
taken from the NLO calculations and correspond to tanβ of 1 [96].

5.3.1.1 Combined Cross Section

At large tan β the combined production cross section of the h and H is nearly always

equal to that of the A boson. As this analysis does not distinguish between the three

neutral Higgs bosons, the total cross section is therefore assumed to be double that

of the A alone. The production cross sections of the h, H and A bosons in association

with a bottom quark as a function of mA, calculated using the HQQ program [88],

are shown in Fig. 5.7.

The effect of any possible mass splitting between the Higgs bosons away from

the degenerate region was checked by modelling the three Higgs bosons as separate

distributions at different masses. The effect that this had on the final limit was less

than 1% [71].

5.3.1.2 Width

The widths of the neutral Higgs bosons vary as a function of tanβ and mass as shown

in Fig. 5.8. For the majority of the phase space to which this analysis is sensitive,

the Higgs width is less than the detector di-jet mass resolution (∼ 20 GeV) and so

could be neglected. However, at high masses and large tanβ, the width of the Higgs

becomes greater than the detector di-jet mass resolution. The effect a large Higgs

width has on the analysis was studied and found to be small. It was concluded that

the Higgs width could be neglected [71].

5.3.2 Background Samples

Any process which produces a multi-jet final state is a potential background to this

channel. The main backgrounds are listed below.



5.3 Event Simulation 168

 (GeV)Am
100 105 110 115 120 125 130 135 140

h
/H

/A
 c

ro
ss

-s
ec

ti
o

n
 (

p
b

)

-210

-110

1

10

Figure 5.7: Production cross sections for neutral Higgs bosons associated with a bb pair at
leading–order as a function of mA only, for tan β of 30 calculated using HQQ [88]. The A is solid,
the h is dashed, and the H is dotted. The sum of h, H, and A production is shown dashed-dotted,

and is always equal to twice the A production alone.

m (GeV)
40 60 80 100 120 140 160 180 200

m (GeV)
40 60 80 100 120 140 160 180 200

 (G
eV

)
Γ

-110

1

10

210

 = 30βtan 
 = 60βtan 
 = 80βtan 
 = 100βtan 

Figure 5.8: Higgs width as a function of mass and tan β. At high tan β and mass the width is
larger than the experimental resolution of ∼ 20 GeV.
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jjj/jjjj - Multi-jet QCD production with 3 or more fake-jets (uds or gluon-jets)

in the final state. This sample was modelled and normalised using the data

sample, and is referred to as jjj.

bbj/bbjj - Multi-jet QCD production with 3 or more jets in the final state, two of

which must be b-jets with the remaining jets udsc or gluon-jets. Alpgen [85],

a leading-order matrix element generator, is used to generate the parton level

events. The parton level events are then passed through Pythia to model the

partonic cascades and their transformation into their final observable hadron

states. The bbj and bbjj samples were merged together, with the bbjj sample

weighted by 0.85 so that the combined bbj and bbjj samples matched the jet

multiplicity in data. The combined sample is referred to as bbj.

bbb/bbbb - Multi-jet QCD production with 3 or 4 b-jets in the final state, again

modelled using Alpgen.

tt - Always has at least 2 b-jets from the decay of the t-quarks, and will often have

2 or 4 more jets depending on how the W bosons decay. Generated using

Pythia, with the production cross section taken from the combined DØ Run

II measurement [99].

Zj - Z decays into 2 b-jets with an additional udsc or gluon-jet. This is expected

to be a small contribution to the background. Generated using Pythia with

the cross section given by the DØ Run II measurement [100].

Zb/Zbb - Z decays into 2 b-jets with 1 or 2 additional b-jets. Generated using

Pythia with the cross section given by MADGRAPH [101, 102].

The background MC samples along with their cross sections and generator level

cuts are outlined in Table 5.3. The p17 cross sections are higher due to a couple

of changes. The PDF set was altered from CTEQ5L to CTEQ6L1, which increased

the yields by ∼ 10%. In addition the renormalisation and factorisation scale (Q2)

in ALPGEN was switched from Q2 = 1/N
∑

p2
t to Q2 =

∑
p2

t , where N is the

number of partons. This resulted in a 50% decrease in the cross sections. As there

is no reason to choose one of these scales over the other, the uncertainty on the cross

section for these processes is very large. In addition the requirements on the bbbb

sample were loosened to the asymmetrical cut of 2 b-quarks with pT > 25 GeV and

3 b-quarks with pT > 25 GeV. This is to account for the three b background which

was overlooked in the p14 Pass1 analysis.
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Process Cross–section (pb) Generator Cuts (pT in GeV)

bbjj 3810 (ALPGEN p14) pT (b)>25, pT (j)>15, |η|<3.0

bbjj 2540 (ALPGEN p17) “”

bbj 8940 (ALPGEN p14) “”

bbj 3810 (ALPGEN p17) “”

bbbb 58 (ALPGEN p14) pT (b)>15, |η|<3.0

bbbb 120 (ALPGEN p17) pT (2b) >25, pT (3b) >15 GeV, |η|<3.0

bb̄b 3.2 (ALPGEN p17) pT (2b) >25, pT (3b) >15 GeV, |η|<3.0

tt 7.1 (DØ Run I) none

Z(bb)+jets 1180 (DØ Run II) none

Zb 10 (MADGRAPH) pT (b)>15, |η|<3.0

Zbb 3 (MADGRAPH) “”

Table 5.3: Background MC cross sections, source of the cross section and generator level cuts
where applicable.

5.4 Trigger

Due to the large cross section for QCD multi-jet production the data are collected

with a specialised multi-jet trigger. The triggers are designed to maximise signal

acceptance whilst maintaining a reasonable rate to tape of ∼ 3 Hz.

The data were collected with five different generations of the multi-jet trigger re-

ferred to as versions v9/10, v11, v12, v13 and v14. The triggers became increasingly

sophisticated as greater rejection was required at higher instantaneous luminosities.

Full details of all the triggers can be found in Section 3.4. The integrated luminosity

collected by each of the triggers after data quality cuts is shown in Table 5.4. The

total luminosity recorded by the triggers is less than that for all triggers due to data

quality cuts and pre-scales3.

The multi-jet triggers are outlined in detail in Section 3.4.

5.4.1 Trigger Simulation

The use of triggers to collect data leads to biases in the kinematic quantities of the

events. MC events, being simulated and therefore not collected using a trigger, need

to have such trigger effects simulated to properly model the data collected for the

analysis.

3Random selection of a subset of the triggered events to be written out to tape so that the rate
remains within bandwidth constraints at high luminosities.
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Trigger List Version Name
Integrated Luminosity (pb−1)

Pass1 Pass2 p17

v9/v10 3JT15 33.4 36.1 28.8

v11 3JT15 PV 54.8 57.6 55.4

v12 3JT15 2J25 PVZ 172.0 185.3 171.9

v13 JT2 3JT15L IP VX n/a n/a 328.3

v14 JT2 3JT15L IP VX n/a n/a 171.3

Total 261.2 279.0 880.1

Table 5.4: The recorded integrated luminosity of each of the multi-jet triggers after data quality
cuts for the Pass1, Pass2 and p17 analyses.

The effect of the trigger is simulated in the MC by weighting each event by the

probability that it would have passed the trigger. The trigger simulation calculates

the probability that each offline jet is associated with a L1 calorimeter jet tower,

L2 jet and L3 jet based upon the pT and η of the jet [71, 103]. The individual jet

probabilities are then combined into an overall event probability.

The L3 b-tagging requirement, used in the v13 and v14 triggers, is simulated by

modelling a L3 IP probability distribution for jets based upon the flavour of the

jets, and if the jet is tagged offline or not. L3 IP probabilities are then randomly

selected from the distributions for each jet in an event, and combined into an overall

simulated event probability. The turn-on curve for the simulated event probability

was measured on data relative to events with a L3 IP probability of < 0.054. The

probability of the event passing the trigger is then directly obtained from the turn-on

curve [26].

Each MC event is weighted by the probability that it has passed one version

of the trigger. MC events have a trigger version chosen by random selection based

upon the integrated luminosities collected by each trigger.

5.4.2 Trigger Efficiencies

The trigger efficiencies calculated for each of the signal MC samples are shown in

Table 5.5 for the jet terms only, in Table 5.6 for the L3 IP b-tag term only and

in Table 5.7 for the combined trigger terms. The efficiencies are quoted relative to

the basic p17 analysis cuts of pT > 40, 25, and 15 GeV for the first, second, and

third leading jets respectively. When the L3 IP b-tag cut is included in the trigger

simulation, the efficiencies are calculated relative to events which have at least three

Tight NN b-tags.

4An IP probability of <0.05 is the b-tagging applied in the trigger condition.
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Trigger List
mh (GeV)

100 110 120 150 170

v9/10 55.7 ±0.6% 56.9±0.5% 60.1±0.5% 59.5±0.5% 63.9±0.4%

v11 42.6±0.5% 45.2±0.5% 48.6±0.5% 49.5±0.4% 55.7±0.4%

v12 42.6±0.5% 45.2±0.5% 48.6±0.5% 49.5±0.4% 55.7±0.4%

v13 45.5±0.5% 47.7±0.5% 51.7±0.5% 52.6±0.4% 58.2±0.4%

v14 47.7±0.6% 48.9±0.5% 52.3±0.5% 53.4±0.4% 58.9±0.4%

Overall 46.1±0.6% 46.9±0.5% 51.3±0.5% 53.0±0.4% 58.3±0.5%

Table 5.5: The trigger efficiencies for the various signal masses for the jet terms only. The
‘Overall’ efficiency is given by the integrated luminosity weighted average efficiency of the trigger

lists. The uncertainties are statistical only.

Trigger List
mh (GeV)

100 110 120 150 170

v13 90±1% 87±1% 85±1% 89±1% 85±1%

v14 87±1% 87±1% 85±1% 86±1% 86±1%

Table 5.6: The trigger efficiencies for the various signal masses for the L3 IP b-tag term only.
Events were required to have at least three NN tight b-tags. The uncertainties are statistical only.

Trigger List
mh (GeV)

100 110 120 150 170

v9/10 86±2% 85±1% 85±1% 84±1% 85±1%

v11 58±2% 62±2% 65±2% 70±1% 74±1%

v12 58±2% 62±2% 65±2% 70±1% 74±1%

v13 60±2% 59±2% 61±1% 63±1% 66±1%

v14 58±2% 62±2% 63±2% 63±1% 67±1%

Overall 60±2% 57±2% 63±1% 64±1% 68±1%

Table 5.7: The trigger efficiencies for various Higgs masses, when requiring at least three NN
tight b-tagged jets. The ‘Overall’ efficiency is given by the integrated luminosity weighted average

efficiency of the trigger lists. The uncertainties are statistical only.
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5.4.3 Trigger Crosschecks

The trigger simulation described in Section 5.4.1 was compared in detail to the trig-

ger efficiencies found using the official trigger simulation package, TrigSim [104]. The

trigger efficiencies calculated using the two methods and the percentage differences

between the methods are shown in Table 5.8.

The results from TrigSim are all consistently higher than the results from the

analysis trigger simulation. This is expected as TrigSim is known to be over opti-

mistic in its jet finding. These differences diminish as you go to higher Higgs masses

where the jet energies are further away from the jet turn-on curves. The discrepancy

between the two methods is also within the systematic error of 9% assigned to the

trigger in the p14 analyses.

mh (GeV)
Trigger Efficiency

% Difference
TrigSim Analysis Trigger Simulation

90 43±5% 41±4% 5%

110 51±4% 48±4% 6%

130 59±3% 55±5% 7%

150 61±2% 60±5% 2%

Table 5.8: Trigger efficiencies calculated using TrigSim and the analysis trigger simulation for the
jet only trigger (v9 – v12) measured relative to the skimming criteria (3 jets pT > 15 GeV and 2
jets pT > 25 GeV). The TrigSim errors are statistical only and the errors on the analysis trigger

simulation includes the 9% systematic error from the ‘p14’ analyses (see Section 5.5.4.1).

5.5 Pass1 Analysis

The analysis is split into several sections. The event selection is outlined in Sec-

tion 5.5.1, the analysis method used to predict the background in Section 5.5.2,

the method used to set limits in Section 5.5.3, the systematic uncertainties in Sec-

tion 5.5.4 and finally the results are presented in Section 5.5.5.

5.5.1 Event Selection

Events were selected for inclusion in the analysis if they had:

• 3 – 5 taggable jets with |η| < 2.5 and leading jet cuts of pT > 45, 25 and

15 GeV.

• A PV with |z| < 35 cm.
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• Fired a hb trigger.

• At least three b-tags.

The Loose SVT tagger operating point was used to identify b-jets.

5.5.2 Analysis Method

The method used to predict the background from data is outlined in the following

sections.

5.5.2.1 Double Tag Comparison

The double tag data sample is used to normalise the bbj MC background and to

measure the FTRF for the multi-jet sample.

The tag rate function (TRF) for all jets in the data sample is defined as:

TRFall =
Number of Tagged Jets

Number of Taggable Jets
(5.1)

and is measured as a function of pT in 3 η-regions.

TRFall is used to model the initial contribution from jjj in the double tagged

channel by weighting each data event by the probability that there are 2 or more

‘fake’ tagged jets in the event. There is a heavy flavour component in TRFall from

the heavy jets in the data sample, and there will consequentially be a heavy flavour

component in the jjj prediction which is corrected for later on before the final

normalisation determination.

An estimate of the normalisation of the bbj MC can now be made using the

double tagged data events. The number of double tagged bbj MC events (Nbbj) is

normalised to the total integral (Nall) of the double b-tagged data after subtraction

of the jjj and the other small MC samples (Zj, tt and bbbb fixed by their cross

sections). The initial fit of the modelled background to the double tag data sample

is shown in Fig. 5.9.

The presence of the heavy flavour jets in TRFall can be corrected for using the bbj

MC sample, assuming TRFall is dominated by fake-tags and heavy flavour jets from

bbj. The resulting TRF will be the multi-jet fake-tag rate function (FTRF). The

FTRF can then be used to make a more accurate prediction of the jjj background

and consequentially a more accurate prediction of the bbj normalisation. The FTRF

is calculated using the following formula:

FTRF = TRF − Nbbj

Nall
× TRFbbj , (5.2)
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Figure 5.9: The total simulated double b-tagged di-jet mass distribution (black line), consisting of
jjj (red dotted line), bbj (blue dotted line), and other small backgrounds:Zj, tt, and bbbb (Purple
dot-dashed line), to data (black dots). The jjj distribution shown in this figure has a heavy flavour

component which is corrected for, as explained in the text.

where TRFbbj is the TRF derived from the bbj MC sample. The TRF and FTRF

are shown in Fig. 5.10.

) (GeVTJet E
0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 5.10: TRFall (red points) and FTRF (black points).

The recalculated jjj background prediction along with the corrected normalisa-

tion for the bbj MC, are shown in Fig. 5.11.

5.5.2.2 Triple Tag MC Background Comparison

Using the triple tagged distributions of jjj predicted from data, the data normalised

bbj MC, and the additional small MC backgrounds, a comparison can be made
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Figure 5.11: Fit of the total background (black line) consisting of bbj (blue dotted line), jjj

(red dotted line) and other small backgrounds (purple dot-dashed line) to the double tagged data
(black points) sample using the corrected FTRF.

between the triple tagged MC background prediction and data as shown in Fig. 5.12

for the Pass1 data.

5.5.2.3 Triple Tag Background Prediction

The triple tag background is predicted from data. The shape of the distribution is

predicted first and then normalised to data.

The shape of the bbj triple tagged background can be predicted using the FTRF

and the double tagged data events. Events in the double tagged data sample are

weighted, using the FTRF, by the probability that any of the jets, neglecting the

two highest pT tagged jets, are tagged. The resulting distribution provides the shape

of the triple tagged background distribution.

The correct normalisation is then calculated by fitting the predicted triple tagged

background distribution to the actual triple tagged data on a bin by bin basis outside

the signal region (±1σ of a Gaussian fit to the signal) using TMinuit [87]. This

provides the scale factor (SData) by which the predicted background is multiplied to

obtain the correct normalisation.

The triple tagged data, background prediction and hb (mh = 120 GeV) MC

events for an illustrative tanβ value of 100 are shown in Fig. 5.13. There is no excess,

and the predicted background, MC background and data are all within agreement.
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Figure 5.12: The MC predicted triple tagged background (black line) for the Loose SVT tagger,
consisting of the correctly normalised MC bbj sample (blue dotted line), the jjj prediction from
data (red dotted line) and other small MC contributions (purple dot-dashed line), compared to

the triple tagged data sample (black dots).
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Figure 5.13: The data (points), normalised background (solid line), and the Higgs signal for
mA = 120 GeV (dashed line) at tan β=̃ 100.
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5.5.3 Limit Setting

Upper limits at 95% confidence level (CL) are set on tan β for each Higgs mass.

Limits are set using the TLimit implementation [105] of MCLimit [106]. MCLimit

calculates limits on signal production using each histogram bin (of the chosen dis-

criminating variable) as an independent counting search. Each of the separate

‘search channels’ are combined to provide an overall limit on signal production.

The modified frequentist confidence level (CLs) is used to set limits:

CLs =
CLs+b

CLb
, (5.3)

where CLs+b is the confidence level for the signal plus background (s+b) hypoth-

esis, and CLb is the confidence level for the background only hypothesis.

There are two types of limits set, expected and observed. Expected limits are

calculated using the simulated background and signal distributions only, assuming

no signal production, and indicate the limit setting potential of the experiment.

The observed limits are calculated using the data and the simulated signal and

background distributions, and is the actual limit on signal production set from the

data.

Background and signal systematic uncertainties are taken into account by assum-

ing that the numbers of signal and background events vary according to gaussian

error distributions, whose widths are equal to the systematic uncertainties. The

number of signal and background events in each bin is then sampled from the gaus-

sian distributions a predetermined number of times.

Limits are set using the triple b-tagged di-jet mass for the signal, data and pre-

dicted background. The signal cross section is multiplied by tan2 β until a confidence

level for signal production of less than 5% is achieved.

5.5.4 Systematic Uncertainties

Systematic uncertainties are derived for the triple tagged MC signal and predicted

background distributions.

5.5.4.1 Signal Systematic Uncertainties

The derived signal distributions have several uncertainties, which can be split into

those uncertainties which are dependent on the Higgs mass, and those independent

of the Higgs mass. Uncertainties which are independent of the Higgs mass are:
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Theory - The uncertainty in the simulation of the signal samples. The theoretical

uncertainty due to the correction of the LO signal processes to match the

NLO spectra were taken account of. This error was estimated to be half the

5% [71] correction. Uncertainties due to the PDF set used and the choice

of factorisation and normalisation scale were not included in the theoretical

error.

Luminosity (Lum) - The uncertainty on the DØ luminosity measurement. The

luminosity group has estimated an uncertainty of 6.5% [107].

Trigger (Trig) - The uncertainty in the trigger simulation. This was estimated

to be 9% [71]. The uncertainty takes into account closure tests on the method,

the statistics available and the quality of the fits to the trigger turn-on curves.

The following sources of systematic error vary as a function of Higgs mass. Errors

are calculated by measuring the alteration in the triple tagged signal di-jet mass

distribution, in terms of both the integral and shape of the distribution, as the

errors are fluctuated. The unfluctuated distribution is weighted so that its integral

is equal to one, this histogram is then used to weight, on a bin by bin basis, the −1σ

and +1σ fluctuated histograms, with the final errors calculated using the following

equation:

Error =
1

2

√

(Im − Iu)2 + (Ip − Iu)2

Iu

, (5.4)

where Iu, Im, and Ip are the integrals of the unfluctuated, −1σ fluctuated and

+1σ fluctuated histograms respectively. The factor of a half is used to correct to

the half width half maximum value. The following systematic uncertainties are

evaluated as such, with the resulting errors shown in Table 5.9.

Jet Energy Resolution (JER) - MC jet energies are smeared, with an associ-

ated uncertainty, to account for the difference in resolution of jet energies

between data and MC [91].

Jet Energy Scale (JES) - Uncertainty in the jet energy scale corrections [108].

Jet Reconstruction and ID (Jet-ID) - Uncertainty in the scale factor used to

adjust the MC efficiency to that measured in data [92].

b-tagging (b-ID) - Uncertainty on the b/c and fake-tagging rates used to correct

the MC tagging performance to that of data [109].
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mh (GeV) Theory Lum Trig b-ID JES JER Jet-ID Total

90 5.0 6.5 9.0 14 7.5 1.4 3.8 20.4

100 5.0 6.5 9.0 15 7.1 0.7 3.8 21.0

110 5.0 6.5 9.0 14 8.1 0.7 3.7 20.6

120 5.0 6.5 9.0 14 8.5 0.8 3.6 21.0

130 5.0 6.5 9.0 14 7.8 0.4 3.3 20.4

150 5.0 6.5 9.0 15 7.7 0.8 3.4 21.1

Table 5.9: The individual errors for the Loose SVT tagger from each source (in %), added in
quadrature to give the total error on the signal MC.

5.5.4.2 Background Systematics Uncertainties

There are three uncertainties considered on the background prediction, all of which

are considered to be independent of the Higgs mass as the signal has very little

impact on the background prediction.

Normalisation - The uncertainty associated with the normalisation of the pre-

dicted background outside the signal region. This is taken as the error on the

data normalisation scale factor (SData).

Shape - The uncertainty in the shape of the predicted background distribution.

The uncertainty is estimated from the χ2/NDF of the data normalisation

scale factor fit.

Signal Region - The uncertainty from the signal region definition. This is esti-

mated by varying the signal region from 1 to 1.5 and 1.8 sigma and calculating

the difference in the number of events in the predicted background. The effect

was found to be less than 1%.

The total background systematic uncertainty for the Loose SVT tagger was cal-

culated to be 3%, dominated by the normalisation error [71].

5.5.5 Results

The expected and observed limits are outlined in Table 5.10 and are shown in

Fig. 5.14 along with the previous p13 [23] result and the region excluded by LEP

[21]. When it was published, this result set the world best limits on tanβ in the

MSSM scenario.
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Signal Mass (GeV)
tanβ Limit

Expected Observed

90 63 60

100 70 71

110 71 64

120 73 69

130 84 75

150 93 93

Table 5.10: The expected and observed 95% C.L. tan β limits for the MSSM at tree-level for each
mA.
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Figure 5.14: The observed 95% C.L. limits on tan β as a function of mA (area above blue line)
and overlayed exclusion limits from the p13 analysis [23] (area above red dotted line), assuming

tan2 β cross section enhancement (tree-level results for the MSSM).
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5.6 Pass2 Analysis

The goal of the Pass2 analysis was to repeat the Pass1 analysis using the NN b-

tagger. The differences between the two analyses were:

• Cleaner calorimeter data due to removal of noisy cells.

• Higher luminosity due to recovered bad data between Pass1 and Pass2.

• Smaller signal systematic errors due to a better understanding of the b-tagging

and jet energy scale uncertainties.

• Use of the NN b-tagger which is a much more performant b-tagging tool.

• Reduced statistics for the hb and bbj processes due to the loss of some MC

samples between the Pass1 and Pass2 analyses.

The analysis is split into several sections. The event selection is outlined in

Section 5.6.1, the problems and investigations in Section 5.6.2 – 5.6.4, the new

analysis method in Section 5.6.5, the systematic uncertainties in Section 5.6.6, the

tagging point optimisation in Section 5.6.7, the results in Section 5.6.8 and finally

conclusions are drawn in Section 5.6.9.

5.6.1 Event Selection

Events were selected for inclusion in the analysis if they had:

• 3 – 5 taggable jets with |η| < 2.5 and leading jet cuts of pT > 45, 25 and

15 GeV.

• A PV with |z| < 35 cm.

• Fired a hb trigger.

• At least three b-tags.

The optimisation of the b-tagging is discussed in Section 5.6.7.
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5.6.2 Pass2 Analysis Problems

Using the same analysis method as set out in Section 5.5.2, the triple tagged di-jet

invariant mass distributions are shown in Fig. 5.15 for the Loose SVT (the operating

point used in the Pass1 analysis), the Tight NN and the Tight SVT taggers (the

operating point whose event yield most closely resembles the Pass1 analysis). Several

issues are apparent from the triple tagged distributions:

• A discrepancy exists between the MC (dotted) and data (black) derived back-

ground predictions. The same discrepancy, at a lower level, can also be seen

in the Pass1 MC triple tag comparison (Fig. 5.12 in Section 5.5.2.2).

• A discrepancy exists between the MC background prediction, the data back-

ground prediction and the actual data.

• The Tight SVT tagger in the Pass2 analysis has an event yield similar to the

Loose SVT tagger in the Pass1 analysis. This was probably due to a change

in the SVT tagging code between Pass1 and Pass2. This resulted in the Loose

SVT tagger in Pass1 actually being equivalent to the Pass2 Tight SVT tagger.

5.6.2.1 Understanding the Problems

There were two possible explanations for the problems in the Pass2 analysis:

NN Tagger Problem - The NN tagger is trained on MC di-jet events and the

certification is carried out on di-jet events. The possibility therefore existed

that the NN tagger’s performance was worse on multi-jet events, or that the

multi-jet events were not modelled correctly in the MC.

Additional Background - An additional, probably heavy flavour, background

which was overlooked in the Pass1 analysis had become more prominent due

to the more performant b-tagging.

5.6.3 Neural Network Tagger Investigation

To test the NN tagger’s performance three tests were carried out. Firstly, the tagging

rate on multi-jet events and di-jet events in MC was compared. Secondly, the NN

input variables were examined on di-jet and multi-jet data to check that the variables

are similar in both event types. Thirdly, several new NNs were trained, certified and

used in the analysis to check for potential problems in the input variable setup of

the NN tagger.
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Figure 5.15: The Pass2 double (left) and triple tag (right) di-jet mass distributions for the Loose
SVT tagger (top), Tight SVT tagger (middle) and Tight NN tagger (bottom). Data (black points),
predicted background (black line) and MC predicted background (dotted black line) are all shown.
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5.6.3.1 Multi-Jet Tagging Rates

The fake rates of the NN tagger in di-jet and multi-jet environments were measured

using Pythia [70] QCD MC samples of udsg-jets, and are shown in Fig. 5.16 for a

typical NN operating point. The fake rates in the two samples are in agreement

within the errors.

Corresponding tests were carried out for b and c-jets in the certification of the

NN tagger [74]. The tagging rates for multi-jet and di-jet events were again in

agreement within errors.
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Figure 5.16: The fake-tag rates in di-jet (red circles) and multi-jet events (green squares) for a
representative NN operating point (Medium). The fake-tag rates are in agreement within errors.

5.6.3.2 Data di-jet and multi-jet Comparisons

As seen from Fig. 5.16 there is no evidence (in MC) to suggest that there are any

appreciable differences between the NN tagging rate in multi-jet and di-jet events.

However, differences could exist between data and MC due to differences between

multi-jet events in data and MC. For example, correlations could exist between jets

in multi-jet events which are incorrectly modelled in MC or detector issues in multi-

jet events could cause problems with the NN tagging. To test these possibilities

comparisons were made between di-jet events, on which the NN tagger was certified,

and the multi-jet data events used in this analysis.

In order to compare b-tagging variables between multi-jet and di-jet samples

there needs to be reasonable confidence that the flavour composition of the samples

is similar. To test this assertion the flavour compositions of the jets in a di-jet and

multi-jet QCD Pythia MC sample were measured and are shown in Table 5.11. The

measurements (which will have large PDF systematic uncertainties) suggest that

the expected flavour composition of the two samples are similar enough to allow

comparison.
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Sample b-Jets (%) c-Jets (%) Fake-Jets (%)

Multi–Jet 2.7 ± 0.1 4.8 ± 0.1 92.5 ± 0.3

Di–Jet 2.7 ± 0.1 4.6 ± 0.1 92.7 ± 0.1

Table 5.11: The jet flavour composition predicted from Pythia MC samples of di-jet and multi-jet
events, errors are statistical only.

The comparison between the input variables for the data di-jet and multi-jet

samples is shown in Fig. 5.17 for all jets and in Fig. 5.18 after 1 b-tag was required.

There are no significant differences between the input variables in the two samples,

although the multi-jet events do have more b-like input variables.

5.6.3.3 Neural Network Tagger Tests

The correlations between the input variables, the input jet selection criteria and the

input taggers themselves, can be tested by training several new NNs. The following

NNs were all designed, trained, certified and tested on the analysis to test various

combinations of input taggers, input variables and input jet selections:

NO SVT - The NN is designed to test that the correlations between the Super-

Loose SVT tagger and the CSIP and JLIP taggers are correctly modelled in

the MC.

Variables: CSIP(2s, 3s, 2w,3w) and JLIP (Prob, Reduced Prob and NTracks)

Jet Input Criteria: JLIP Prob < 0.02 or CSIP COMB > 8

Tight SVT - This NN was designed to test whether the SuperLoose SVT tagger

is modelled correctly in MC.

Variables: Same as the standard NN tagger but all SVT input variables were

from the Tight SVT.

Jet Input Criteria: Tight SVT or JLIP Prob < 0.02 or CSIP COMB > 8

Loose SVT - Same as above but using the Loose SVT tagger.

Variables: Same as standard NN tagger but all SVT input variables were from

the Loose SVT.

Jet Input Criteria: Loose SVT or JLIP Prob < 0.02 or CSIP COMB > 8

Tight SVT Jets Only - This NN is designed to test the input jet selection corre-

lations. This NN separates jets with a Tight SVT into signal and background.
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Figure 5.17: NN input variables in the QCD di-jet data sample (green square) and the 3JET
multi-jet data sample (red circle) after the NN jet input cuts. The variables are JLIP Prob (top
left), −Log10 (JLIP Prob)(top right), CSIP Comb (2nd left), SV TL NTracks (2nd right), SV TSL

DLS (3rd left), SV TSL χ2

dof (3rd right), SV TSL Mass (bottom left) and SV TSL (bottom right).
The input events are normalised to have equal number.
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Figure 5.18: NN input variables in the QCD di-jet data sample (green square) and the 3JET
multi-jet data sample (red circle) after the NN jet input cuts and 1 tag required in the event. The
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Variables: Same as standard NN tagger but all SVT input variables were from

the Tight SVT.

Jet Input Criteria: Tight SVT

Loose SVT Jets Only - Same as above but using the Loose SVT tagger.

Variables: Same as standard NN tagger but all SVT input variables were from

the Loose SVT.

Jet Input Criteria: Loose SVT

The new NNs all have a worse b-tagging performance than the standard NN

tagger, although a better b-tagging performance than the individual input taggers.

When tested in the analysis, the NN taggers which had the worst b-tagging perfor-

mance, gave the best agreement between MC and data.

5.6.3.4 Conclusions

Checks of the input variables and input composition of the Neural Network all failed

to highlight any specific problems. The results also suggested that the worse the

performance of the tagger, the better the MC agreement in the analysis. The MC

disagreement in the analysis appears to arise due to the high performance of the NN

tagger and not due to a specific problem with the tagging method. This suggests

that the disagreement with data arises due to a heavy flavour background which

was overlooked in the Pass1 analysis.

5.6.4 Background Composition Investigation

The Pass1 analysis assumed that the background and TRFs were both dominated

by fake jets. The specially derived FTRF, which was assumed to be unique for the

multi-jet data, was used to predict the jjj and bbj backgrounds from data. In the

previous section it was shown that the fake-rate in multi-jet events is no different

to that in di-jet events. The Pass1 analysis assumption that the FTRF was unique

to the multi-jet data sample may have been due to a heavy flavour background

which was overlooked. The FTRF therefore contained an additional heavy flavour

component, and consequentially disagreed with the di-jet fake rate.

The bbbb background was included in the Pass1 analysis but the cross section

was too small for it to be the missing background. However, the bbb process does

have a high enough cross section to explain the missing background. The ratio of

the bbb process to the bbj process is 1/37 when measured using Alpgen or 1/30 when
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measured using COMPHEP [110]. After a requirement of three b-tags this sample

would be large enough to make a significant contribution to the background.

This means that the FTRF in Pass1 most probably had heavy flavour contami-

nation. The contamination would affect the jjj prediction causing a heavy flavour

component corresponding roughly to the bbb background. However, as the simulated

background model was only used as a cross check this would not have affected the

limits set by the Pass1 analysis. The data derived background prediction would

also have been affected by the heavy flavour contamination. However as the tagging

efficiency was so low in the Pass1 analysis (∼30% b-efficiency) the contamination

would have been minimal, and normalising outside the signal region would have

corrected any normalisation issues. The shape would have been correctly predicted

as the contamination in the FTRF is actually present in the data which is being

predicted.

5.6.4.1 Monte Carlo Background Composition Model

Instead of measuring a FTRF for the multi-jet data sample as carried out in Pass1,

the fake rate provided by the b-ID group [74] was used. The jjj contribution was

predicted by using the fake rate to weight the events according to their probability

of having 0 – 5 tags. Due to the presence of heavy flavour events in the sample

(approx ∼ 7% measured from QCD MC), the predicted jjj contribution will be

slightly higher the actual data level.

The bbj and bbjj MC was used as in Pass1 to model the bbj background, with

j = udscg, and the bbjj MC weighted by 0.85 so that the combined MC samples

matched the jet multiplicity observed in the data.

No bbb MC samples were available at the time of the analysis, and due to exper-

imental, computing and time constraints none could be produced for this version of

the analysis. Due to the necessity of including a bbb MC sample a compromise had

to be made. An assumption was made that the bbj MC and the bbb MC would have

a similar spectrum, and the highest pT jet, which was not a b-jet, was treated as the

third b-jet.

The multi-jet MC samples were normalised to the double tagged data sample.

It was assumed that the double tagged data sample consisted of three background

components, the double tag fakes (estimated from data), the bbj MC and a small

contribution from bbb. The bbb MC normalisation was fixed to 1/33.5 of the bbj level

(from the average of the Alpgen and COMPHEP cross section ratios). The bbj and

bbb MC samples were normalised to the integral of the double b-tagged data after

substraction of the jjj and the other small MC samples. The agreement of the new
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MC background composition model with the new data background prediction will

be compared in the next section.

5.6.5 Pass2 Analysis Method

The presence of a significant amount of bbb background invalidates the background

prediction method used in Pass1. A new method therefore had to be developed for

use with the NN b-tagger.

TRF2tag is the TRF of the jets in an event after at least 2 tags have already been

required, with two of the tagged jets randomly excluded. Figure 5.19 shows TRFall

and TRF2tag, they are different in shape and normalisation in each of the η regions.

Therefore using TRFall and then normalising outside the signal region, as was done

in Pass1, would be incorrect as each of the η regions needs a different normalisation

applied to it.
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Figure 5.19: The TRFs for all jets in the sample, TRFall (red dots), and for jets after 2 tags have
been applied, TRF2tag (green squares), in the eta regions η < 1.1 (top), 1.1 < η < 1.5 (middle)

and 1.5 < η < 2.5 (bottom).

The new analysis method uses TRF2tag to weight the events based upon the

probability that one or more of the jets, ignoring the two leading b-tagged jets, will

be tagged. This provides the shape of the distribution. The predicted distribution

is then normalised outside the signal region to account for any signal present in

TRF2tag.
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The di-jet mass distribution for the MC predicted background, the predicted

triple tagged background from data and the triple tagged data are shown in Fig. 5.20

for three of the NN tagger operating points. The predicted background now agrees

within errors with the MC background prediction. The background is found to

contain a significant proportion of bbb, bbc and bbj events.
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Figure 5.20: The Pass2 double (left) and triple tag (right) di-jet mass distributions for the
Loose (top), Medium (middle) and Tight (bottom) NN taggers. Data (black points), predicted
background (black line) and MC predicted background (dotted black line) are all shown. A good

agreement exists between the data and MC predicted backgrounds for all operating points.

5.6.6 Systematic Uncertainties

5.6.6.1 Signal Systematic Uncertainties

The systematic errors are determined in the same manner as in the Pass1 analysis

(see Section 5.5.4.1), although with an improved understanding of the b-ID [74, 77],
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JES [111] and the jet-ID uncertainties [112].

The signal errors are outlined in Tables 5.12 and 5.13 for the Medium NN and

Tight SVT taggers respectively. As expected the errors are smaller than the Pass1

value of ∼ 20% due to the better JES and b-tagging used in the Pass2 analysis.

The systematic errors as a function of the tagging operating point for the Higgs

mass point, mH = 120 GeV, are shown in Table 5.14 for the NN and SVT taggers.

The signal systematic uncertainty decreases slightly as the operating point becomes

looser due to the decreased b-tagging uncertainty of the looser operating points.

mh Theory Lum Trig b-ID JES JER Jet-ID Total

90 5.0 6.5 9.0 7.3 4.0 0.7 3.5 15.2

110 5.0 6.5 9.0 7.7 3.4 0.4 2.4 15.0

120 5.0 6.5 9.0 7.4 3.1 1.7 3.3 15.0

130 5.0 6.5 9.0 7.1 2.2 0.3 3.7 14.8

150 5.0 6.5 9.0 7.9 1.8 0.6 2.8 14.9

Table 5.12: The systematic errors on the signal in the Pass2 analysis for the Medium NN operating
point. All the errors are in % and are added in quadrature to give the total error. A description

of the errors can be found in Section 5.5.4.1.

mh Theory Lum Trig b-ID JES JER Jet-ID Total

90 5.0 6.5 9.0 6.8 4.8 0.5 2.8 15.1

110 5.0 6.5 9.0 6.3 4.9 1.0 3.6 15.0

120 5.0 6.5 9.0 6.6 4.5 1.1 2.3 14.8

130 5.0 6.5 9.0 6.8 4.4 0.6 3.1 15.0

150 5.0 6.5 9.0 6.5 3.4 1.5 2.7 14.6

Table 5.13: The systematic errors on the signal in the Pass2 analysis for the Tight SVT operating
point. All the errors are in % and are added in quadrature to give the total error. A description

of the errors can be found in Section 5.5.4.1.

Error L2 Loose Medium Tight V Tight U Tight M Tight

NN 13.9 14.5 15.0 15.3 15.6 15.8 16.3

SVT n/a 14.5 14.8 14.8 n/a n/a n/a

Table 5.14: The systematic errors, in %, on the signal (Mh = 120 GeV) for the NN and SVT
taggers for each of their respective operating points. Only three operating points exist for the SVT

tagger.
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5.6.6.2 Background Systematic Uncertainties

The background uncertainties were evaluated in the same manner as in the Pass1

analysis. The systematic errors for each of the NN and SVT operating points are

shown in Table 5.15.

The dominant error is the error on the normalisation which is dependent on the

statistics in the triple tag sample. As the operating point becomes looser, and the

statistics increase, the error on the background decreases. The errors on the Pass2

NN and SVT are consistent when comparing operating points with similar statistics

(e.g. Loose SVT and Tight NN). However, the errors between the Pass1 and Pass2

analyses are not consistent. The Pass1 error for the Loose SVT tagger, which has a

distribution and statistics consistent with the Pass2 Tight SVT tagger, has an error

of 3%, which is much smaller than the 5.4% systematic error calculated in the Pass2

analysis.

Error L2 Loose Medium Tight V Tight U Tight M Tight

NN 1.0 1.5 2.0 2.6 3.0 3.9 5.2

SVT n/a 2.6 3.3 5.4 n/a n/a n/a

Table 5.15: The systematic errors, in %, on the background for the NN and SVT taggers for each
of their respective operating points. Only three operating points exist for the SVT tagger.

5.6.7 Tagging Optimisation

The choice of operating point was determined by the sensitivity. Two versions of

the sensitivity were considered:

Statistical Sensitivity - The signal, S, divided by the statistical error on the

background, B, plus signal:
S√

S + B
. (5.5)

Pass2 Sensitivity - The signal divided by the statistical and systematic error on

the signal, sigmaS, and background, sigmaB, added in quadrature:

S√
S + B

⊕
σBB

⊕
σSS

. (5.6)

The sensitivity as a function of the tagging operating points for the NN and SVT

taggers is shown in Fig. 5.21 for the two cases described above. In both cases the

NN tagger has a better sensitivity. The optimal operating point is the Medium NN
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5.6.8 Results

The number of signal, predicted background and data events are shown in Table 5.16.

Tagger Data Predicted Background Signal (tan(β) = 50)

Medium NN 4730±69 4685±116 109±19

Tight SVT 571±24 566±35 31±7

Table 5.16: The number of events in the signal, predicted background and data triple tagged
distribution for the Medium NN and Tight SVT taggers. The errors on the data are statistical
only, the errors on the predicted background and signal contain the statistical and systematic

errors.

The limits were set using the CLs method (see Section 5.5.3). The expected

limits for the two scenarios of no systematic errors and full systematic errors are

shown in Tables 5.17 and 5.18 respectively and also in Fig. 5.22. In both cases the

NN improves the limits by ∼ 10% compared to the SVT tagger. This effectively

almost doubles the luminosity of the analysis.

A comparison of the NN tagger to the Pass1 result is also shown in Table 5.18.

The Pass1 analysis has better expected limits. This is due to the background errors

in the Pass1 analysis being smaller than the background errors used in the Pass2

analysis. It is unclear why the errors in the Pass1 analysis were smaller as a similar

method was used to calculate the errors. As a cross check on the assertion that the

Pass1 SVT errors were calculated for the wrong operating point, the Pass2 Tight

SVT limits were calculated using the Pass1 errors and are shown in Table 5.19. The

limits found for the Pass2 SVT and Pass1 SVT are found to be similar when using

the same errors.

mH (GeV)
tan β Limit

Pass2 NN Pass2 SVT

90 55 62

110 63 68

120 67 76

130 73 77

150 86 94

Table 5.17: The expected 95% C.L. tan β limits for the NN tagger and the Pass2 SVT tagger in
the MSSM scheme at tree-level. No systematic errors were included in the limit setting.
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mH (GeV)
tan β Limit

Pass1 SVT Pass2 NN Pass2 SVT Pass2 SVT x2 Lum

90 63 62 72 61

110 71 70 76 72

120 73 81 84 77

130 84 85 92 80

150 93 97 107 92

Table 5.18: The expected 95% C.L. tan β limits for the Pass1 SVT tagger, Pass2 NN tagger and
the Pass2 SVT tagger in the MSSM scheme at tree-level. Systematic errors were used in the limit

setting.

mH (GeV)
tan β Limit

Pass1 SVT Pass2 SVT

90 63 67

110 71 71

120 73 78

130 84 82

150 93 98

Table 5.19: The expected 95% C.L. tan β limits for the Pass1 SVT tagger and the Pass2 SVT
tagger in the MSSM scheme at tree-level for each mA. Limits were calculated assuming the Pass1

systematic error values.
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Figure 5.22: Expected limits for the NN and SVT taggers: no systematic errors on the background
prediction (top), the Pass 2 systematic errors on the background prediction (middle) and the Pass1

systematic errors for the Pass1 and Pass2 SVT taggers (bottom).
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5.6.9 Conclusions

The Pass1 hb analysis was repeated using the NN tagger. The improved b-tagging

significantly enhanced a heavy flavour background which had been overlooked in

the Pass1 analysis. Thus both a new background composition model and analysis

technique had to be developed.

The NN tagger significantly improved the sensitivity of the analysis and had

the effect of almost doubling the luminosity compared to the SVT tagger used in

equivalent circumstances. Direct comparisons between the Pass1 and Pass2 analysis

were not possible due to inconsistencies in the background systematic errors.

5.7 p17 Analysis

The p17 analysis closely follows the methods and background model used in the

Pass2 analysis (see Section 5.6), with some improvements.

The analysis is split into several sections. The event selection is outlined in

Section 5.7.1, the analysis method in Section 5.7.2, the systematic uncertainties in

Section 5.7.3 and finally the results are presented in Section 5.7.4.

5.7.1 Event Selection

Events were selected for inclusion in the analysis if they had:

• 3 – 5 taggable jets with |η| < 2.5 and leading jet cuts of pT > 45, 25 and

15 GeV.

• A PV with |z| < 35 cm.

• Fired a hb trigger.

• At least three b-tags.

The Tight NN tagger operating point was used to identify b-jets.

5.7.2 Analysis Method

The background prediction model is the same model as used in the Pass2 analysis.

The MC background cross checks were also similar to those used in the Pass2

analysis, with the inclusion of an additional background, bjjj(j). The contribution

from the bjjj(j) background was estimated from data using the b-ID b-tagging ef-

ficiencies; its contribution is found to be small in the double tagged channel and
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Figure 5.23: Data MC comparison of the di-jet invariant mass distributions in the double b-tag
sample (top) and the triple b-tag sample (bottom).

negligible in the triple tag channel. The bbj MC was again normalised to the num-

ber of events in the double tagged data sample after subtraction of the jjj and bjj

contributions. The double tag and triple tag MC cross checks are shown in Fig. 5.23.

Additional attention was paid to possible heavy flavour contributions from c-

quarks. The c-jet efficiency for this operating point is five times lower than the b-jet

efficiency and processes such as cjj(j), ccj(j) and ccc(c) were found to be negligible

in both the two and three b-tag samples.
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5.7.3 Systematic Uncertainties

5.7.3.1 Signal Systematic Uncertainties

The sources of signal systematic uncertainties are the same as those used in the p14

analyses (see Section 5.5.4.1). The p17 systematic errors are shown in Table 5.20

[26]. There are a number of differences between the p17 and p14 systematic errors:

• In the p17 analysis the uncertainties due to the limited order in perturbation

theory and the PDF set used were also taken account of in the theoretical

error. The systematic uncertainty due to the limited order of perturbation

theory was estimated by considering the alteration in cross section caused by

varying the renormalisation and factorisation scales (µ) between µ/2 and 2µ

(these values were motivated from [95, 97]). This resulted in a systematic

error which varied from 2–4% from the lowest to highest mass point. The

systematic error associated with the PDF set was evaluated by comparing the

cross sections produced when using the 40 different PDF parameterisations

provided by the CTEQ collaboration to evaluate errors. The 40 PDF parame-

terisations correspond to the positive and negative variation of the 20 sources

of uncertainties of the PDF. The difference in cross section caused by each of

the parameterisations were added in quadrature to give any overall error due

to the PDF. This error was estimated to be 11.7%. The p17 theoretical errors

were more than twice the size of the p14 errors.

• The trigger and Jet-ID errors were reduced due to greater statistics.

mh (GeV) Theory Lum Trig b-ID JES JER Jet-ID Total

100 12.3 6.5 4.0 8.1 4.8 0.6 0.3 17.2

110 12.0 6.5 4.9 8.2 4.6 0.2 0.5 17.3

120 12.1 6.5 3.6 8.3 3.9 0.1 0.4 17.0

150 13.0 6.5 4.2 8.8 2.8 0.3 0.4 17.7

170 13.5 6.5 2.5 9.3 2.8 0.5 0.4 18.0

Table 5.20: The systematic errors on the signal in the p17 analysis for the Tight NN operating
point. All the errors are in % and are added in quadrature to give the total error. A description

of the errors can be found in Section 5.5.4.1.
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5.7.3.2 Background Systematic Errors

The sources of the background systematic errors are the same to those identified

in the p14 analyses, although the errors have been evaluated in a different manner.

The background systematic errors are outlined in Table 5.21, and the new methods

used to calculate the errors are described below.

The uncertainty in the normalisation of the triple tag distribution outside the

signal region, is estimated to scale as approximately 1√
NEvent

, where NEvents is the

number of events in the predicted background outside the signal region.

The uncertainty in the shape of the predicted triple tag di-jet invariant mass

distribution is estimated by comparing the double tag distribution to the triple tag

distribution. The difference between the number of events in the two distributions

provides the error.

The normalisation errors are consistent between the p17 analysis and the Pass2

analysis. The normalisation error in p17 for the Tight operating point (1.7%) can

be compared to the same error calculated for the Loose operating point in the Pass2

analysis (1.5%) as they have similar statistics (p17 - 6749, Pass2 - 6798). The Pass2

error is smaller due to knowledge of the shape also being used when calculating the

error, if this effect is discounted the error is 1.7%, exactly the same as the p17 error.

mh (GeV) Shape Normalisation Total

100 1.8 1.8 2.4

110 2.3 1.7 2.8

120 2.4 1.7 2.8

150 1.9 1.7 2.6

170 1.9 1.7 2.6

Table 5.21: The systematic errors on the background prediction from data in the p17 analysis
for the Tight NN operating point. All the errors are in % and are added in quadrature to give the

total error.

5.7.4 Results

The limits were set using the CLs method. Table 5.22 and Fig. 5.24 show the ob-

served and expected 95% confidence limits on tan β as a function of mA. Figure 5.25

shows the triple b-tagged di-jet invariant mass distributions for mA = 120 GeV at

the observed CL.
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Signal Mass (GeV)
tanβ Limit

Observed Expected

100 46 50

110 57 58

120 60 62

150 85 84

170 121 104

Table 5.22: The observed and expected 95% C.L. tan β exclusion limits for the p17 analysis in
the MSSM scheme at tree-level.
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Figure 5.24: The observed and expected 95% confidence limits on tanβ as a function of mA,
assuming (tanβ)2 cross section enhancement. The error bands indicate the ±1σ and ±2σ ranges

on the expected limit.
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Figure 5.25: The di-jet invariant mass distribution for the data (circles), signal (solid grey
line), background (solid black line) and combined signal and background (dashed black line) for

mA = 120 GeV at the observed 95% confidence limit (tanβ = 60).

5.8 Conclusion

Three generations of the hb analysis have been presented in this chapter. The p14

Pass1 analysis has been published and set world best limits on the production of

neutral Higgs bosons in the MSSM scheme.

The p14 Pass1 analysis has since been updated with the p14 Pass2 version of the

analysis using the NN b-tagging. This required significant effort to implement due

to problems revealed by the more efficient b-tagging. The new b-tagging was shown

to effectively double the luminosity of the analysis.

The latest version of the analysis has used the new NN b-tagging tool (includ-

ing the new analysis model and method which were developed), the new b-tagging

triggers and 0.9 fb−1 of data to set improved limits on the production of neutral

Higgs bosons in the MSSM, as presented at ICHEP 2006. An improved version of

this analysis is being prepared for publication.
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Chapter 6

Conclusions and Outlook

6.1 Summary

One of the most important and as yet unresolved issues in particle physics is electro

weak symmetry breaking and the origin of mass in the Standard Model (SM). The

Higgs mechanism has been proposed to explain this issue, and the search for the

Higgs boson is currently one of the major goals of particle physics.

Supersymmetry (SUSY) is a popular extension to the SM which solves the ‘hi-

erarchy’ problem, allows the forces to be unified at high energy scales and allows

for the inclusion of gravity. In the Minimal Supersymmetric Extension to the SM

(MSSM), the Higgs sector consists of 5 Higgs bosons, 3 of which are neutral and

have enhanced couplings to b-quarks. In the MSSM this can make bottom quark as-

sociative production channels the dominant Higgs production channel, and searches

in the 3 b-jet channel allow strict constraints to be placed on the parameter space

of the MSSM.

Both DØ and the Tevatron are performing well. DØ’s data-taking efficiency is

above 85% and the Tevatron has surpassed its instantaneous and weekly integrated

luminosity goals. The Tevatron expects to deliver up to 8 fb−1 of data by the end

of 2009.

This is an exciting time for the Higgs searches at the Tevatron, with the dataset

rapidly expanding. There is a wide variety of Higgs searches at DØ, both in the SM

and SUSY scenarios, with 6 papers published and more awaiting publication. The

DØ and CDF SM Higgs searches have now been combined for the first time. The

combined limit is a factor of 10(4) away at Higgs mass of 115(160) GeV, but with

planned improvements and more data these limits are expected to decrease rapidly.

At 3 fb−1 a Higgs mass of 115 GeV can be excluded at 95% confidence level, and
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with 8 fb−1 there could be 3σ or even 5σ evidence for a SM Higgs boson with mass

less than 130 GeV.

The work in this thesis has made a large contribution towards DØ and its physics

programmes. The work on the L3 tracking revealed problems with the L3 SMT

clustering, and led to several improvements and fixes being implemented in the

unpacking tool. These include: new pedestal thresholds, cluster errors, splitting and

merging algorithms and ‘hot’ SVX chip protection. These improvements increased

the L3 tracking purity by ∼ 1 − 8%, the efficiency by ∼ 5% and the quality, by

increasing the number of SMT hits per track by up to 70%. These improvements

have benefited almost every physics group’s triggers. The upgrades have improved

the performance of all the tools which rely on the tracking, especially the impact

parameter (IP) and secondary vertex (SVT) b-tagging tools outlined in this thesis.

New triggers, designed for the multi-jet Higgs analysis, obtained an additional

factor of four extra rejection whilst improving the overall efficiency of the triggers

by ∼ 40%. The additional rejection was vital in allowing the triggers to effectively

function at high instantaneous luminosities. The L3 IP b-tagging tool, demonstrated

and tested in a trigger for the first time, allowed large gains in rejection to be achieved

for very little loss in signal efficiency. The L3 IP b-tagging tool was measured to have

an efficiency of ∼ 90% on a 3 b-jet sample whilst cutting the background by ∼90%.

This pioneered the use of b-tagging in the trigger, and has since been adopted by

other analyses.

Another b-tagging tool which locates displaced secondary vertices in jets has

been developed and optimised for use in the L3 trigger. The new tool has a large

potential for reducing background rates at little expense to the trigger efficiency.

Six potential operating points have been identified for use; the points have signal

efficiencies varying from 93% to 54% for ‘rates’ ranging from 43% to 4%. The

tool’s time consumption was measured as 1.4 ms at an instantaneous luminosity of

∼ 15 × 1030 cm−2s−1.

DØ’s first Neural Network b-tagging tool was developed and certified1. The per-

formance of the NN tagger was measured and parameterised into tag rate functions

for six operating points with fake ‘rates’ ranging from 0.3% to 4.0%. The NN tagger

demonstrated a considerable improvement in performance compared to the standard

taggers. For a fixed fake rate, relative improvements in signal efficiency range from

∼ 40% for the tightest operating to ∼ 15% for the loosest operating point. Fake

rates, for a fixed signal efficiency, are typically reduced to between a quarter and a

1Measured, tested and approved for use on data after being reviewed by the DØ collaboration.
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third of their value. The improved tagging has significantly increased the sensitiv-

ity of the Higgs search at DØ, and is a vital component of the future projections.

The benefit from the new tagger is expected to be the equivalent of doubling the

luminosity on a double b-tag analysis, and benefits a wide range of physics groups,

including the single top, top, and Higgs groups.

Three generations of the search for neutral MSSM Higgs bosons have been pre-

sented. The p14 Pass1 analysis has been published and set new world best limits on

the production of neutral Higgs bosons in the MSSM scheme. The p14 Pass1 analy-

sis has since been updated with the p14 Pass2 version of the analysis using the NN

b-tagging. This required significant effort to implement due to problems revealed by

the more efficient b-tagging and resulted in a new analysis method being developed.

The new b-tagging was shown to effectively double the luminosity of the analysis.

The latest version of the analysis used the new NN b-tagging tool (including the

new analysis method), the new b-tagging triggers and 0.9 fb−1 of data to set a new

preliminary world best limit on the production of MSSM neutral Higgs bosons. This

result was presented at ICHEP 2006, and is being prepared for publication in early

2007.

6.2 Future Work

The two L3 b-tagging tools demonstrated in this thesis could be combined in simple

or sophisticated ways to further increase the effectiveness of the b-tagging in the

triggers, there is even potential to use a NN to combine the various variables from

the two tools. The combination of the b-tagging tools could be used in physics

triggers to either cope with higher instantaneous luminosities, or even to allow other,

less powerful cuts, to be loosened. In the higher instantaneous luminosity of Run

IIb, the b-tagging tools will prove vital in reducing the rate for the top, single top

and Higgs triggers.

The NN b-tagging tool can be improved by a more refined selection of input

variables, creating different NNs for low and high energy jets, creating a new NN to

separate b and c jets and by improving the MC simulation. Potentially the biggest

improvement that could be made to the b-tagging would be the development of a

system to allow the NN output to be used as a continuous variable, as opposed to

the current system where only certain ‘certified’ operating points can be used. This

would allow any NN output value to be used as a b-tagging cut. More interestingly,

it would allow the NN output values from each of the jets in an event to be combined
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into a single variable2, which could potentially be a more powerful discriminating

variable than the individual jet NN output values.

The multi-jet Higgs analysis could be improved in several ways: a NN event se-

lection, a more sophisticated b-tagging optimisation, including more than one trigger

in the analysis and by splitting the analysis into orthogonal 3 and 4 b-jet channels

to increase the sensitivity.

2For example, for 2 jets with NN output P1 and P2, a more powerful discriminating combination
may be ln(P1 × P2).
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[49] D. Bloch, B. Clément, D. Gelé, S. Greder, Isabelle Ripp-Baudot, “Performance

of the JLIP b-tagger in p14”, DØNote 4348.

[50] A. Schwartzman, M. Narain, “b-quark Jet Identification with Secondary Vertex

Reconstruction using DØReco Version p14”, DØNote 4414.

[51] K. Hanagaki, J. Kasper, “Identification of b-jet by Soft Muon”, DØNote 4867.

[52] R. Illingworth, “Raw Data Format and Unpacking for the SMT”, DØNote 3829.

[53] D.Bauer, R.Illingworth, “Level 3 Trigger: Clustering in the SMT”,

DØNote 3822.

[54] L3 CFT Unpacking Tool, http://www-d0.fnal.gov/d0dist/dist/packages/

l3fcftunpack/p16-br-04/.

[55] D. Whiteson, “Global Track Finding at Level 3”, DØNote 3808.

[56] Imperial College DØ Group, “A Level 3 CFT Tracking Tool”, DØNote 3779.

[57] N. I. Chernov, G. A. Ososkov, “Effective Algorithms for Cirlce Fitting”, Com-

puter Physics Communications 33 (1984) p329–333.



References 213

[58] C. Barnes, P. Jonsson, R. Beuselinck, “Vertexing for the Level 3 Trigger”,

DØNote 4271.

[59] Level 3 Jet Tool Documentation, http://www-d0.fnal.gov/computing/

algorithms/level3/jets/L3TJet_overview.html.

[60] V. Buscher, “Calorimeter Clustering Tool for the DØ Level 3 Trigger at

Run II”, http://www-d0.fnal.gov/computing/algorithms/level3/jets/

l3fcalcluster.ps.

[61] E. Busato, B. Andrieu, “Jet Algorithms in the DØRun II Software: Description

and User’s Guide”, DØNote 4457.

[62] Level 3 Impact Parameter Jet B-tag page, http://www-d0.fnal.gov/

computing/algorithms/level3/b-tagging/L3Btag.html.

[63] C. Barnes, R. Jesik, “Level 3 Triggers for Bs Mixing”, DØNote 4272.

[64] D. Bauer, V. Lesne, R. Jesik, “Level 3 Muon Tools: p16 certification”,

DØNote 4470.

[65] The DØRuns Quality Database, http://d0db.fnal.gov/qualitygrabber/

qualQueries.html.

[66] R. Demina, A. Khanov, Y. Kulik , A. Nomerotski, L. Shabalina, “Charge Dis-

tribution in SMT Clusters”, DØNote 3981.

[67] G. Steinbruck, “Noise Studies with Silicon Microstrip Detectors”, DØNote 3379.

[68] The DØ Trigger Board, http://www-d0.fnal.gov/RunIIaOperations/

TriggerBoard/.

[69] M. Michaut, B. Tuchming, “L2 Multijet Trigger Study for the hbb Channel”,

DØNote 4345.

[70] T. Sjostrand, S. Mrenna, P. Skands,“Pythia 6.5 Physics and Manual”, HEP-

PH/0603175

[71] A. Haas, A. Kharchilava, M. Michaut, J. Rani, T. Scanlon, B. Tuchming, “DØ

Search for Neutral Higgs Bosons at High tanβ in Multi-jet Events Using p14

Data”, DØNote 4671.



References 214

[72] G. Bernardi, DØ Convenors Meeting, “Talk Higgs Status and Plans for Sum-

mer”, May 2006.

[73] T. Scanlon, “A Neural Network b-tagging Tool”, DØNote 4889.

[74] T. Scanlon, M. Anastasoaie, “Performance of the NN b-tagging Tool on Pass2

Data”, DØNote 4890.

[75] b-id Certification Guidelines, http://www-d0.fnal.gov/phys_id/bid/d0_

private/certification/p14Pass2/togetcert.html.

[76] D. Bloch, B. Clément, “Update of the JLIP b-tagger Performance in p14/pass2

with JES 5.3”, DØNote 4824.

[77] D. Boline, L. Feligioni, M. Narain “Update on b-quark Jet Identification with

Secondary Vertex Reconstruction using DØReco Version p14-Pass2 Samples”,

DØNote 4796.

[78] TMultiLayerPerceptron, http://root.cern.ch/root/html/

TMultiLayerPerceptron.html#TMultiLayerPerceptron:description.

[79] MLPfit: a tool for Multi-Layer Perceptrons, http://schwind.home.cern.ch/

schwind/MLPfit.html.

[80] K. Hornik et al., “Multilayer Feedforward Networks are Universal Approxima-

tors”, Neural Networks, Vol. 2, p359-366 (1989).

[81] D. Ruck et al., “The Multilayer Perceptron as an Approximation to a Bayes

Optimal Discriminant Function”, IEEE Transactions on Neural Networks, Vol.

1, p296-298 (1990).

[82] H. Robbins, S. Monro, “A Stochastic Approximation Method”, Annals of Math.

Stat. 22 (1951), p400.

[83] R.Fletcher, “Practical Methods of Optimization”, second edition, Wiley (1987).

[84] Pass2 Skimmed Datasets, http://www-d0.fnal.gov/Run2Physics/cs/

skimming/pass2.html.

[85] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. Polosa, “ALPGEN,

a Generator for Hard Multiparton Processes in Hadronic Collisions”, JHEP

0307:001,2003, hep-ph/0206293.



References 215
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