SEARCH FOR THE STANDARD MODEL HIGGS BOSON
IN ASSOCIATION WITH A W BOSON AT DO

By

Savanna Marie Shaw

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Physics - Doctor of Philosophy

2013



ABSTRACT

SEARCH FOR THE STANDARD MODEL HIGGS BOSON
IN ASSOCIATION WITH A W BOSON AT DO

By

Savanna Marie Shaw

I present a search for the standard model Higgs boson, H, produced in association with a
W boson in data events containing a charged lepton (electron or muon), missing energy, and
two or three jets. The data analysed correspond to 9.7 =L of integrated luminosity collected
at a center-of-momentum energy of /s = 1.96 TeV with the DO detector at the Fermilab
Tevatron pp collider. This search uses algorithms to identify the signature of bottom quark
production and multivariate techniques to improve the purity of H — bb production. We
validate our methodology by measuring WZ and ZZ production with Z — bb and find
production rates consistent with the standard model prediction. For a Higgs boson mass
of 125 GeV, we determine a 95% C.L. upper limit on the production of a standard model
Higgs boson of 4.8 times the standard model Higgs boson production cross section, while the
expected limit is 4.7 times the standard model production cross section. I also present a novel
method for improving the energy resolution for charged particles within hadronic signatures.
This is achieved by replacing the calorimeter energy measurement for charged particles within
a hadronic signature with the tracking momentum measurement. This technique leads to a
~ 20% improvement in the jet energy resolution, which yields a ~ 7% improvement in the
reconstructed dijet mass width for H — bb events. The improved energy calculation leads to
a ~ 5% improvement in our expected 95% C.L. upper limit on the Higgs boson production

cross section.
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KEY TO SYMBOLS AND
ABBREVIATIONS

AR  The distance in n-¢ space, AR = \/T]2 + ¢?

14 Lepton, { = e, u

n Pseudorapidity, n = — In(tan % )

y Photon

Fr  Missing energy in the plane transverse to the beam line.
1 Muon

v Neutrino

10) The detector azimuthal angle.

T Tau

0 The detector polar angle measured from the beam axis.
b Bottom quark

c Charm quark

CLg Theratio of the signal+background confidence level to the background-only confidence

level, CLg = %%

d Down quark

e Electron

g Gluon

Hp  The null (or background-only) hypothesis
Hy  The null (or signal+background) hypothesis

H7  The sum over jet pp
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1D

J1

AA
BDT
bid
CC
CFT
CL
CPS
EC
EM

Identification

Jet with the highest pp

Jet with the second highest pp

The mass of the Higgs boson

Transverse mass of the reconstructed W boson
Momentum in the plane transverse to the beam line.
Strange quark

Top quark
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Chapter 1

Introduction

Particle physics is the study of the most fundamental pieces of the universe. These funda-
mental pieces, or particles, and the interactions between them, in principle should be able
to describe all matter in the universe. It is impractical from a mathematical standpoint to
describe macroscopic systems of particles by their constituent single particles, so we limit the
discussion to systems of relatively few particles that interact over distances smaller than that
of an atomic nucleus. These particles, and their interactions are described in Chapter 1.1.

The standard model (SM) of particle physics is the quantum field theory that governs the
dynamics of the fundamental particles. The theoretical framework of the standard model
is described in Chapter 1.2.1-1.2.3. The standard model has been incredibly successful,
with many predictions experimentally verified. The discovery of the Z boson and the top
quark, and many other experimental results have agreed with the SM to high precision. As
successful as the SM has been, it is not complete. It does not include any explanation for
gravitational interactions, or the asymmetry between the amount of matter and anti-matter
in the universe, and also explains only the visible matter in the universe (which accounts for
only ~ 5% of the total matter density of the universe). The relatively recent observation of
neutrino flavour oscillations is also at odds with the SM, as neutrinos in the SM are massless
and can therefore not oscillate.

The recent observation of the Higgs boson, which is responsible for generating the masses



of the gauge bosons as well as the fermions, is the last remaining prediction of the SM to be
experimentally verified, and is the main topic of this thesis. The current status of the Higgs
boson measurements discussed in Chapter 1.2.4.

In order to study the Higgs boson experimentally, we first need to be able to produce it.
This is done by colliding particles with high energies using sophisticated particle accelerators.
Observing the results of these high energy collisions with high precision requires intricate
detectors. The work described in this thesis was carried out at the Tevatron collider at
Fermilab, which collided protons and anti-protons at a center-of-momentum energy of 1.96
TeV. The DO detector was used to collect the data analysed in this work. The Tevatron and
the DO detector are described in Chapter 2.1 and 2.2 respectively. The particle identification
and reconstruction algorithms are described in Chapter . Following this, is a discussion of
event simulation in Chapter .

These different components are brought together in Chapter , where I describe how they
are used in the search for a Higgs boson produced in association with a W boson. This search
uses sophisticated multivariate techniques to maximize our sensitivity to the Higgs boson
signal while accepting as many potential signal events as possible. This search is mildly
sensitive to the Higgs boson signal, but greater sensitivity can be achieved by combining
this result with the other Higgs boson searches at the Tevatron in a combined search for the
Higgs boson. I discuss how this analysis fits into the more global DO and Tevatron Higgs
boson picture in Chapter 6.10. Finally I discuss a method to improve the sensitivity for this

Higgs boson search by improving the jet energy resolution in Chapter .



1.1 Standard Model Particles

The standard model of particle physics combines special relativity and quantum mechan-
ics into a theory framework that is used to describe the known fundamental particles and
the interactions between them (with the exception of gravity). The list of SM particles is
comprised of matter particles; leptons, quarks, and neutrinos; gauge bosons, which mediate
the interactions between particles; and the Higgs boson, which is a result of electroweak
symmetry breaking and is responsible for generating the masses of the massive gauge bosons
and matter particles. These particles are said to be fundamental as they do not contain any
known substructure.

Leptons and quarks are fermions. That is to say, they have an intrinsic angular momen-
tum, known as spin, that is a half integer multiple of the reduced Plank constant, 4. These
fermions can be arranged into three generations containing one lepton, one neutrino, and
two quarks as shown in Table 1.1. Across generations, particles have the same quantum
numbers. For example, the leptons: electron (e), muon (u), tau (7) all have the same charge
and spin, but the 7 is more massive than the p, which is more massive than the e.

The matter particles interact with each other through the exchange of force-carrying
particles corresponding to the electromagnetic, weak, and strong forces. These particles are
bosons, that is they are particles which have an intrinsic spin equal to integer multiples of
h, and are summarized in Table 1.2.

All particles with electric charge interact electromagnetically through the exchange of a
photon, which is a massless particle with a spin of 1. Because the photon is massless, the
electromagnetic force has an infinite range. All fermions also interact via the weak force.

The weak force is mediated by the massive W+ and Z bosons. The masses of the weak



Table 1.1: The three generations of Fermions [1].

Fermion Generation 1 Generation 2 Generation 3
Lepton Electron (e) Muon (p) Tau (1)
Electric Charge -1 -1 -1
Mass (MeV) 0.51099891040.000000013 | 105.658367+0.000004 1176.86£0.16
Neutrino Electron (ve) Muon (v) Tau (vr)
Electric Charge 0 0 0
Mass (MeV) <2x1076 <0.19 <18.2
Quark up (u) charm (c) top (¢)
Electric Charge 2/3 2/3 2/3
Mass (MeV) 23701 1.275+0.025x10% | 173.07+0.89x 103
Quark down (d) strange (s) bottom (b)
Electric Charge -1/3 -1/3 -1/3
Mass (MeV) 48153 055 4.1840.03x 103

Table 1.2: The force carrying bosons [1].

Particle Force Mass (GeV)
photon (7) | Electromagnetic < 10727
A Weak 91.1876-£0.0021
W Weak 80.399+0.023
gluon(g) Strong < 0(1073)

bosons lead to a short interaction range (< 10716 m). The strong force is mediated by the
massless gluon. Gluons are electrically neutral but carry colour charge and interact with
quarks (which also carry a colour charge). Because gluons themselves have a colour charge,
they can interact with themselves.

While the electromagnetic and weak interactions look quite different, they are actually
two aspects of the same interaction. The “weakness” of the weak interactions is due to the

limited interaction range rather than the inherent interaction strength. The masses of the



W and Z bosons, and thus the differences between electromagnetic and weak interaction
strengths, require an explanation. In the standard model, this is achieved through spon-
taneous electroweak symmetry breaking and the introduction of another boson called the

Higgs boson.

1.2 The Standard Model

The standard model combines quantum mechanics and special relativity into a theory frame-
work to describe the interactions amongst the fundamental particles. In this framework
particles are interpreted as excitations of relativistic quantum fields. The behaviour of these
fields is described by the SM Lagrangian. This Lagrangian is a function of the fields, and is

described below [9, 10, 11].

1.2.1 QED

To describe the theory that governs the electromagnetic interactions, we will start with the

simple theory of a free electron. The Lagrangian for such a theory is:

L =1 (i’y“@u - m) 1), (1.1)

where 1) is a spinor field for the spin 1/2 electron of mass m, and v* are the Dirac matrices?.

This Lagrangian is invariant under a global gauge transformation. That is, if we transform

IThe Dirac matrices are 4 x 4 matrices defined as: 40 = ( (1) [1) ), Ai=123 — ( _OU. %i >,
1

where o; are the Pauli matrices



the phase of i globally:

and

d() = d(x) = () (1.3)

the Lagrangian remains unchanged. Now consider the Lagrangian under a local gauge trans-

formation:

Y(x) = (x) = e @y(x) (1.4)

and

P(x) — P(a) = @y(x) (1.5)

The 1ma) term in Eq. 1.1 is clearly invariant under a local gauge transformation, but
the zziaw term is not. Thus, if we want our Lagrangian to be invariant under a local gauge

transformation, we require a gauge covariant derivative, D, to replace 9, such that:

— -/

() Dyip(a) — & () Dyt () = () Dyip(). (1.6)

We can accomplish this by introducing a vector field A, (z) with coupling strength e and

write the covariant derivative as:
D, = 8,1 + ieAu, (1.7)

with the requirement that A, transforms as:



/ 1

If we also introduce the field tensor to include the dynamics of the gauge field:
F/,Ll/ - 6/1/14]/ - 8VA/,L7 (19)

we can then write our gauge invariant Lagrangian as:

_ 1
L= (iy" Dy —m) ¢ — . (1.10)

Alternatively, if we expand out the covariant derivative:
_ - 1

From this we can clearly see three different pieces. The first piece, 1 (M“@M — m) Y, is the
free electron Lagrangian we started with. The third part, %[F uv Y describes the dynamics
of the gauge field, A,. The second part, 61;’7”1/&4#, describes the interaction between the
spinor field ¢ and the gauge field A,. We can identify A, as the field for the photon,
that interacts with our spinor field with strength e, which we can identify as the electric
charge. Note that there are no terms of the form A" A,. These terms would be photon mass
terms, but can not be included in our Lagrangian as they are not invariant under local gauge

transformations.



1.2.2 QCD

Quantum Chromodynamics (QCD) describes strong force interactions between quarks and
gluons. The QCD Lagrangian can be constructed in an analogous way to the QED La-

grangian by requiring invariance under SU(3) local gauge transformations of the form:

Y — Ui, (1.12)

where U is a unitary 3 x 3 matrix. The QCD Lagrangian is given by:

., 1
L= Z@b (ny”Du - mj> ) — ZGZVGgV’ (1.13)
J
where j corresponds to one of the six quark flavours, and the index a is summed over the
eight colour degrees of freedom. GZV is the gluon field tensor, equivalent to Fpy in QED,
and is given by:

G4, = 0,08 — 0,0t + gfrCh ey, (1.14)

and the covariant derivative is:

Here C), is the vector field of the gluons, and ¢ are the generators of the SU(3) gauge
group. The full QCD Lagrangian can be written in three pieces: a kinetic piece, Liipetic: @

quark-gluon interaction piece, Ly qrk—giuon; and a gluon self-interaction piece Lgjyon—gluon-

flavours

1 = /.
Liinetic = T (a,uCzC/L - anyL) + Z Q/Jj (Z’Yﬂﬁu — mj) ¢j (1.16)
J



flavours

Lquarkfgluon = —Us Z Cﬁﬁﬂ“cﬂt“% (1.17)
J

g g ,
Lgluon—gluon = Esfabc (auczc/l - aI/C,Z) (Cffcéj) - Esfabcfadecgccychﬁ (1~18>

The gluon self interaction term comes from the gluons themselves carrying colour charge, and
does not have an equivalent in QED. There are a couple of properties of QCD that are not
obvious from the Lagrangian. The first is that quarks are confined to live within colour neu-
tral hadrons (either as a colour-anticolour pair, or as a triplet of the three different colours).
From an experimental perspective, this has the implication that we don’t measure individ-
ual quarks within our detector, but rather composite particles called hadrons. The second
property is known as asymptotic freedom. At high energies, QCD becomes a perturbative
theory, and quarks and gluons behave as though they are free particles. The implication of
this is that we can treat the interaction of protons and anti-protons at high energy as an

interaction between a single quark or gluon from each proton and anti-proton.

1.2.3 Electroweak Unification and the Higgs Mechanism

The electromagnetic and weak forces are actually two facets of the same force. The uni-
fication of the two forces is completed within the SU(2);, x U(1)y gauge group, with the
SU(2)1, group representing weak isospin space and U(1)y representing hypercharge space.
This representation is consistent with only left handed fermions being able to undergo flavour
changing weak interactions. The three gauge fields of SU(2), are Wﬁzl’Q’g with coupling g,
and the gauge field of U(1)y is By, with coupling g/. The kinetic term of the Lagrangian is
given by:
1

N 1
 kinetic _ _ZW(/iLl/WgV _ EBMVBM% (1.19)



where

W}, = 0uW), — W), + gk Al AL, (1.20)

Since leptons have both right and left handed components but only left handed neutrinos
exist, it is natural to write the interactions with the gauge fields in two pieces. The first is a
purely right handed interaction with a singlet of a lepton field, R, that interacts only with
the By, field:

, _ 1Yy
[, singlet _ i Ry* (@M +1ig §BM> R. (1.22)

The left handed lepton doublet of the lepton and neutrino fields:
L= (1.23)

interacts with fields from both groups:

. 1Y .0
Ldoublet _ zL’y“ <aﬂ +ig §B,u + 197‘1{/[/1&1) L. (1.24)

The physical fields that we observe for the photon, W=, and Z can be written in terms

of these gauge fields and their couplings:

1
+ _ 1 2
Wi =7 (Wi =Wp7) (1.25)
Zy, = —sin(Oy ) B, + COS(Qw)WEZ (1.26)
Ay = cos(Oy) By, + sin(HW)WS (1.27)

10



(1.28)

where Oy is the weak mixing angle (also called the Weinberg angle) which mixes the B,

and Wg fields is defined as:
g

cos(Oyy) = ————.
Vo2 +47

One important thing to notice is that, so far, we haven’t included any mass terms for the

(1.29)

gauge bosons. However, we know from experimental observations that the W and Z bosons
do indeed have mass. Explicitly adding such terms to the Lagrangian would not preserve
local gauge invariance, so we require some mechanism to give the weak bosons mass. One
such method is to spontaneously break a symmetry. Electroweak spontaneous symmetry
breaking was proposed as a mechanism to include massive gauge bosons within the standard
model in 1964 by Higgs, Englert, Brout, Guralnik, Hagen, and Kibble [12, 13, 14], for which
Higgs and Englert were recently awarded the Nobel prize in physics [15].

To illustrate this phenomenon, consider the Lagrangian for a real scalar field, ¢, in a

potential V' (¢) = %,uQQbQ + %A(b‘l:

L= % (aﬂ¢)2 - (%/ﬂdﬂ + iw‘*) . (1.30)

If 42 > 0, then the particle has a mass of x and the fourth order self-interaction strength
of the field, ¢, is A\. If we minimize the potential V(¢), we find that the ground state, or
vacuum, corresponds to ¢ = 0. We can also consider the case where ;i < 0. In this case we
find that the ground state of the potential corresponds to ¢ = v, with v = \/,uT/)\ The
two ground states are completely equivalent, and when we choose one or the other as a point

to perturbatively expand about, we spontaneously break the symmetry. We will choose to

11



perturbatively expand our Lagrangian around the +v ground state, and will write the field

as ¢(x) = v+ n(x). Our Lagrangian can then be written in terms of v, 7 and A:

/

2 1 1
L = (@m) — )\112772 — )\vn3 — 1)\774 + Z)\’U4. (1.31)

N | —

We can now see that we have a field n with a mass of /2 v. Ultimately, we would like
a massive gauge field, a*, with charge, ¢. Luckily, our example can be easily taken a step

further by considering a locally gauge invariant complex scalar field, ¢ = %(gbl +i¢9):

1
L = DHO™ Dy = 1 By = i 6"6 = N6"0)", (1.32)
where:
D, =0, +iqay, (1.33)

If we again consider the case where ;2 < 0, we see that the minimum is a circle in ¢; — ¢

space:

2
of +03 =0 =/ - (1.35)

We can spontaneously break the symmetry and choose ¢1 = v and ¢9 = 0, and expand
around this minimum:

¢(x) = —=(v+n(x) +ie(x)), (1.36)

Sl

12



and

/

1 1
L = {(@m)? + (0M6)2} — ZFWFMV — 2P + §q202aﬂa“ — quay,0e. (1.37)

N —

Similar to the previous example, we can see that we have a scalar field n with mass
V2 . We also see that we have a massless scalar field, e. Additionally, our gauge field, Ay,
now has a mass of gu. The masslessness of the ¢ field comes from the process of breaking
the symmetry, and is somewhat intuitive. The potential in the tangential (¢) direction is
flat, which means there is no resistance to oscillations in the e direction, which leads to a
massless field. Whenever we break a continuous symmetry spontaneously, we will end up
with a massless scalar field. We don’t observe such extra massless fields in nature, so how
should we interpret them? We can note that in the lowest order of e, our complex scalar

field can be written as:

¢ = \/g(v—l—n—i—ie) (1.38)
o~ \/g(v + 1) ele/v. (1.39)

We can consider rewriting our Lagrangian, choosing a specific gauge, by expressing every-

thing in terms of real fields h, 6, and a, with:

o — \/g(v + h)elb/v, (1.40)

Here, 6 is chosen in such a way that h is real. This choice of gauge renders our Lagrangian

13



independent of 6, so that the non-physical massless field that appeared from the spontaneous

symmetry breaking is now nowhere to be seen:

L= %(aﬂfﬂ) - iF“”FW — AR+ %Q%Qaua“ — uARS — iw‘ + %q2aﬂa“h2 + vagat.

(1.42)

This is because the apparent extra degree of freedom of the massless field was actually just

the freedom to make a gauge choice. We are now left with a Lagrangian for two massive

fields: a massive gauge field ay, and a massive scalar field h. This process is known as the
Higgs mechanism, and the field h is called the Higgs field.

We can now go even further, and apply this same procedure to a Lagrangian invariant

under SU(2), xU(1)y transformations. In this case, we will need to couple to SU(2) doublets

with four degrees of freedom, so our field, ® is now a doublet of complex scalar fields:

+
o |’ , (1.43)
¢0
with
o7 = /501 +ign), (1.44)
o0 = \/L(o3 +idn). (1.45)

We again consider the 2 < 0 case, and find the minimum of our potential. We choose

14



the minimum point to do our perturbative expansion around to be:

o=/ . (1.46)

The choice of only allowing the neutral component to be non-zero is to conserve electric

charge. If we expand our Lagrangian about this minimum, we find that we get a massless

field, A, corresponding to the photon, and two massive gauge bosons. In the end, we find:

My = Jug (1.47)
My =0 (1.48)
My, = %v\/g2 + 9/2 (1.49)
M

M—V; = cos Oy (1.50)

We now have our weak bosons with non-zero masses, a massless photon, plus an additional
massive scalar boson, the Higgs boson. It is worth noting that the masses of the W and Z
bosons are predicted theoretically, however the Higgs boson mass is not. Also, our fermions
are still massless, as we could not simply add in an explicit mass term to our electroweak
Lagrangian and still preserve gauge invariance. The Higgs mechanism comes to the rescue
again. Let’s consider including the following term in our electroweak Lagrangian:
+ - vy
Ly =—ge |(vr, )1, lr+(r (67,4 : (1.51)

0 /
(b L

15



We, as before, break the symmetry spontaneously with:

1 0
o= 3 (1.52)
v+ h
so that out Lagrangian becomes:
Ly = —mylt — “Lien, (1.53)
v

where we have defined the lepton mass:

gev
my = —. 1.54
l \/5 ( )
Notice that the lepton masses are not predicted, as gy is not given.
Quark masses arise similarly from starting with the Lagrangian:
N - ¢+ B - _ 40
Ly= —gzl] (;, dyr)p, diRr — g (g, d) L, u;g+hermetian conjugate, (1.55)
¢ ¢

where u and d correspond to up-type and down-type quarks respectively. After spontaneous

symmetry breaking this becomes:

o h . h
Ly= _mzidzdz (1 + U) — mZdZuZ <1 + U) . (1.56)

16



1.2.4 Properties of the Higgs Boson

While the Higgs boson was first predicted to exist about 50 years ago, we are only now
reaching the point where we can experimentally probe it. The standard model does not
predict the mass of this Higgs boson, so typically experiments look over a large range of
masses.

This mass range can be constrained experimentally by precision electroweak measure-
ments and by direct searches for the Higgs boson. Indirect constraints on the Higgs boson
mass come from measuring precisely the mass of the W boson and top quark as shown in
Fig. 1.1 [3]. Diagrams such as those in Fig. 1.2 show how the W boson mass is related to
the top quark mass and the Higgs boson mass. Direct constraints have also been placed
on the Higgs boson mass. Searches for the Higgs boson at LEP constrain the Higgs bo-
son mass to be greater than 114.4 GeV [16]. The Tevatron additionally excludes masses
150 < Mg < 180 GeV [§].

In July 2012, the ATLAS and CMS experiments excluded masses up to about 500 GeV
with the exception of a narrow region centred on about 125 GeV [4, 5] as shown in Fig. 1.3. In
this narrow region, both experiments reported discovery? of a new particle with a significance
of 5 standard deviations above the background-only expectation. At the same time the
Tevatron experiments reported evidence of a particle decaying to b-quarks with a significance
of three standard deviations above the background only expectation in the range of 115-
140 GeV [17].

For a given mass of the Higgs boson, the SM does predict the production cross section,

2In particle physics, the words “evidence” and “discovery” have specific statistical mean-
ings. If the data are 3 standard deviations above the background-only expectation, that
corresponds to “evidence” of something new. If the data are 5 standard deviations above
the background-only expectation, that is referred to as a “discovery”.

17
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Figure 1.1: For the interpretation of the references to colour in this and all other figures,
the reader is referred to the electronic version of this dissertation. A global fit to data
from precision electroweak experiments can place constraints on the W boson and top quark
masses. Shown here are the 68% and 95% contours from this fit including the Higgs boson
mass measurement in blue, and not including the Higgs boson mass measurement in gray.
The horizontal and vertical green bands correspond to 1 standard deviation on the W boson
and top quark masses respectively. The diagonal lines show where different values for the
Higgs mass would appear in the W—top mass plane [3].

W+ W+
B W:I: W:I:

Figure 1.2: The masses of the top quark, W boson, and Higgs boson are related through
loop diagrams.
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