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The top quark pair production cross section measurement in the lepton+jets channel with b-tagging

algorithm is described. About 900 pb−1 data collected by the DØ detector at the Fermilab Tevatron

are used for this analysis. In this thesis, event selection, background estimation, and cross section

calculation are discussed in detail. In addition, calibration of the Luminosity Monitor readout

electronics and a new b-tagging algorithm, the SLTNN tagger, are also discussed in this thesis.
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Chapter 1

Introduction

The top quark, known as the heaviest fundamental particle, was discovered in 1995 by both the CDF

and DØ collaborations [1, 2]. However, studies of the top quark are still at the beginning stage and

its characteristics are still under a veil of mystery. Moreover, studying properties of the top quark is

interesting because it gives insights into Higgs search, new physics beyond the Standard Model (SM),

electroweak symmetry breaking, and perturbative Quantum Chromo Dynamics (QCD). Therefore,

top quark physics is one of the most interesting topics in High Energy Physics (HEP) today and

the Tevatron accelerator at Fermilab is currently the only place where the top quark can be created

and studied until the Large Hadron Collider (LHC) at CERN starts taking data. In this chapter,

the SM, which describes fundamental particles and their interactions well, is generally discussed and

the production of top quark pair events at the Tevatron is also described.

1.1 Standard Model

What does our world consist of? This question always stimulates people’s intellectual curiosity.

From ancient times, scientists have devoted their efforts finding the smallest units of matter and

how these units interact with each other. We believe at present that there are two types of the

smallest units of matter, leptons and quarks, and four different fundamental interactions (forces),

gravity, electromagnetism, weak interaction, and strong interaction. The theories that describe these

1



units and interactions are collectively called “the Standard Model”.

The quark has 6 flavors (up, down, strange, charm, bottom, and top) at present and they fall

into doublets called “generation”

(

u

d

)(

c

s

)(

t

b

)

where u is up, d is down, s is strange, c is charm, b is bottom and t is top. The top row in the

doublets has 2/3 electric charge and the bottom row has −1/3. The quark also carries a charge of

QCD, called color charge. There are three colors: red, blue, and green.

The lepton also has 6 flavors with three generations of doublet

(

νe

e

)(

νµ

µ

)(

ντ

τ

)

where e is electron, µ is muon and τ is tau. ν is the neutrino and the subscript is the generation

associated with one of e, µ and τ . The summary of charateristics for quarks and leptons is shown

in Table 1.1.

Type Name Mass [3] Spin Charge (Q) Nbaryon (B) Nlepton (L)

Quarks

u 1.5 ∼ 3.0 MeV 1
2 + 2

3
1
3 0

d 3 ∼ 7 MeV 1
2 − 1

3
1
3 0

s 95 ± 25 MeV 1
2 − 1

3
1
3 0

c 1.25 ± 0.09 GeV 1
2 + 2

3
1
3 0

b 4.20 ± 0.07 GeV 1
2 − 1

3
1
3 0

t 174.2 ± 3.3 GeV 1
2 + 2

3
1
3 0

Leptons

e 0.51 ± 0.00 MeV 1
2 −1 0 1

νe < 2 eV 1
2 0 0 1

µ 105.66 ± 0.00 MeV 1
2 −1 0 1

νµ < 0.19 MeV 1
2 0 0 1

τ 1776.99 +0.29
−0.26 MeV 1

2 −1 0 1

ντ < 18.2 MeV 1
2 0 0 1

Table 1.1: The summary of characteristics for quarks and leptons.

In addition to the quarks and leptons, there are basic elementary particles which transmit the
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four fundamental forces, called “gauge bosons”. The graviton mediates gravity, the photon (γ)

mediates the electromagnetism, the W± and Z0 mediate the weak interaction which is responsible

for neutrino (ν) interactions and nuclear beta decay, and the gluons mediate the strong interaction

which binds the quarks in the proton. These interactions and the behavior of elementary particles

can be calculated by quantum field theory. Table 1.2 shows a summary of the four forces and their

gauge bosons.

Force act on gauge bosons characteristics

Gravity all particles graviton massless, spin -2

Electromagnetism all charged particles photon massless, spin -1

Weak Interaction quarks, leptons, electroweak gauge bosons W ±, Z0 heavy, spin -1

Strong Interaction quarks, gluons (color charged) eight gluons massless, spin -1

Table 1.2: Summary of the four fundamental forces and their gauge bosons [4].

The electromagnetic and weak interactions are unified in the SM, and are called the “electroweak

interaction” with SU(2)L × U(1)Y symmetry. Four vector fields are introduced to describe the

electroweak interaction: two massive charged bosons W± and two neutral fields Z0 and γ. In the

quantum field theory, the gauge bosons are massless, but in the unified electroweak interaction,

W± and Z0 have heavy masses. Their masses can be explained by spontaneous symmetry breaking.

Spontaneous breaking of the local U(1) and SU(2) gauge symmetries makes the W ± and Z0 massive

and the photon remains massless. This is called Higgs mechanism. The scalar field resulting from

the Higgs mechanism is called the “Higgs boson” and the search for it is one of the major challenges

in elementary particle physics.

The strong interaction can be described by the QCD theory, which has a SU(3) gauge symmetry

for phase transformations on the quark color fields. Each quark has three color flavors and they

form a triplet in the SU(3) group. There exist eight gluons to mediate the strong interaction, and

they form an octet in the adjoint representation by the product 3 ⊗ 3 = 1 ⊕ 8. The effect of strong

interactions at large Q2 can be calculated by perturbative QCD. The top quark pair events are

produced by this strong interaction at the Tevatron. The theoretical aspects of the production will
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be described in the next section.

1.2 Top Quark Pair Production and Decay

The top quark can be produced at the Tevatron (a proton-antiproton collider) in two different ways:

pair production of the top quarks (namely, tt̄ events) and Drell-Yan production of single top quark

(called single top). The tt̄ events can be produced by strong interaction through the processes qq̄

annihilation and gluon fusion, shown in Figure 1.1. At the Tevatron, the contributions of these two

processes are 85% and 15% at
√

s = 1.96 TeV , respectively. In this thesis, QCD pair production of

the top quark is examined.

q

q

g t

t

(a) qq̄ annihilation process

g

g

t

g

g

g

g

t

(b) gluon fusion process

Figure 1.1: The lowest order processes for tt̄ pair production in QCD [5].
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1.2.1 Total Cross Section for the Top Quark Pair Production

The total cross section for tt̄ pair events, pp̄ → tt̄ , at a center of mass
√

s can be calculated by the

following formula [6]

σ(s) =
∑

i,j=q,q̄,g

∫

dxidxj σ̂i,j(xixjs, m
2
t , µ

2)F p
i (xi, µ)F p̄

j (xj , µ) (1.1)

where i and j indicate light quarks and gluons for tt̄ pair event production, for example qq̄ → tt̄

and g + g → tt̄ in the Leading Order (LO) production (Figure 1.1). The F p
i and F p̄

j are the parton

distribution functions (PDF), the probability densities of finding a parton with a given momentum

fraction for p and p̄, evaluated at a scale µ. µ is the renomalization and factorization scale. xi and

xj denote the momentum fractions of i and j partons respectively.

The symbol σ̂ is the subprocess (parton-parton) cross section for tt̄ events (µ ≈ mt). It is

calculable as a perturbation series in terms of αS(µ2), a coupling constant of the strong interaction.

The formula for σ̂ is

σ̂i,j(s, m
2
t , µ

2) =
α2

S(µ2)

m2
t

fij

(

ρ,
µ2

m2
t

)

(1.2)

where ρ = 4m2
t/s and s is the square of the partonic center of mass energy. In this formula, the

dimensionless function fij can be expanded as following

fij

(

ρ,
µ2

m2
t

)

= f
(0)
ij (ρ) + g2(µ2)

[

f
(1)
ij (ρ) + f̄

(1)
ij (ρ) ln

(

µ2

m2
t

)]

+ O(g4) (1.3)

where the coupling constant αS = g2/4π. Therefore, the functions f
(0)
ij are the LO contributions

(O(α2
S)), and the f

(1)
ij and f̄

(1)
ij are the Next-to-Leading-Order (NLO) contributions (O(α3

S)). Ac-

cording to Reference [6], the functions f
(0)
ij are

f
(0)
qq̄ (ρ) =

πβρ

27
[2 + ρ]

f (0)
gg (ρ) =

πβρ

192

[

1

β
(ρ2 + 16ρ + 16) ln

(

1 + β

1 − β

)

− 28− 31ρ

]
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f (0)
gq (ρ) = f

(0)
gq̄ (ρ) = 0 (1.4)

where β =
√

1 − ρ. f
(1)
ij and f̄

(1)
ij can be numerically calculated and represented by a physically

motivated fit function. The results of functions are presented in Reference [6]. Using these functions,

the total cross section can be evaluated theoretically in Equation 1.1. The NLO results determined

by this calculation are shown in Figure 1.2 and Table 1.3.

A few years ago, the Next-to-Next-to-Leading-Order (NNLO) correction at
√

s = 1.96 TeV was

calculated in References [7, 8]. The results in Reference [7] are shown in Figure 1.2 and Table 1.3.

The best estimation in the reference is σtt̄ = 6.77± 0.42 pb at µ = mt = 175 GeV. The uncertainty

is from the choice of the PDF. The results in Reference [8] are shown in Table 1.4.

√

Figure 1.2: The tt̄ cross section in pp̄ collision at
√

S = 1.96 TeV as a
function of mt for µ = mt. The NLO (solid) and NNLO (dotted) with
uncertainties (dashed and dot-dashed) [7].

1.2.2 Top Quark Decay

The world average of the top quark mass measurement is 172.6 ± 0.8(stat) ± 1.1(sys) GeV at

present [11]. The top quark has the heaviest mass of the discovered fundamental elementary particles

and its lifetime is too short for it to hadronize due to its heavy mass.
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σtt̄ (pb)
MRST2002 NNLO CTEQ6M

Order µ = mt/2 µ = mt µ = 2mt µ = mt/2 µ = mt µ = 2mt

NLO 6.79 6.52 5.83 6.79 6.54 5.85
NNLO 1PI 7.00 7.17 6.99 7.01 7.21 7.04
NNLO PIM 6.14 6.35 6.28 6.08 6.33 6.29

Table 1.3: The tt̄ pair production cross section in pp̄ collision at Tevatron (
√

s =
1.96 TeV) for mt = 175 GeV [7]. MRST2002 [9] and CTEQ6M [10] are parton distri-
bution functions. 1PI denotes single-particle-inclusive kinematics and PIM denotes
pair-invariant-mass kinematics.

PDF mt σmin (pb) σref (pb) σmax (pb)

CTEQ6M
170 6.79 7.83 8.54
175 5.82 6.70 7.30
180 5.00 5.75 6.25

MRST
170 7.11 7.90 8.31
175 6.08 6.76 7.10
180 5.21 5.79 6.08

Table 1.4: The tt̄ cross section predictions for the
CTEQ6M and MRST parton distribution functions at√

s = 1.96 TeV [8].

The top quark decays into a W boson and a b quark before hadronization, t → Wb, with

almost 100% branching fraction in the SM. The top quark can also decay to Ws and Wd by the

Cabibbo-Kobayashi-Maskawa (CKM) mixing. However, the branching fraction is very small and

it is not considered in this analysis. After decaying to the W boson and b quark, the b quark is

hadronized. The W boson has two decay modes, leptonic decay and hadronic decay. Table 1.5 shows

the branching fractions of the W boson decay modes [3].

Decay Mode (W +) Branching Fraction

Leptonic Decay

e+νe 10.75± 0.13%

µ+νµ 10.57± 0.15%

τ+ντ 11.25± 0.20%

Hadronic Decay
ud̄

67.60± 0.27%
cs̄

Table 1.5: The branching fractions of the W boson decay mode [3].
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Depending on the W boson decay mode, the analysis of tt̄ pair events can be separated into three

channels: dilepton channel, lepton+jets channel, and all-hadronic channel. The dilepton channel

has both the W+ and W− from tt̄ decay leptonically, the lepton+jets channel has one of the W

boson decays leptonically and the other W boson decays hadronically, and the all-hadronic channel

has both the W bosons decay hadronically. The branching fraction for each channel is determined

by the branching fractions of the W boson shown in Table 1.5. Figure 1.3 shows the decay channels

for tt̄ pair events and their branching fractions.
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ta
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(a) The decay channels for tt̄ pair events.

τ+τ   1%

τ+µ   2%

τ+e   
2%

µ+µ   1
%

µ+e  
 2%

e+e 
  1%

e+jets 15%

µ+jets 15%

τ+jets  15%

"alljets"  44%

"lepton+jets""dileptons"

Top Pair Branching Fractions

(b) The branching fractions for the decay channels of tt̄ pair events.

Figure 1.3: Decay channels for tt̄ pair events and their branching fractions [5].
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In this thesis, only electron+jets and muon+jets channels, including the contributions from

the τ+jets channel (τ → e or τ → µ), are discussed. The tt̄ pair events in the lepton+jets channel

at DØ have one lepton, missing transverse energy (6ET ) originating from the neutrino, two jets from

a W boson decaying hadronically, and two b-quark jets from tt̄ decays in the final state. The lepton

and 6ET from leptonic W boson decay have large transverse momentum because of the heavy mass

of the W boson (about 80.4 GeV). Figure 1.4 shows the Feynman Diagram for tt̄ events in the

lepton+jets channel.

q

q

g

ν

l+

W 
+

b

W 
–

b

q'

q

t

t

Figure 1.4: The event signature of tt̄ pair production in the lepton+jets channel [5].
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Chapter 2

Tevatron and DØ Detector

The Fermi National Accelerator Laboratory (Fermilab) [12] plays a leading role in the field of

experimental particle physics of the world. At the Fermilab Tevatron collider, Run I (1992-1996)

was successfully completed with about 130 pb−1 of delivered luminosity, resulting in the discovery of

the top quark. Now in Run II (2002-) the accelerators and detectors are upgraded and data taking

is under way.

2.1 Tevatron

The Fermilab accelerator [13] consists of a chain of accelerators: the Cockcroft-Walton injector,

the LINAC (LINear ACcelerator), the Booster, the Main Injector, and the Tevatron as shown in

Figure 2.1. In the Tevatron, protons and antiprotons are counter-rotating with 1.96 TeV center of

mass energy, making the Tevatron as the highest energy collider in the world until the Large Hadron

Collider (LHC) at CERN starts to run. Futhermore, the Tevatron is currently the only collider with

sufficient center of mass energy to produce top quark pair events.

Protons are accelerated to 400 MeV in the Cockroft-Walton and the LINAC. The Cockroft-

Walton is a 750 kV DC voltage source in which H− ions are pre-accelerated to 750 KeV. The H−

ions are further accelerated in the LINAC, which is a 130 m long set of drift tubes divided by vacuum

gaps. In the LINAC, an electric field is produced by radio frequency (RF) power and it is polarized
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Figure 2.1: Fermilab accelerator complex.

in the same direction in all the gaps. The H− ions increase their speed in the gaps and keep the

speed inside the drift tubes when the electric field reverses. The drift tubes become longer and

longer as the velocity of H− increases as shown in Figure 2.2. Instead of a continuous ion beam, the

ions are “bunched” together in the LINAC because of the alternating electric field. The bunches of

ions are spaced 5 ns apart and the typical bunch contains 1.5 billion particles. After acceleration to

400 MeV, ions pass through a carbon foil to make bare protons. The bare protons are injected into

the Booster, which is a 475 m circumference synchrotron. In the Booster, protons are bent into a

circular orbit by dipole magnets and accelerated to 8 GeV by RF cavities [14].

Figure 2.2: Diagram of the LINAC which shows how H− ions are accelerated [14].

After the Booster, protons are injected into the Main Injector. The Main Injector is a 2 mile
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circumference synchrotron that accelerates protons to 150 GeV. Another important role of the Main

Injector is to produce antiprotons (Figure 2.3). Beams of 120 GeV protons are collided into a nickel

target every 1.5 second, and many secondary particles are created by these collisons. Particles other

than antiprotons are filterd away by sending the beam through a pulsed magnet which acts as a

charge-mass spectrometer. After that, the antiprotons move to the Debuncher and the Accumulater

sequentially, which are 8 GeV syncrotrons. In the Debuncher, higher energy antiprotons travel on

the outside of the ring and lower energy ones on the inside of the ring. Whenever they pass through

the RF cavity, the former is decelerated and the latter is accelerated. As this process happens

over and over, eventually the energy spread of antiprotons will be reduced and they are debunched.

Then, the antiprotons are sent to the Accumulator. Stochastic cooling technique is used to both the

Debuncher and the Accumulator for cooling to reduce the beam emittance [15]. After accumulating

a large number of antiprotons (over hours or days), they are sent back to the Main Injector and

accelerated to 150 GeV. The Recycler is a fixed-energy storage ring for the antiprotons, and it is a

leading factor in the increased luminosity of the Tevatron in Run II [16].

Figure 2.3: The diagram of the system used to accumulate and cool the antiprotons [15].

Both protons and antiprotons are injected into the Tevatron and accelerated to 980 GeV indi-

vidually. The Tevatron is the world’s first superconducting syncrotron, and utilizes 1000 supercon-

duncting magnets operating at 4.3 K [13]. The superconducting magnets produce a magnetic field

of 4.2 Tesla, and the circumference of the Tevatron is 4 miles. Two circulating beams collide at 396
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ns time interval at two interaction points where the CDF and DØ detectors are located.

The Run II project began in 2001. It is split into two subsection: Run IIa and Run IIb. Run IIa

was completed in April 2006 with an integrated luminosity of about 1.0 fb−1, and Run IIb started in

June 2006. Run IIb is planed to take data until 2009 with 8 fb−1 expected to be recorded. Figure 2.4

shows (a) integrated luminosity and (b) the peak instantaneous luminosity at the Tevatron during

Run II.

(a) Integrated Luminosity

(b) Peak Instantaneous Luminosity

Figure 2.4: Luminosity at the Tevatron during Run II (2001-2008) [17].
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2.2 DØ Detector

The DØ detector is a multi-purpose detector designed to identify and measure particles originating

from high mass states and study large pT phenomena. During Run I, the DØ experiment took about

130 pb−1 of data using the DØ detector. For Run II, the DØ detector was upgraded to improve

detector performance and operate at higher luminosity. In this section the design and performance

of the upgraded DØ detector is described. This section is based on Reference [18] and the upgraded

DØ detector is discussed in detail in this reference.

Figure 2.5: Diagram of the upgraded DØ detector viewed from inside the Tevatron ring.

The DØ detector consists of several subdetectors. An overview of the DØ detector is shown in

Figure 2.5. The central tracking system that measures the vertex and the path of charged particles

is described in Section 2.2.2. The calorimeters that measure the energy depositions of particles

that interact electromagnetically, such as electrons and photons, but also particles that interact

with the strong force, such as pions are briefly presented in Section 2.2.3. The muon detector

that identifies muons is discussed in Section 2.2.4. Section 2.2.5 describes the luminosity monitor
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designed to measure Tevatron luminosity at the DØ interaction region by counting inelastic pp̄

collisions. Finally, Section 2.2.6 describes the trigger and data acquisition (DAQ) systems.

2.2.1 Coordinate System

The DØ experiment uses a right-handed coordinate system. The z axis is paralell to the beam

axis, the y axis is upward and the x axis is outward from the center of the Tevatron. The spherical

coordinate (r, θ, φ) is also useful

(r =
√

x2 + y2, θ = arccos

(

z
√

x2 + y2 + z2

)

, φ = arctan
(y

x

)

) (2.1)

where the θ is the polar angle and φ is the azimuthal angle. For the polar angle, pseudorapidity η

is more convenient to use for relativistic particles and the definition is

η = − ln tan
θ

2
. (2.2)

It is approximately the same as the true rapidity defined as

y =
1

2
ln

E + pz

E − pz
(2.3)

for finite angles in the limit that (mc2/E) → 0.

2.2.2 Central Tracking System

The central tracking system is the innermost layer of the DØ detector and it consists of the silicon

microstrip tracker (SMT) and the central fiber tracker (CFT). A superconducting solenoidal magnet

with 2.0 T magnetic field surrounds the SMT and the CFT. The SMT and the CFT measure the

helical trajectories of charged particles as they travel through the tracker. They also determine

the location of the primary interaction vertex with a resolution of about 35 µm along the beamline

and identify b-quark jets with an impact parameter resolution better than 15 µm for transverse

15



momentum pT > 10 GeV/c at |η| = 0. A schematic view of the tracking system is shown in

Figure 2.6.

Figure 2.6: Cross-sectional view of the central tracking system with solenoid in the x − z plane.

Silicon Microstrip Tracker

The SMT provides both tracking and vertexing of charged particles for almost the full η range

covered by the calorimeter and muon systems. The SMT consists of 12 F-disks, 4 H-disks and 6

barrels. The barrel detectors primarily measure the r−φ coordinate for particles in the low η region

and the disk detectors measure both r − z and r − φ in the high η region. A 3-D schematic view of

the SMT is shown in Figure 2.7.

In central region of the SMT, there are 6 barrels and each barrel has 4 silicon readout layers.

Layers 1 and 2 each have 12 silicon modules called “ladders.” Layers 3 and 4 each have 24 ladders

each, a total of 432 ladders with 2.7 cm < r < 10.5 cm and |z| < 38 cm. Each barrel is connected

with F-disks at high |z|. F-disks are a set of 12 double-sided wedge modules and forward of the 3
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Figure 2.7: The disk and barrel design of the SMT.

disk/barrel on each side is a unit consisting of 3 F-disks. The F-disks are at |z| = 12.5, 25.3, 38.2,

43.1, 48.1 and 53.1 cm. H-disks are located in the far foward regions (|z| = 100.4, 121.0 cm) and are

designed to cover the high |η| region. They consist of 2 large-diameter disks, and on each H-disk, 24

full wedges are mounted, each full wedge consisting of two back-to-back single-sided wedges. The

axial hit resolution is 10 µm. The z hit resolution is 35 µm for 900 stereo and 450 µm for 20 stereo.

Central Fiber Tracker

The CFT is located outside of the SMT covering the radial space from 20 to 52 cm from the center

of the beam pipe. The CFT consists of scintillating fibers mounted on eight concentric support

cylinders (two inner cylinders that are 1.66 m long and 6 outer cylinders that are with 2.52 m long.)

One doublet layer of fibers on each cylinder is parallel with the beam axis and the other doublet

layer is at a stereo angle of ± 3◦. The scintillation light provided by the scintillating fibers is carried

to visible light photon counters (VLPCs) for read out through fiber waveguides. The fibers in the

CFT have 835 µm diameter and the CFT has a resolution of about 100 µm.

2.2.3 Calorimeter

The liquid argon calorimeters are designed to measure energy for electrons, photons, and jets in-

cluding missing transverse energy (6ET ). As shown in Figure 2.8, the calorimeters can be divided

into 3 parts: the central calorimeter (CC) covers |η| ≤ 1.0 and the two end calorimeters (EC) extend

coverage to |η| ≈ 4.0. Each calorimeter contains an electromagnetic (EM) section and hadronic

sections (fine and coarse). The CC and EC are located in their own cryostats held at a temperature
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of approximately 90 K. The region between the two cryostats (0.8 < |η| < 1.4) is instrumented

with the intercryostat detector (ICD), which provides additional sampling layers to minimize the

degradation of the energy resolution in this region.

Figure 2.8: Isometric view of the central and two end calorimeters.

Thin depleted uranium absorber plates are used in the EM calorimeters (3 or 4 mm in the CC

and EC, respectively). The fine hadronic (FH) calorimeters are made from 6 mm thick uranium-

niobium (2%) alloy plates and the coarse hadronic (CH) calorimeters consist of 46.5 mm thick plates

of copper in the CC or stainless steel in the EC. Figure 2.9 shows a schematic view of a calorimeter

cell. This cell has an electron drift time of approximately 450 ns in the 2.3 mm liquid argon gap.

In the CC, the cells are combined to form 4 EM readout layers, 3 FH layers and 1 CH layer. In the

EC, there are 4 EM layers, 4 FH layers and 1 CH layer. The size of the readout cells in the FH and

CH layers is δη× δφ = 0.1× 0.1, as shown in Figure 2.10. The EM layers have δη× δφ = 0.05× 0.05

larger cell sizes are used for at η > 3.2. The resolution of the calorimeter for electromagnetic particles

is 14%√
E

+ 1% and the resolution of the calorimeter for hadronic particles is 50%√
E

+ 4%.
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Figure 2.9: Schematic view of calorimeter cell.

Figure 2.10: Schematic view of the DØ calorimeter. The rays and the numbers indicate pseudo-
rapidity intervals seen from the center of detector.

19



2.2.4 Muon Detector

The upgraded muon system has two subdetectors, the central muon system using proportional drift

tubes (PDTs) and the forward muon system using mini drift tubes (MDTs). The central muon

system covers |η| ≤ 1.0 and the forward muon system increases coverage to |η| ≈ 2.0. Exploded

views of the muon system are shown in Figure 2.11.

The central muon system consists of a toroidal magnet, drift chambers, the cosmic cap and

bottom scintillation counters and the Aφ scintillation counters. The toroidal magnets (visible in

Figure 2.5) produce a magnetic field of approximately 1.9 T in the iron absorber. The drift chambers

(PDTs) are arranged in three layers and they are located inside (A layer) and outside (B and C

layers) of the central toroidal magnet. The PDTs record the electron drift time, giving a resolution

for the drift distance in the PDTs of σ ≈ 1 mm.

The forward muon system consists of end toroidal magnets (≈ 2.0 T ), three layers of MDTs to

reconstruct muon tracks, three layers of scintillation counters to trigger on events with muons, and

shielding around the beam pipe. The 3 layers of MDTs (A, B, C) are located inside the toroidal

magnets (A), outside the toroidal magnets (B), and further out from toroidal magnets (C). The

efficiency of the MDTs is ≈ 95 % and the MDT coordinate resolution is about 0.7 mm per hit. The

stand-alone momentum resolution is approximately 20 % for muon momentum below 40 GeV/c.

2.2.5 Luminosity Monitor

The luminosity monitor (LM) determines the luminosity at the DØ detector, measures beam halo

rates and makes a fast measurement of the z coordinate of the interaction vertex. The LM detector

consists of two LM counter arrays (north and south). The LM arrays are made from 24 plastic

scintillation counters with photomultiplier (PMT) readout. The LM detector has a coverage of

2.7 < |η| < 4.4 as shown in Figure 2.12. The LM detectors are located at z = ±140 cm. The

readout system for the LM detector and its calibration are discussed in detail in Appendix A.

To separate pp̄ interactions from beam halo backgrounds, the time-of-flight for particles is mea-
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(a) Exploded view of the muon wire chambers.

(b) Exploded view of the muon scintillation detectors.

Figure 2.11: DØ muon system.
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Figure 2.12: Schematic view of the LM detectors.

sured in the LM detector. The position of the interaction vertex is calculated

zv =
c

2
(t− − t+) (2.4)

where t+ (t−) are the time-of-flight for particles hitting the south (north) LM counters and zv is

the z coordinate of the interaction vertex estimated by the LM detector. Typically, particles from

beam halo have zv ≈ ∓140 cm, and therefore |zv| < 100 cm is required to eliminate beam halo

backgrounds.

The luminosity L is determined from the average number of inelastic collisions per beam crossing

(N̄LM ) measured by the LM detector. The formula is

L =
fN̄LM

σLM
(2.5)

where f is the beam crossing frequency and σLM is the effective cross section that takes into account

the acceptance and efficiency of the LM detector.

2.2.6 Trigger and DAQ Systems

In the Tevatron, pp̄ collisions happen every 396 ns and the initial data rate is approximately 1.7

MHz. Most of events in this stage are low pT backgrounds, while we are interested in only high

pT physics events such as tt̄ pair events. Furthermore, due to the limited ability of the DØ to record

and analyze data, it is necessary for the trigger system to be able to reduce the rate to about 50 Hz.
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To do this, a three level trigger system, with the levels denoted by L1, L2 and L3, is used by DØ.

Figure 2.13 shows an overview of the DØ trigger systems.

Figure 2.13: Overview of DØ trigger and DAQ systems.

L1 trigger

The L1 trigger consists of a set of hardware trigger elements and the rate of L1 acceptance is up

to 2 kHz. This stage includes the calorimeter trigger (L1Cal), the muon trigger (L1Muon), and the

central track trigger (L1CTT). The L1Cal decision is detemined by the energies deposited in the

trigger towers covering δη × δφ = 0.2× 0.2. The L1Muon trigger looks for patterns consistent with

muons using the information from muon wire chambers, muon scintillation counters and tracks from

the L1CTT. The L1CTT reconstructs the trajectories of charged particles and uses them to make a

trigger decision. Within ≤ 3.5 µs, the L1 trigger decision should arrive at the trigger framework.

L2 trigger

The input rate of the L2 trigger is up to 2 kHz from the L1 trigger. In this stage, the rate should

be reduced to less than 1 kHz. The L2 trigger has both hardware engines and embeded micro-

processors for subdetectors including tracking, calorimeter, and muon systems. In the L2 trigger,

the preprocessors reconstruct physics objects and the physics objects are used individually to make

trigger decisions. They are also provided to L2Global to test object correlation for trigger decision.

A block diagram of the L1 and L2 trigger system is shown in Figure 2.14.
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Figure 2.14: Block diagram of the L1 and L2 trigger systems. The arrows show the data flow.

L3 trigger and L3DAQ

Candidates passing through the L1 and L2 triggers are sent to the L3 trigger, and the rate is

reduced to about 50 Hz in this stage to enable events to be recorded. The L3 trigger is a farm of

microprocessors and this farm performs limited reconstruction of the physics objects in each event.

In the L3 trigger, trigger decisions are constructed by not only the presence of physics objects but

also the relationships between them. It takes about 15 ms per event for input, event building and

output and about 235 ms per event for unpacking, reconstruction, and filtering at 1 kHz.

The L3DAQ system is in charge of sending the data for fully digitized events from the VME

readout crates of subdetectors to the L3 trigger farm. The L3DAQ is designed with 250 MB/s

bandwidth, corresponding to an average event size of about 200 kB and a L2 trigger accept of rate,

1 kHz.
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Chapter 3

Event Reconstruction and Monte

Carlo Simulation

3.1 Object Reconstruction

In this section, the following fundamental physics objects are discussed: tracks, primary vertices,

electrons, muons, jets and missing transverse energy (6ET ). The physics objects are reconstructed

using the data collected by the DØ detector or from Monte Carlo (MC) samples generated by the

DØ detector simulation. To identify the objects, specific algorithms and selections developed at

DØ are used. The b-tagging algorithm which was recently developed and is being used at DØ is

also described in this section.

3.1.1 Tracks

Charged particles leave their traces in the form of helical trajectories when they pass through the

SMT and CFT. The SMT and CFT transform energy deposits of charged particles into electric

signals called hits. In the SMT, a hit is formed by energy deposition of the charged particles in

a silicon strip. The two or more adjacent hits are defined as a cluster. In the CFT, a hit is

formed when a charged particle traverses a scintillating fiber. Hits from adjacent scintillating fibers
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are also clustered together. Using the hits, tracks are reconstructed by a track finding algorithm.

The track finding is performed using a global track reconstruction (GTR) algorithm combining the

Histogramming Track Finding (HTF) and the Alternative Algorithm (AA).

The HTF [19] is useful for the complicated cases with many hits, because this method reduces

the combinations of the hits using the Hough transformation. Figure 3.1 shows an example of

the Hough transformation. The hits mapped in (x, y) coordinates are transformed into (ρ, φ) by

the Hough transformation. Hits from a track candidate produce a peak in the φ − ρ histogram,

while random combinations of hits will be distributed uniformly. This result is parameterized with

templates. The templates are futher processed by a 2D Kalman filter in order to discard fake

templates and calculate track parameters precisely.
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Figure 3.1: Illustration for an example of Hough transformation. This example is for 1.5 GeV
muon track. (a) The family of trajectories containing a given hit. (b) The geometric place of all
trajectories containing a given hit in parameter space. (c) Curves from different hits intersect at one
point corresponding to the track parameters. (d) The point of intersection can be seen as a peak in
the (ρ, φ) histogram [19].

The AA [20, 21] is based on pattern recognition and its main concerns are keeping the track
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reconstruction efficiency high and reducing the rate of fake tracks. The AA can reconstruct low

momentum tracks as well as high momentum tracks. In the AA, all possible combinations of 3 hits

in the SMT layers are constructed at the beginning stage and track candidates are extrapolated to

hits in the next layer of the SMT or CFT. If the χ2 cut is satisfied, it is associated with the track

candidate. The AA also allows “CFT only” tracks to be reconstructed if hits in the SMT are less

than 3.

3.1.2 Primary Vertices

The primary vertex (PV) is defined as the location of the inelastic pp̄ interaction within the DØ de-

tector, and it is used as the origin in calculating kinematic variables used in physics analyses. The

adaptive primary vertex algorithm [22] is currently being used at DØ. The reconstruction using this

algorithm consists of 3 stages: track selection, vertex fitting and vertex selection.

In the adaptive primary vertex algorithm, tracks are required to have pT > 0.5 GeV/c2 as well

as 2 or more hits in the SMT. Only tracks within 2 cm are clustered, called as z-clustering, to

discard tracks generated by other interactions. All tracks selected by the z-clustering algorithm are

fitted to the same vertex and both the location and other information for the vertex are determined.

The tracks with the largest χ2 are removed until the χ2 is less than 10. Then, the distance of

closest approach (dca) to the previously fitted vertex is calculated for tracks and dca/σ(dca) < 5

is required. The tracks that pass the algorithm are fitted to a common vertex using the adaptive

fitting algorithm. In the adaptive fitting, errors on tracks are reweighted by the following function

wi =
1

1 + e(χ2
i
−χ2

cutoff
)/2T

(3.1)

where χ2
i is the χ2 contribution of track i to the vertex, χ2

cutoff is the distance where the weight

function drops to 0.5 and T is a parameter that determines the sharpness of the function. Finally,

the hard-scatter vertex is selected by the minimum bias probability selection algorithm.
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3.1.3 Electrons

Electrons [23] deposit their energies in the calorimeter and provide tracks in the central tracking

system. Therefore, electrons are reconstructed with information from two detectors. Energy clusters

in the calorimeter are reconstructed and matched to the track reconstructed by the central tracking

system. This track matching is also useful for distinguishing electrons from photons since photons

do not leave track in the central tracking system.

The simple cone algorithm makes use of a list of towers with energy deposits sorted by ET. In the

list, a seed is defined and initialized with the highest ET tower. Then all of towers with ∆R < 0.2 are

added to the seed. The final group of towers is an EM cluster. Various parameters, including track

matching, are calculated for each EM cluster to help identify electrons. The important parameters

are described below.

• Isolation:

fiso =
Etot(∆R < 0.4) − EEM (∆R < 0.2)

EEM (∆R < 0.2)
(3.2)

where EEM (∆R < 0.2) is the EM energy with ∆R < 0.2 (based on EM layers) and Etot(∆R <

0.4) is the EM energy with ∆R < 0.4 (based on EM, FH and CH layers). fiso < 0.15 is required

in this analysis.

• EM fraction:

EMF =
EEM (∆R < 0.2)

Etot(∆R < 0.2)
. (3.3)

This is the ratio of EM calorimeter energy to the hadron calorimeter energy. Large EM fraction

(EMF > 0.9) is required for EM clusters in this analysis.

• Track matching:

χ2 =

(

∆φ

σφ

)2

+

(

∆z

σz

)2

(3.4)

28



where ∆φ (∆z) is the difference in φ (z) coordinate between the location of the EM cluster in

outermost EM calorimeter layer and the extrapolation of the track to the same layer. χ2 < 50

is required in this analysis.

• Electron Likelihood:

L(x) =
Psig(x)

Psig(x) + Pbg(x)
(3.5)

where Psig (Pbg) is the probability for EM clusters to be signal (background). It is calculated

with 7 variables: EM fraction, H-matrix, ratio of the calorimeter transverse energy of the

cluster to the transverse momentum of the matched track, track matching χ2 probability,

distance of closest approach, number of tracks in a ∆R < 0.05 cone, and sum of the pT of all

tracks. L > 0.85 is applied to the high quality electrons only.

3.1.4 Muons

Muons [24] can be reconstructed using information from both the muon detector and the central

tracking system. In the muon detector, local muons, which are reconstructed using only muon

detector information, are identified with high purity. The wire hits in each (A, B, C) layer are

jointed to form track line segments, and the segments are matched with the scintillator hits. Then,

the reconstructed segments from the three layers are used to measure the muon momentum using

the curvature caused by the toroidal magnet. The resolution on the muon momentum is poor, so

the local muon is matched to a track from the central tracking system to improve the resolution. A

successfully matched local muon is called a central track-matched muon.

Reconstructed muons are classified by two parameters: muon type and muon quality. nseg is

defined to sort muon types. Muons with only one layer hits in the muon detector have |nseg| = 1,

muons with hits in the B or C (BC) layer have |nseg| = 2, and muons with |nseg| = 3 have hits in

both A and BC layers. A local muon segment not matched to a central track has a negative nseg.

The second parameter is muon quality. There are three muon qualities: “Loose”, “Medium”, and
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“Tight”. In this analysis, Medium muon quality with nseg = 3 is used. The selection criteria for

this quality is,

• at least two A layer wire hits

• at least one A layer scintillator hit

• at least two BC layer wire hits

• at least one BC scintillator hit (except for central muons with less than four BC wire hits).

The central track matching between local muons and tracks from the central tracking system

considers the following characteristics: the number of hits in the central tracking system, χ2
dof of

the central track fitting, and the dca in (x,y) of the track with respect to the primary vertex. In

this analysis, |dca| < 0.2 cm is required and it tightens |dca| < 0.02 cm if the track has hits in the

SMT. χ2
dof < 4 is also required.

Additional requirements for muon identification are muon isolaton and the cosmic ray veto. The

muon isolation cut is designed to remove backgrounds from heavy flavor muon decay such as b → µ.

To avoid these backgrounds, ∆R(µ, jet) > 0.5 is required for a muon to be isolated from a nearby

jet. Cosmic ray backgrounds are removed using the scintillator hit times and the requirement that

|ABC-layer time| < 10 ns.

3.1.5 Jets

Quarks and gluons hadronize to jets of particles through the strong interaction, and the resulting

hadrons shower in the calorimeter. The reconstruction and measurement of jets are very important

to physics analyses such as top physics and Higgs search that include them in the final state, where

the accurate measurement of the jet momentum is required to infer the original quarks and gluons.

The T42 algorithm [25] and improved legacy cone algorithm (ILCA) [26] are used in Run II to

reconstruct jets.

The T42 algorithm attempts to keep low energy cells of coming from the signal and reject the

cells from background. The threshholds are 4σ and 2σ in this algorithm, where σ is the RMS of the
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measured pedestal distribution of the cell. Cells passing 4σ threshold are believed to originate from

signal. Cells passing 2σ threshold are left if they are neighbors to cells believed to originate from

signal and otherwise they are rejected. When the 4σ cut is applied, only less than 1.5 noisy cell per

event will be left after the cut.

After noisy cells are removed, the most energetic calorimeter towers, where the tower is sum of

cells in δη × δφ = 0.1 × 0.1, with greater than 0.5 GeV are selected by the ILCA. This is called

“seeds”. Then, all of towers around the seed with ∆R < 0.5 in the η × φ dimension are added to

the seed and it is defined as a jet if the jet energy is more than 1 GeV. The ET weighted centeroids

are calculated in each cone and used as the center of a cone. This procedure is repeated until the

cone axis corresponds to the centeroid. The final jet ET requirement is ET > 6 GeV. If two jets

overlap, they are merged if the overlapping energy is greater than half of each jet energy, otherwise

they are split into two individual jets. Following a split or merge, the ET and the axis of jets are

recalculated.

Jet Energy Scale

The reconstructed jet needs a “Jet Energy Scale” (JES) correction [28, 29] to measure more precisely

for the jet momentum. The goal of the JES correction is to make the jet energy reconstructed by the

calorimeter match on average sum of particle energies for particles in the jet before passing through

the detector.

The JES correction is defined in Equation 3.6

Eparticle
jet =

Eraw
jet − O

Fη × R × S
(3.6)

where quantities used in the equation are defined as follows

• Eparticle
jet : corrected jet energy

• Eraw
jet : uncorrected jet energy,

• O : offset energy correction

31



• Fη : relative response correction (η-intercalibration)

• R : absolute response correction

• S : showering correction.

The underlying events from beam remnants and multiple parton interaction make energy deposits

in the calorimeter jet cone called the “offset energy”. These energy deposits are not associated with

hard scattering, and thus are not associated with the jet. The “offset energy correction” removes

the average energy from this effect. It is determined using minimum-bias events triggered by the

luminosity monitor detector, and these minimum-bias events are assumed to be representative of

inelastic pp̄ collisions. The energy density per tower for minimum-bias events is measured as a

function of pseudorapidity and for various primary vertex multiplicities in order to account for the

instantaneous luminosity dependence, shown in Figure 3.2.
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Figure 3.2: Offset energy of ∆R < 0.5 cone jets for various primary vertex multiplicites [28].

The “relative response correction” and “absolute response correction” have the purpose of mak-

ing the calorimeter have the same response independent of energy. The calorimeter is not well

instrumented between the CC and EC calorimeters, causing a non-uniform response in this region.

The ICD detector provides additional sampling layers between the CC and EC, but it is not suf-

ficient. To completely remove this effect, the relative response correction is performed using the

6ET Projection Fraction (MPF) method explained in Figure 3.3. The MPF method measures the
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differences in response between jet (probe) objects and photon (tag) objects. The correction is ob-

tained in the |η| < 0.1 region with photon+jets and dijet events. After calibrating the dijet events

against the photon+jet events, the measurement is extended to the whole kinematic range using the

dijet events. The absolute response correction is measured using the MPF method for photon+jets

events applying the offset and relative response corrections. Figure 3.4 shows the measured absolute

response for the ∆R < 0.7 jet cone size. The response in each pseudorapidity region is consistent

after the relative response correction.

Figure 3.3: The MPF method description [28].

The showering correction is to correct for instrumental effects such as shower development in

the calorimeter and magnetic field bending. In the Monte Carlo, the ratio between the energies

of inside and outside jet cone is measured (“detector+physics”) and the same ratio is measured in

the generation level without detector effects (“physics only”). Then the ratio of “detector+physics”

to “physics only” is defined as the showering correction. To evaluate this correction, photon+1 jet

events are used with the requirement of exactly one primary vertex. Figure 3.5 shows the measured

showering correction split into jet η regions.
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3.1.6 Missing Transverse Energy

There is undetected energy in the detector due to non-interacting particles such as neutrinos. The

quantity defined as missing transverse energy (6ET ) [30] is calculated to describe the effect from these

invisible particles. The momentum imbalance resulting from invisible particles can be estimated in

the transverse plane only because the detector does not cover the whole forward region including the

beam pipe. 6ET is reconstructed by vectorially summing the energy of cells in the electromagnetic

and hadronic calorimeter and correcting for the momentum of muons that exit the calorimeter.

3.1.7 b-tagging

The event signature for many physics analyses in the DØ experiment, such as tt̄ pair and Higgs events

have a b-jet in the final state. If the b-jet can be identified with high efficiency, the backgrounds in

these physics analyses can be suppressed significantly and the sensitivity for searches and precision

of measurements will increase. Therefore, it is very important to maximize the efficiency for b-jet

identification, called b-tagging. The b-tagging algorithm can be classified by the characteristics of

the b-quark: lifetime tagging and soft lepton tagging.

b-hadron has a long life time [3] because of small Vcb and Vub. Tagging based on the long life

time is called “lifetime tagging” and there are 3 different types of lifetime tagging: Counting Signed

Impact Parameters (CSIP) tagger [31], Jet Lifetime Probability (JLIP) tagger [32] and Secondary

Vertex Tag (SVT) tagger [33]. The DØ experiment combines the 3 different lifetime taggers using a

neural network and trains to optimize b-tagging. This is called the Neural Network (NN) tagger [34]

and the efficiency for b-tagging improves about 15% compared to the other taggers.

Another characteristics of the b-quark is that it can decay semi-leptonically. Approximately 20%

of b-jets have a lepton (muon) in the final state and a jet can therefore be identified as a b-jet if a

lepton (muon) is found inside the jet. This is called muon-tagging, and is done by the “Soft Lepton

(Muon) Tag” (SLT) tagger [35]. This SLT tagger was recently combined with the neural network

lifetime method to maximize the tagging efficiency and reduce the fake rate after muon-tagging. It

is called the SLTNN tagger [36]. In this section, the NN tagger based on CSIP, JLIP and SVT is
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briefly described. The SLTNN tagger will be discussed in detail in Appendix B.

The NN tagger uses 7 quantites from CSIP, JLIP and SVT as NN input variables. The definition

of variables are described in Table 3.1. A NN is constructed using the input variables, NN training is

Rank Variable Description
1 SVTdls Decay length significance of the secondary vertex
2 CSIPcomb Weighted combination of the tracks’ impact parameter significances
3 JLIPprob Probability that the jet originates from the primary vertex
4 SVTχ2

dof χ2
dof of the secondary vertex

5 SVTntracks Number of tracks used to reconstruct the secondary vertex
6 SVTmass Mass of the secondary vertex
7 SVTnum Number of the secondary vertices found in the jet

Table 3.1: NN input variables ranked in order of power [34].

performed, and the operating points are determined by the output of NN training. Then, b-tagging

efficiency is measured in both MC and data samples. The scale factor is calculated to correct

the difference between them. To measure the b-tagging efficiency in data sample, the system8

method [37] is used in DØ. The fake rate is estimated using the negative tag rate (NTR). The

system8 and NTR methods are described in Appendix B. Figure 3.6 shows the plot of b-tagging

efficiency versus fake rate.

3.2 Monte Carlo Simulation

The Monte Carlo technique is a method of calculating integrals in a multi-dimensional space by

random sampling [38]. It allows a detailed simulation of detector response to simulated data. This

section describes how the detector is modeled and MC samples are generated at DØ. The corrections

to the MC simulations are also discussed in this section.

3.2.1 Monte Carlo Generation at DØ

The generation of a pp̄ MC event at DØ is performed by simulating the following chain: the

hard scatter interaction, underlying event, hadronization, DØ detector simulation and finally event

reconstruction.

36



Fake Rate (%)
0 2 4 6 8 10 12

b-
Je

t E
ff

ic
ie

nc
y 

(%
)

20

30

40

50

60

70

80

46 %

28 %

Tagger
NN
JLIP

η > 15 and  All 
T

 p

Tagger
Figure 3.6: Efficiency vs. Fake rate plot for the NN tagger and the JLIP tagger [34].

The hard scatter interaction is defined as the perturbative QCD process generated using a calcu-

lation of the leading order matrix element. The ALPGEN [39] generator is typically used with the

CTEQ6L1 [40] including the NLO correction used for the PDF. The underlying event is defined as

everything except for the hard scattering and it consists of the “beam-beam remnant” plus initial

and final state radiations. Also, multiple parton interactions contribute to the underlying event.

PYTHIA 6.323 [41] is used to model the underlying event. Then, the partons simulated by the

above generators are hadronized into colorless mesons and baryons. This hadronization describes

the strong interaction effects and is performed by PYTHIA.

After hadronization, the DØ detector response is simulated for the particles in the final state. The

DØ detector simulation is performed by two independent software packages: d0gstar and d0sim.

d0gstar is a wrapper for the full GEANT simulation [42] and it simulates the detector response

using the DØ detector geometry and materials. Figure 3.7 shows a simulated event in d0gstar.

Then d0sim performs electronics simulation (digitization) plus the overlay of additional minimum

bias interactions from the output of d0gstar. Noise from each subdetector is simulated and added
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in this stage. The simulated MC events passing from d0sim, as well as real data collected by

DØ detector, are called “raw data”. The “raw data” from MC and real data are treated and

reconstructed identically in the event reconstruction algorithms which are discussed in section 3.1.

Figure 3.7: A MC event with 50 GeV pT particles simulated in d0gstar [43].

3.2.2 MC Correction

In spite of much effort, the MC simulation does not perfectly model the DØ detector. Typically, the

detector resolution in the MC simulation is underestimated and corrections are needed to take into
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account for the difference between data samples and MC simulations. The scale factors between

them are also measured in event reconstruction level. In this section, the MC corrections for various

physics objects are described.

Electrons

For electrons, two different scale factors are measured using Z → ee data and MC samples: one is

for electron reconstruction and another is for the track matching plus likelihood cut. The two scale

factors are then multiplied. Electron reconstruction efficiencies in both data and MC samples are

shown in Figure 3.8 as a function of jet pT. The top plot in the Figure 3.8 (a) shows the reconstruction

efficiencies in both data and MC as a function of jet pT. The bottom plot in the Figure 3.8 (a) shows

the measured scale factor between data and MC reconstruction efficiencies. It is measured only in

the CC region (|η| < 1.1). Using the reconstructed electrons in Z → ee samples, track matching +

likelihood cut efficiency is also measured and the scale factor is calculated. Figure 3.8 (b) shows the

result of this correction. The two scale factors are multiplied and used as a MC correction for the

electron efficiency.

Muons

Muons simulated by the MC need both smearing and correction factors. Muon smearing is applied

to have a similar resolution for data and MC muons. The smearing is done in the variable q
pT

, where

q is the charge of muon track. The following function is applied for the smearing correction [24]

q

pT
→ q

pT
+

(

A +
B

pT

)

× Rnd (3.7)

where Rnd is a Gaussian random number generated with width 1 and mean value 0. The smearing

parameters A and B are determined using the following 3 different samples at pT = 40 GeV:

• Muons with SMT hits and |ηCFT | < 1.6

• Muons with SMT hits and |ηCFT | > 1.6
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(a) Reconstruction efficiency (b) Track-matching+likelihood cut efficiency

Figure 3.8: Electron reconstruction efficiency for data (red) and MC (blue) Z → ee samples in (a)
top. Bottom plot of (a) is the scale factor for electron reconstruction. Plots in (b) show the track
matching and liklihood cut efficiencies (top) of data (red) and MC (blue) as well as the scale factor
(bottom) [23].
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• Muons without SMT hits.

After applying muon smearing, the correction factors can be determined for muon reconstruction,

track matching and isolation individually. Each correction factor is measured by the ratio of data

efficiency to MC efficiency. The total correction is the product of 3 correction factors.

SF =

(

εreco
data

εreco
MC

)

×
(

εtrk
data

εtrk
MC

)

×
(

εiso
data

εiso
MC

)

. (3.8)

Each efficiency is determined using Z → µµ data and MC samples. In Figure 3.9, the plot on

top shows the scale factor for muon reconstruction as a function of muon η. The scale factors for

track-matching (middle) and isolation (bottom) are also shown in Figure 3.9.

Jets

There exist differences between the simulated MC samples and the real data samples for jet energy

scale, jet energy resolution, and jet reconstruction efficiency. These three differences are correlated

with each other and therefore corrections should be applied in a consistent way. A method called

JSSR (Jet Shifting + Smearing + Removing) is applied to jets [44, 45].

The formula, ∆S =
pT

jet−pT
γ

pTγ , is measured in γ+jets events for both data and MC samples.

The measured ∆S is plotted as a function of the γ pT distribution and fitted with a gaussian ×

turn-on shown in Equation 3.9

f(∆S) = N ×
(

1 + erf

(

∆S − α

β
√

2

))

× e−
(∆S−∆S0)2

2σ2 (3.9)

where the turn-on function is a model for the effect of the inefficiency to reconstruct low jet pT.

The turn-on function models jet reconstruction in efficiency, the mean value of the Gaussian (∆S0)

models differences in the jet energy scale, and the width of the Gaussian (σ) models differences in

jet pT resolution. Figure 3.10 shows the ∆S distributions for each jet η region before (left) and after

(right) applying the corrections.

41



ηη ηη

ηη η-2 -1.5 -1 -0.5 0 0.5 1 1.5 2η-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(M
C

)
ε

(d
at

a)
/

ε

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

eff_eta_muid_tight

ηη ηη

ηη η-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 η-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(M
C

)
ε

(d
at

a)
/

ε

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

eff_eta_track_tight

Eta
-2 -1 0 1 2

Eta
-2 -1 0 1 20.75

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25 Isolation Scale Factor

TopScaledTight
TopScaledVeryTight
TopP14

,jet) > 0.5µDeltaR(

TopScaledTight
TopScaledVeryTight
TopP14

,jet) > 0.5µDeltaR(

TopScaledTight
TopScaledVeryTight
TopP14

,jet) > 0.5µDeltaR(

TopScaledTight
TopScaledVeryTight
TopP14

,jet) > 0.5µDeltaR(

Isolation Scale Factor

Figure 3.9: Ratio of data and MC efficiencies for muon reconstruction (top), muon track-matching
(middle) and muon isolation (bottom) [24]. In the bottom plot, the green is the scale factor for
muon isolation.
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Figure 3.10: Distributions of < ∆S >data − < ∆S >MC before (left) and after (right) applying
corrections to the MC jets in CC (top), ICR (middle), and EC (bottom) η region [44].

b-tagging

The b-id group provides a Tag Rate Function (TRF) that gives the estimated tagging efficiency and

fake rate. The b-jet tagging efficiency is measured on both data and MC samples respectively. The

difference between data and MC is large and the scale factor between them is measured to correct

this difference. Figure 3.11 shows b-tagging efficiency in MC (red line) and data (green line) and

the scale factor between them (blue line) on jet pT (left) and η (right) distributions.

The b-jet tagging efficiency, scale factor between data and MC samples and fake rate are de-

termined as a function of jet pT and η dependences. Then, the TRF for a b-jet is computed by
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Figure 3.11: b-tagging efficiency in MC (red line) and data (green line) and the scale factor
between them (blue line) with 1σ error bands (black dashed line) on jet pT (left) and η (right)
distributions [34].

multiplying the inclusive b-taging efficiency in MC by the scale factor as follows

TRFb = (scale factor) × (εb−tagging in MC)

TRFc = (scale factor) × (εc−tagging in MC). (3.10)

Figure 3.12 shows the TRF for b-jet.
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bands (black dashed line) on jet pT (left) and η (right) distributions [34].
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Chapter 4

Data Sample and Event Selection

4.1 Data Sample

The data sample used in this analysis is collected from August 2002 to December 2005 by the

DØ detector. The run number range is 151,817-213,063. The total integrated luminosity for the

e+jets channel is 912.5 pb−1 and 871.3 pb−1 for the µ+jets channel. The data taken during January

and February in 2006 (about ≈ 60 pb−1) is excluded in this analysis because cables for the calorimeter

readout system were swapped. The data samples are processed using Common Analysis Format

(CAF) developed by Common Sample Group (CSG) [46].

Trigger Version Trigger Name Delivered (pb−1) Recorded (pb−1) Good Quality (pb−1)
V8.0 - V9.0 EM15 2JT15 6.17 4.94 4.86
V9.0 - V10.0 EM15 2JT15 47.84 41.73 24.73
V10.0 - V11.0 EM15 2JT15 20.35 18.29 9.81
V11.0 - V12.0 EM15 2JT15 78.87 71.83 62.82
V12.0 - V13.0 E1 SHT15 2J20 272.64 250.76 227.14
V13.0 - V13.3 E1 SHT15 2J J25 80.43 73.02 54.81
V13.3 - V14.0 E1 SHT15 2J J30 353.70 324.69 294.27
V14.0 - V15.0 E1 SHT15 2J J25 290.01 270.62 234.11
Total 1150.01 1055.88 912.55

Table 4.1: Integrated luminosity for the triggers used in the e+jets channel.

Table 4.1 and 4.2 show the integrated luminosities for the triggers used in both the e+jets
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Trigger Version Trigger Name Delivered (pb−1) Recorded (pb−1) Good Quality (pb−1)
V8.0 - V9.0 MU JT20 L2M0 7.23 5.75 5.64
V9.0 - V10.0 MU JT20 L2M0 47.89 41.77 24.77
V10.0 - V11.0 MU JT20 L2M0 21.37 19.30 10.70
V11.0 - V12.0 MU JT20 L2M0 79.27 74.34 65.24
V12.0 - V13.0 MU JT25 L2M0 277.02 254.96 230.93
V13.0 - V13.2 MUJ2 JT25 55.74 39.47 31.43
V13.2 - V13.3 MUJ2 JT25 LM3 26.27 22.26 16.10
V13.3 - V14.0 MUJ2 JT30 LM3 382.01 277.12 252.17
V14.0 - V14.2 MUJ1 JT25 LM3 0.01 0.01 0.01
V14.2 - V14.3 MUJ1 JT25 ILM3 24.83 22.81 20.84
V14.3 - V15.0 MUJ1 JT35 LM3 265.45 248.06 213.51
Total 1187.09 1005.85 871.34

Table 4.2: Integrated luminosity for the triggers used in the µ+jets channel.

channel and the µ+jets channel. The triggers used in this analysis are described in Reference [47].

All integrated luminosities in the tables are derived using the new luminosity constant measured

with the improved luminosity readout system [48, 49]. The new constant includes effects from back

propagation, radiation damage, and single diffractive efficiency corrections.

4.2 Monte Carlo Samples

In this analysis, the tt̄ MC sample is used to model the signal. Background processes such as W+jets,

Z+jets, single top and diboson production, which can have the same final event signature as the tt̄

lepton+jets channel, are also modeled using the MC. The PDF version used is CTEQ6L1 [40] for

all of the MC samples.

The cross section measurement in this analysis is based on a tt̄ MC sample generated by PYTHIA

6.323 [41] with the top quark mass set to 175 GeV. The factorization scale is set to m2
t +
∑

p2
T (jets).

Other tt̄ MC samples with various top quark masses (140, 145, 160, 165, 170, 180, 185, 190, 195,

200, 215 GeV) are also used to determine the mass dependence of the tt̄ cross section. These MC

samples are generated with same parameters as the main 175 GeV tt̄ sample except for the top

quark mass.

The main physics background, W+jets, is generated using ALPGEN MC event generator in-
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cluding a jet-matching algorithm prescribed by MLM [50]. The W+jets samples are split into three

subsamples by parton flavors: Wbb, Wcc, and Wjj+extra light partons, where b represents the b-

quark, c represents the c-quark, and j denotes a light-quark or gluon. The factorization scale for the

samples is set to m2
W + p2

T (W ). The cross section for each subsample is provided by ALPGEN, but

it does not include NLO corrections on the relative contributions for these subsamples. Therefore,

a heavy flavor scale factor, the so-called K-factor, is used in this analysis. The measured K-factor

is 1.17± 0.18 [51] and is applied to the number of expected events for both Wbb and Wcc samples.

This K-factor is determined using data sample and W+jets MC sample with 2 jets multiplicity bin.

The number of W+jets constribution is estimated using the b-tagged sample and untagged sample

respectively, and then the K-factor is obtained by comparing the contributions determined in data

and W+jets MC sample.

The other backgrounds, single top (s-channel and t-channel), Z(→ ee, µµ, ττ , νν)+jets, and

diboson (WW, WZ and ZZ) samples are also generated by MC simulation. comphep-singletop [52]

is used to simulate single top events with the top quark mass set to 175 GeV. The NLO cross section

of 0.88 (1.98) pb is used for s-channel (t-channel) with 12.5% uncertainty [53]. Z+jets samples are

generated by ALPGEN and also classified into 3 subsamples: Zbb, Zcc, and Zjj, the same as for the

W+jets samples. To account for the NLO effect, a NLO factor of 1.23 is applied to all subsamples

with 15% uncertainty and in addition a heavy flavor scale factor of 1.35 is applied to Zbb and Zcc

subsamples with 50% uncertainty [54]. Z pT reweighting described in Reference [55] is applied to the

Z+jets MC sample to correct the difference between the simulated Z pT distribtuion and data. This

correction is measured using Z → ee samples for MC and data. Diboson samples are generated using

PYTHIA with the following subchannels: WW → l+ jets, WZ → l+ jets, WZ → jjll̄, ZZ → ll̄jj.

The NLO cross section of 12.0 (WW), 3.68 (WZ), and 1.42 (ZZ) pb with 20% uncertainty are used

for the diboson samples, respectively [56].
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4.3 Event Selection

The purpose of event selection, so-called preselection, is to find an event candidate with the final event

signature of the tt̄ signal. This analysis is based on the lepton+jets channel of tt̄ , and therefore in

the final state the event candidate should have one isolated high pT lepton, large 6ET from a neutrino,

and 4 or more jets. This event selection is designed to define a data sample enriched in W+jets

and tt̄ events. Using this event selection, the instrumental backgrounds like multijet events can be

significantly removed.

The event selection criteria for both the e+jets channel and the µ+jets channel are as follows.

The same requirements are applied for data and MC samples. Common requirements for both

channels are:

• Good quality [57] (for data)

• Exactly three or four or more jets with pT > 20 GeV and |η| < 2.5

• Leading jet pT > 40 GeV

• Good vertex with |zPV | ≤ 60 cm and at least 3 tracks attached to the vertex.

For the e+jets channel only:

• One tight electron with pT > 20 GeV in the CC

• No second tight electron with pT > 15 GeV in the CC or EC

• No isolated muon with pT > 15 GeV

• Electron coming from the primary vertex: |∆z(e, PV )| < 1 cm

• 6ET > 20 GeV and triangle cut ∆φ(e, 6ET ) > 0.7 · π − 0.045·6ET ,

where tight electron denotes the electron candidate passed the requirements described in Sec-

tion 3.1.3. To make this analysis orthogonal to the analysis using dilepton channel, events with

a second electron with high pT are explicitly vetoed.

For the µ+jets channel only:
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• One tight muon with pT > 20 GeV

• Invariant mass of the selected muon and any second muon mµµ < 70 GeV or mµµ > 110 GeV

to reject Z(→ µµ)+jets events

• No second muon with pT > 15 GeV with muon quality Medium and nseg = 3

• No tight electron with pT > 15 GeV

• Muon coming from the primary vertex: |∆z(µ, PV )| < 1 cm

• 6ET > 25 GeV and triangle cut ∆φ(µ, 6ET ) > 2.1− 0.035·6ET ,

where tight muon denotes the muon candidates passed the requirements described in Section 3.1.4.

Figures 4.1 and 4.2 show the distributions for leading jet pT (left) and 6ET (right) in the e+jets

channel and the µ+jets channel. In the figures, the black solid line is the distribution for the tt̄

signal events (MC), the red dotted line is the distribution for the multijet background events (data),

and the blue dot-dashed line is the leading jet pT cut (left) and the 6ET cut (right) used in this

analysis.
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Figure 4.1: Leading jet pT (left) and 6ET distributions for tt̄ signal events (MC) and multijet back-
ground events (data) in the e+jets channel. The black solid line is for tt̄ events and the red dotted
line is for multijet events. The blue dot-dashed line is the leading jet pT cut (left) and the 6ET cut
(right) used in this analysis. The y-axis is normalized to 1.
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Figure 4.2: Leading jet pT (left) and 6ET distributions for tt̄ signal events (MC) and multijet back-
ground events (data) in the µ+jets channel. The black solid line is for tt̄ events and the red dotted
line is for multijet events. The blue dot-dashed line is the leading jet pT cut (left) and the 6ET cut
(right) used in this analysis. The y-axis is normalized to 1.

4.3.1 Triangle Cut

The instrumental background in this analysis is multijet events. The multijet events can have the

same final state as the signal by having a jet misidentifed as a lepton or a lepton produced inside

a jet. To remove the background without suffering from a large selection efficiency loss, so-called

“triangle cut” is applied.

Figure 4.3 (4.4) shows the distribution of ∆φ(e, 6ET ) (∆φ(µ, 6ET )) versus 6ET plane for QCD

enriched multijet events obtained by inverting the electron (muon) isolation cuts in the e+jets

(µ+jets ) channel. 6ET can result from inaccurately measuring jet energies due to the finite jet

energy resolution. By this mismeasurement, events tend to accumulate in the low ∆φ(`, 6ET ) region

and are shifted toward higher 6ET values as shown in Figure 4.3 and 4.4. Therefore, multijet events

can be more effectively suppressed by applying cuts on both 6ET and ∆φ(`, 6ET ) versus 6ET than only

on 6ET . The black solid lines denote the 6ET cut and the triangle cut in the figures.

4.3.2 Event Selection Efficiency for tt̄ MC Sample

Event selection efficiency for the tt̄ signal is determined using tt̄ MC events with tt̄ → `ν`qq̄
′bb̄. The

cut flow, number of events after cuts, exclusive efficiency for each cut, and cumulative efficiencies are

shown in Table 4.3 for the 3 jet multiplicity bin and Table 4.4 for the 4 or more jet multiplicity bin in
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Figure 4.3: ∆φ(e, 6ET ) vs. 6ET distributions for multijet events in the e+jets channel. Jet multiplic-
ities in the 1, 2, 3, ≥4 bins are shown as follows 1 jet (top left), 2 jets (top right), 3 jets (bottom
left), and ≥ 4 jets (bottom right) [58].
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Figure 4.4: ∆φ(µ, 6ET ) vs. 6ET distributions for multijet events in the µ+jets channel. Jet multiplic-
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the e+jets channel. Table 4.5 shows the same quantities for the 3 jet multiplicity bin and Table 4.6 for

the 4 or more jet multiplicity bin in the µ+jets channel. Some of the correction factors are multiplied

to calculate the efficiencies. The MC-to-data correction factors are typically derived using a control

sample that allows the efficiency to be extracted on both MC and collider data. Selection efficiency

for the data quality requirement is also considered in calculating the event selection efficiency. This

efficiency is 97.14% and is measured with an insignificant statistical error [59].

The contribution from the tt̄ dilepton channel is not negligible, in spite of the second lepton veto

cut. Therefore, the number of events from the dilepton channel after event selection are used in

the calculation of the cross section. Table 4.7 shows the event selection efficiency for tt̄ dilepton

contribution.

Selection or κ Events left Exclusive efficiency[%] Cumulative efficiency[%]
242352

Njets = 3 92381 38.12 ± 0.10 38.12 ± 0.10
Leading jet > 40 GeV 91156 98.67 ± 0.04 37.61 ± 0.10
Loose electron 48338 53.03 ± 0.17 19.95 ± 0.08
Muon veto 48329 99.98 ± 0.01 19.94 ± 0.08
2nd electron veto 48318 99.98 ± 0.01 19.94 ± 0.08
Vertex selection 47631 98.58 ± 0.05 19.65 ± 0.08
6ET > 20 GeV 42301 88.81 ± 0.14 17.45 ± 0.08
Triangle selection 39735 93.93 ± 0.12 16.40 ± 0.08
Tight electron 35111 88.36 ± 0.16 14.49 ± 0.07
Trigger probability 0.966 ± 0.000 14.00 ± 0.07
κelectron reco, ID 0.985 ± 0.000 13.79 ± 0.07
κelectron likelihood 0.891 ± 0.000 12.28 ± 0.06
Data Quality 0.971 ± 0.005 11.93 ± 0.09

εtotal 11.93 ± 0.09

Table 4.3: Summary of the tt → e + jets event preselection efficiencies and the corresponding scale
factors (κ), as applicable, for exactly three jets. Only statistical uncertainties are included.

4.4 b-tagging Optimization

There are totally 12 operating points for the NN tagger [34]. The NN cuts for each operating

point are shown in Table 4.8. The optimized NN operating point is selected using the S/
√

S + B

ratio. S indicates the number of signal events and B is the number of background events. The
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Selection or κ Events left Exclusive efficiency[%] Cumulative efficiency[%]
242352

Njets ≥ 4 115770 47.77 ± 0.10 47.77 ± 0.10
Leading jet > 40 GeV 113856 98.35 ± 0.04 46.98 ± 0.10
Loose electron 47122 41.39 ± 0.15 19.44 ± 0.08
Muon veto 47114 99.98 ± 0.01 19.44 ± 0.08
2nd electron veto 47105 99.98 ± 0.01 19.44 ± 0.08
Vertex selection 46378 98.46 ± 0.06 19.14 ± 0.08
6ET > 20 GeV 40998 88.40 ± 0.15 16.92 ± 0.08
Triangle selection 38557 94.05 ± 0.12 15.91 ± 0.07
Tight electron 34565 89.65 ± 0.16 14.26 ± 0.07
Trigger probability 0.968 ± 0.000 13.81 ± 0.07
κelectron reco, ID 0.985 ± 0.000 13.60 ± 0.07
κelectron likelihood 0.891 ± 0.000 12.12 ± 0.06
Data Quality 0.971 ± 0.005 11.77 ± 0.09

εtotal 11.77 ± 0.09

Table 4.4: Summary of the tt → e + jets event preselection efficiencies and the corresponding scale
factors (κ), as applicable, for four or more jets. Only statistical uncertainties are included.

Selection or κ Events left Exclusive efficiency[%] Cumulative efficiency[%]
240919

Njets = 3 94436 39.20 ± 0.10 39.20 ± 0.10
Leading jet > 40 GeV 93400 98.90 ± 0.03 38.77 ± 0.10
Loose muon 42345 45.34 ± 0.16 17.58 ± 0.08
2nd muon veto 42339 99.99 ± 0.01 17.57 ± 0.08
Electron veto 42299 99.91 ± 0.01 17.56 ± 0.08
Vertex selection 41706 98.60 ± 0.06 17.31 ± 0.08
6ET > 25 GeV 35809 85.86 ± 0.17 14.86 ± 0.07
Triangle selection 33313 93.03 ± 0.13 13.83 ± 0.07
Tight muon 29133 87.45 ± 0.18 12.09 ± 0.07
Trigger probability 0.877 ± 0.001 10.61 ± 0.06
κµ ID× acc× cosmic veto 0.956 ± 0.001 10.14 ± 0.06
κµ track 0.855 ± 0.001 8.67 ± 0.05
κµ+jets iso corr 1.102 ± 0.000 9.55 ± 0.06
κRat11<0.08 and Rattrk<0.06 1.002 ± 0.000 9.57 ± 0.06
Data Quality 0.971 ± 0.005 9.30 ± 0.07

εtotal 9.30 ± 0.07

Table 4.5: Summary of the tt → µ + jets event preselection efficiencies and the corresponding scale
factors (κ), as applicable, for exactly three jets. Only statistical uncertainties are included.
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Selection or κ Events left Exclusive efficiency[%] Cumulative efficiency[%]
240919

Njets ≥ 4 116286 48.27 ± 0.10 48.27 ± 0.10
Leading jet > 40 GeV 115253 99.11 ± 0.03 47.84 ± 0.10
Loose muon 47432 41.15 ± 0.14 19.69 ± 0.08
2nd muon veto 47431 100.00± 0.00 19.69 ± 0.08
Electron veto 47393 99.92 ± 0.01 19.67 ± 0.08
Vertex selection 46716 98.57 ± 0.05 19.39 ± 0.08
6ET > 25 GeV 39740 85.07 ± 0.16 16.50 ± 0.08
Triangle selection 36982 93.06 ± 0.13 15.35 ± 0.07
Tight muon 32027 86.60 ± 0.18 13.29 ± 0.07
Trigger probability 0.878 ± 0.001 11.67 ± 0.06
κµ ID× acc× cosmic veto 0.957 ± 0.001 11.17 ± 0.06
κµ track 0.854 ± 0.001 9.54 ± 0.05
κµ+jets iso corr 1.003 ± 0.000 9.57 ± 0.05
κRat11<0.08 and Rattrk<0.06 1.002 ± 0.000 9.59 ± 0.05
Data Quality 0.971 ± 0.005 9.31 ± 0.07
εtotal 9.31 ± 0.07

Table 4.6: Summary of the tt → µ + jets event preselection efficiencies and the corresponding scale
factors (κ), as applicable, for four or more jets. Only statistical uncertainties are included.

NJets e + jets µ + jets
= 3 jets (%) 7.66 ± 0.10 1.64 ± 0.05
≥ 4 jets (%) 6.40 ± 0.09 1.37 ± 0.04

Table 4.7: Preselection efficiency for tt̄ dilepton MC samples. The error is statistical only.

S/
√

S + B ratio is measured for all of operating points and then the best ratio is selected. tt̄ MC

samples are used as signal events and other MC samples (W+jets, Z+jets, and single top) are used as

backgrounds to calculate the S/
√

S + B ratio. Table 4.9 and 4.10 show the results for the S/
√

S + B

ratio of the individual operating points. In this analysis, the “MEDIUM” operating point is chosen

for the NN tagger.

Name MegaTight UltraTight VeryTight Tight Medium oldLoose
NN cut > 0.925 > 0.9 > 0.85 > 0.775 > 0.65 > 0.5

Name Loose L2 L3 L4 L5 L6
NN cut > 0.45 > 0.325 > 0.25 > 0.2 > 0.15 > 0.1

Table 4.8: The NN tagger’s operating points [34].
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e+jets 3 exclusive S B S/
√

S + B
MegaT ight 67.3 77.9 5.6

T ight 78.6 107.3 5.8
Medium 84.7 130.6 5.8
Loose 92.5 177.1 5.6

L2 97.2 223.3 5.4
L3 100.9 269.7 5.2
L4 103.6 314.9 5.1
L6 109.0 441.7 4.6

e+jets 4 inclusive S B S/
√

S + B
MegaT ight 68.3 15.0 7.5

T ight 79.2 20.6 7.9
Medium 85.0 25.2 8.1
Loose 92.1 34.8 8.2

L2 96.3 44.2 8.1
L3 99.5 52.9 8.1
L4 101.8 63.4 7.9
L6 106.2 87.2 7.6

e+jets 3 inclusive S B S/
√

S + B
MegaT ight 135.6 92.9 9.0

T ight 157.9 127.9 9.3
Medium 169.7 155.8 9.4
Loose 184.6 211.9 9.3

L2 193.5 267.5 9.0
L3 200.3 322.6 8.8
L4 205.4 378.3 8.5
L6 215.2 528.9 7.9

Table 4.9: Signal and background ratios of different operating
points in the e+jets channel. The best operating point has been
chosen to maximize S/

√
S + B for the third inclusive jet bin.
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µ+jets 3 exclusive S B S/
√

S + B
MegaT ight 57.0 74.6 5.0

T ight 66.4 102.4 5.1
Medium 71.4 124.8 5.1
Loose 77.8 168.0 5.0

L2 81.6 208.0 4.8
L3 84.5 248.3 4.6
L4 86.7 286.6 4.5
L6 91.0 401.7 4.1

µ+jets 4 inclusive S B S/
√

S + B
MegaT ight 65.6 13.9 7.3

T ight 74.6 21.0 7.6
Medium 79.9 26.0 7.7
Loose 86.4 35.7 7.8

L2 90.2 46.2 7.7
L3 93.0 56.6 7.6
L4 95.1 68.0 7.5
L6 99.0 96.1 7.1

µ+jets 3 inclusive S B S/
√

S + B
MegaT ight 121.5 88.5 8.4

T ight 141.0 123.4 8.7
Medium 151.3 150.8 8.7
Loose 164.2 203.7 8.6

L2 171.8 254.2 8.3
L3 177.6 304.9 8.1
L4 181.8 354.6 7.9
L6 190.0 497.8 7.2

Table 4.10: Signal and background ratios of different operating
points in the µ+jets channel. The best operating point has been
chosen to maximize S/

√
S + B for the third inclusive jet bin.
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Chapter 5

Background Estimation

This chapter describes the procedure used to estimate the background that passes the event selection

discussed in Section 4.3. The background can be classified into two different types: instrumental

background and physics background. The instrumental background is mainly multijet events with

four or more jets which can be produced by the strong interaction. Such events can pass the

event selection by having one or more of the following: 6ET mismeasurement, a fake tight electron

produced inside a jet, a photon associated with a random track, a fake muon from hadron punch-

through, a lepton produced by the leptonic decay of a heavy flavor jet where a heavy flavor jet is not

reconstruncted. Physics backgrounds are from events that have the same final state as the tt̄ signal,

such as radiative W production accompanied by four or more jets. Other physics backgrounds with

small contributions are single top, Z+jets and diboson events.

5.1 Instrumental Backgrounds

The “matrix method” is used to estimate not only the contributions of a fake lepton originating from

multijet events but also the contribution of real isolated leptons from tt̄ signal or physics backgrounds

in the data sample passing the event selection. In the matrix method, two subsamples are defined for

each jet multiplicity (n = 1, 2, 3,≥ 4): the tight sample and the loose sample. The tight sample

is the collection of events passing all criteria of the event selection that are described in Section 4.3
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for the tight lepton selection. The loose sample is the same as the tight sample except that the

loose lepton selection (without the likelihood cut for electrons or isolation cut for muons) is applied.

Therefore, the tight sample is a subset of the loose sample. The formula for matrix method is

N` = NW+tt
` + NQCD

`

Nt = NW+tt
t + NQCD

t

= εsigNW+tt
` + εQCDNQCD

` (5.1)

where Nt and N` denote the number of events for the tight sample and the loose sample, respectively.

NW+tt
` (NW+tt

t ) is the total number of physics background and tt̄ signal events in the loose (tight)

sample, and NQCD
` (NQCD

t ) is the contribution of multijet events in the loose (tight) sample. εsig

is the efficiency for a real lepton in the loose sample to pass the tight lepton selection and εQCD is

the efficiency for a fake lepton in the loose sample to pass the tight lepton selection. This system of

two linear equations can be solved for NQCD
` and NW+tt

`

NW+tt
` =

Nt − εQCDN`

εsig − εQCD
and NQCD

` =
εsigN` − Nt

εsig − εQCD
. (5.2)

Therefore, NW+tt
` and NQCD

` can be determined if εsig and εQCD are measured.

εsig can be obtained from the corresponding W+jets and tt̄ MC samples by measuring the

fraction of events passing the loose selection that also pass the tight selection. A correction factor

for the differences between MC and data is applied. εQCD is obtained from the low 6ET region where

the multijet events are dominant. εQCD is measured directly from the data sample by measuring

the ratio of the number of events in the tight sample to the loose sample with 6ET < 10 GeV [58].

Table 5.1 shows the measured εsig [60] and εQCD [58] for each jet multiplicity for both the e+jets and

µ+jets channels. In this table, the systematic uncertainty is obtained by measuring the dependence

of various kinematic variables such as lepton pT, lepton η, lepton φ, leading jet η, and the number

of primary vertices. The biggest deviation of their dependences from the central value is chosen as

the systematice uncertainty.
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Njets
e + jets µ + jets

εsig (%) εQCD (%) εsig (%) εQCD (%)
= 1 jet 83.6 ± 0.5 ± 3.5

19.5 ± 0.4 ± 1.7

91.5 ± 0.6 ± 0.9

27.2 ± 1.3 ± 5.2
= 2 jets 84.6 ± 0.3 ± 1.5 88.7 ± 0.3 ± 0.7
= 3 jets 84.8 ± 0.3 ± 0.1 87.3 ± 0.3 ± 0.5
≥ 4 jets 84.0 ± 0.4 ± 1.8 84.5 ± 0.4 ± 2.2

Table 5.1: εsig for different jet multiplicities in both channels. εQCD is measured without a
jet multiplicity dependence. The first error is the statistical error and the second one is the
systematic error (%).

Using the measured εsig and εQCD, the contributions of NW+tt
t and NQCD

t in the preselected

events of the tight sample are calculated using Equation 5.3.

NW+tt
t = εsig

Nt − εQCDN`

εsig − εQCD
and NQCD

t = εQCD
εsigN` − Nt

εsig − εQCD
. (5.3)

Tables 5.2 and 5.3 show the values of NW+tt
t and NQCD

t determined by matrix method in the e+jets

and µ+jets channels, respectively. In the tables, “before b-tagging” row shows the results in the

preselected sample.

The multijet background contribution in the b-tagged sample is determined by the matrix method

using the same procedure that is described above. The matrix method is applied to the b-tagged

sample directly. Equations 5.4, 5.5, and 5.6 show the formula and solutions

N tag
` = N tag,W+tt

` + N tag,QCD
`

N tag
t = N tag,W+tt

t + N tag,QCD
t

= εsigN
tag,W+tt
` + εQCDN tag,QCD

` (5.4)

N tag,W+tt
` =

N tag
t − εQCDN tag

`

εsig − εQCD
and N tag,QCD

` =
εsigN

tag
` − N tag

t

εsig − εQCD
(5.5)

N tag,W+tt
t = εsig

N tag
t − εQCDN tag

`

εsig − εQCD
and N tag,QCD

t = εQCD
εsigN

tag
` − N tag

t

εsig − εQCD
(5.6)
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where “tag” indicates the b-tagged samples. The values of εsig and εQCD are given in Table 5.1

since they are not expected to have a dependence on the flavor composition of the preselected events.

In the Tables 5.2 and 5.3, “exactly one b-tag” means that an event is found with the exactly one

b-tagged jet and “two or more b-tags” is an event having two or more b-tagged jets.

e+jets

Njets=1 Njets=2 Njets=3 Njets ≥4

before b-tagging

Nl 22398.0 10377.0 2592.0 618.0
Nt 15863.0 6043.0 1300.0 320.0

NW+tt̄
t 14992.4±221.4 5223.5±102.9 1031.8±34.4 259.8±10.1

NQCD
t 870.6±221.4 819.5±102.9 268.2±34.4 60.2±10.1

exactly one b-tag

N1tag
l 606.0 650.0 284.0 130.0

N1tag
t 411.0 373.0 164.0 88.0

N1tag,W+tt̄
t 381.9±7.9 320.0±9.3 141.1±5.2 81.6±2.6

N1tag,QCD
t 29.1±7.9 53.0±9.3 22.9±5.2 6.4±2.6

two or more b-tags

N≥2tag
l - 51.0 58.0 34.0

N≥2tag
t - 39.0 41.0 26.0

N≥2tag,W+tt̄
t - 37.8±1.1 38.6±1.5 25.2±0.9

N≥2tag,QCD
t - 1.2±1.1 2.4±1.5 0.8±0.9

Table 5.2: Number of preselected events in the loose and tight samples. The expected contribution
from multijet and W -like events are obtained by the matrix method for different jet multiplicity
bins in the e+jets channel.

The errors on the matrix method results are calculated by the procedure described in Refer-

ence [61]. The statistical uncertainties on the number of NW+tt
t and NQCD

t are defined as follow

δNW+tt
t = −δNQCD

t =

√

NW+tt
t × NQCD

t

Nt

δNW+tt
t (εsig) = −δNQCD

t (εsig) =
dNW+tt

t

dεsig
δεsig = −εqcd

Nt − εqcdN`

(εsig − εqcd)2
δεsig

δNW+tt
t (εqcd) = −δNQCD

t (εqcd) =
dNW+tt

t

dεqcd
δεqcd = −εsig

εsigN` − Nt

(εsig − εqcd)2
δεqcd (5.7)

where the minus sign indicates that the uncertainties are completely anticorrelated. δNW+tt
t (εsig)

and δNW+tt
t (εqcd) denote the uncertainties coming from the efficiencies and they are derived by

error propagation. The total errors for NW+tt
t and NQCD

t are the quadrature sum of three different

uncertainties in Equation 5.7. The calculated errors are shown in Tables 5.2 and 5.3.
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µ+jets

Njets=1 Njets=2 Njets=3 Njets ≥4

before b-tagging

Nl 15289.0 6194.0 1389.0 388.0
Nt 13472.0 5191.0 1120.0 306.0

NW+tt̄
t 13253.1±90.9 5057.0±44.0 1078.1±13.9 295.6±5.7

NQCD
t 218.9±90.9 134.0±44.0 41.9±13.9 10.4±5.7

exactly one b-tag

N1tag
l 382.0 381.0 160.0 106.0

N1tag
t 324.0 300.0 130.0 91.0

N1tag,W+tt̄
t 313.2±4.7 283.2±6.3 125.6±2.4 91.7±1.4

N1tag,QCD
t 10.8±4.7 16.8±6.3 4.4±2.4 -0.7±1.4

two or more b-tags

N≥2tag
l - 30.0 42.0 35.0

N≥2tag
t - 26.0 35.0 32.0

N≥2tag,W+tt̄
t - 25.7±0.5 34.2±0.9 33.2±1.2

N≥2tag,QCD
t - 0.3±0.5 0.8±0.9 -1.2±1.2

Table 5.3: Number of preselected events in the loose and tight samples. The expected contribution
from multijet and W -like events are obtained by the matrix method for different jet multiplicity
bins in the µ+jets channel.

5.2 Physics Backgrounds

The contributions of physics backgrounds, except for W+jets (Wjj, Wbb, Wcc), in the preselected

sample are determined as follows

Npresel
i = σi · εpresel,tot

i · BRi · L (5.8)

where i denotes the index of a given background process. In Equation 5.8, σi, εpresel,tot
i ,BRi and

L indicate the cross section, preselection efficiency, branching ratio and integrated luminosity for

the backgrounds under consideration, respectively. In this analysis, the following backgrounds are

estimated using Equation 5.8

• diboson production: WW → l + jets, WZ → l + jets, WZ → jjll̄, ZZ → ll̄jj;

• single top production in s-channel and t-channel;

• Z + jets: Zjj, Zbb, Zcc.

The main physics background, W+jets (Wjj, Wbb, and Wcc), is estimated by normalization to

the number of events in data sample. The contributions from other backgrounds and the expected
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tt̄ signal are obtained using the Equation 5.8 and are subtracted from the number of W-like events

determined by the matrix method in each jet multiplicity (denoted as NW+tt
t in Tables 5.2 and 5.3).

The Equation 5.9 shows the formula used to calculate the number of W+jets events before b-tagging

(Npresel
W+jets)

Npresel
W+jets = NW+tt

t −
∑

i

Npresel
i − Npresel

tt
. (5.9)

Tables 5.4 and 5.5 show the contribution of the preselected event sample. The number of expected

events for the tt̄ signal follows from the Equation 5.8 in the tables. The theoretical tt̄ cross section

(6.8 pb) [7] is used in the tables. However, the tt̄ contributions are allowed to float in the cross

section calculation and the results here are used as an example for control plots that are described

in Section 5.4. The cross section calculation will be discussed in Chapter 6.

The number of W+jets events in the tables are further broken down into Wjj, Wbb and Wcc

contributions using the ALPGEN cross sections. To give the relative normalization of these processes,

the Wbb and Wcc NLO cross sections are multiplied by a heavy flavor scale factor of 1.17 ± 0.18

to account for NLO corrections that are not provided by the ALPGEN. The heavy flavor scale

factor is obtained by comparing MC and data samples for lepton+2 jets events [51]. The relative

normalization factor is calculated using the Equation 5.10

fnorm =
Npresel

W+jets

N̄presel
Wjj + 1.17 · (N̄presel

Wbb + N̄presel
Wcc )

(5.10)

where N̄presel
Wjj , N̄presel

Wbb , and N̄presel
Wcc are the number of expected events that is calculated using the

Equation 5.8 and the ALPGEN cross sections, respectively. Using this normalization factor, the

contributions of Wjj, Wbb and Wcc can be determined as follows

Npresel
Wjj = fnorm · N̄presel

Wjj

Npresel
Wbb = fnorm · 1.17 · N̄presel

Wbb

Npresel
Wcc = fnorm · 1.17 · N̄presel

Wcc . (5.11)

63



The errors for W+jets contribution are determined by two sources: the matrix method and

K-factor uncertainty and are calculated using Equation 5.12.

δNpresel
W+jets =

√

δ2
1 + δ2

2

δ1 =
Npresel

W+jets

NW+tt
t

· δNW+tt
t

δ2 =
∆(N1.17+0.18

W+jets − N1.17−0.18
W+jets )

2
(5.12)

where N1.17+0.18
W+jets and N1.17−0.18

W+jets indicate the number of events recalculated by varying the K-factor

by ±1σ errors (±0.18). In Tables 5.4 and 5.5, the errors for other physics processes are not calculated

because the contributions are measured using the huge statistics MC samples as well as are very

smaller than the contributions of W+jets.

e+jets
1jet 2jets 3jets ≥ 4jets

Wjj 13131.3 3802.9 560.9 69.0
Wbb 344.7 217.6 53.1 7.9
Wcc 1031.0 618.9 131.8 16.3

W+jets 14507.0±214.2 4639.4±91.4 745.8±24.9 93.2±3.6
tb 5.3 14.5 4.2 0.8
tqb 12.7 26.6 8.6 2.2
Zjj 285.5 225.5 62.2 19.0
Zbb 11.8 14.1 6.4 2.1
Zcc 20.3 24.4 10.4 3.5
WW 113.2 155.0 33.3 5.9
WZ 16.0 26.2 6.4 1.2
ZZ 1.4 1.6 0.9 0.2

tt̄ → ll 14.1 46.6 22.9 5.0
tt̄ → l+jets 5.0 49.6 130.7 126.6
Multijet 870.6±221.4 819.5±102.9 268.2±34.4 60.2±10.1

total 15863.0 6043.0 1300.0 320.0

data 15863.0 6043.0 1300.0 320.0

Table 5.4: Summary of event yields before b-tagging in the e+jets
channel.
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µ+jets
1jet 2jets 3jets ≥ 4jets

Wjj 11162.9 3659.1 612.6 113.9
Wbb 281.4 206.5 57.5 12.5
Wcc 849.5 580.2 153.4 24.6

W+jets 12293.9±84.3 4445.8±38.7 823.5±10.6 151.1±2.9
tb 2.9 9.5 2.9 0.6
tqb 10.1 22.1 7.1 1.8
Zjj 765.5 308.2 76.8 21.6
Zbb 12.6 14.2 5.9 1.7
Zcc 55.0 38.0 12.5 3.7
WW 85.6 124.6 27.1 5.2
WZ 14.0 25.1 6.0 1.1
ZZ 2.0 3.6 1.0 0.2

tt̄ → ll 9.0 35.4 18.2 3.9
tt̄ → l+jets 2.6 30.5 97.1 104.9
Multijet 218.9±90.9 134.0±44.0 41.9±13.9 10.4±5.7

total 13472.0 5191.0 1120.0 306.0

data 13472.0 5191.0 1120.0 306.0

Table 5.5: Summary of event yields before b-tagging in the µ+jets
channel.

5.3 Background Estimation in b-tagged Events

In b-tagged events, the event tagging probability for each jet multiplicity is evaluated. It is multiplied

by the estimated number of preselected events which are discussed in the previous section in order

to obtain the expected number of tagged events

N tag
i = Npresel

i P tag
i (5.13)

where i denotes the index of a given background process and P tag
i is the event tagging probability

for each jet multiplicity.

The b-id group provides the b-tagging efficiency of a jet depending on jet pT and η as well as jet

flavors (b, c and light− quark) [34]. The probability of tagging a given jet Pjet(α) is the product of

the taggability P taggability [62] and tagging efficiency εα for the jet

Pjet(α) = P taggabilityεα (5.14)
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where α denotes the flavor of the jet. The event probability to have at least one b-tagged jet is then

P tag
event(n ≥ 1) = 1 −

Njets
∏

i=1

(1 − Pjet(αi)) (5.15)

where Njets represents the number of jets with pT > 20 GeV and |η| < 2.5 in the event. The

probability to have exactly one b-tagged jet is

P tag
event(n = 1) =

Njets
∑

j=1

Pjet(αj )

Njets
∏

i=1;i6=j

(1 − Pjet(αi)) (5.16)

and hence the probability to have two or more b-tagged jets is

P tag
event(n ≥ 2) = P tag

event(n ≥ 1) − P tag
event(n = 1). (5.17)

These event probabilities can be applied to Equation 5.13.

The number of expected tagged events for signal and background contributions are shown in

Tables 5.6 ∼ 5.9. The results are split into “exactly one b-tag” (Tables 5.6 and 5.7) and “two or

more b-tags” (Tables 5.8 and 5.9). The difference in the tables describes the relative error between

the number of data events and the total number of expected events.

5.4 Control Plots

Using the estimated number of events for tt̄ signal (using the theoretical cross section 6.8 pb) and

background contribution, so-called “control plots” showing the distributions for kinematic variables

are generated in order to check for any discrepancies between the MC model of the data and the

actual data. These distributions are very important because they show that the method used to

estimate backgrounds is accurately reproducing the features of the real data. Distributions of the

four main kinematic variables (lepton pT, 6ET , leading jet pT, and W transverse momentum) are

shown in Figures 5.1 ∼ 5.8, respectively. Control plots for other kinematic variables are shown in

Appendix C. There are no significant disagreements between the MC and the data sample for these
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e+jets
1jet 2jets 3jets ≥ 4jets

Wjj 176.1 74.6 14.1 2.2
Wbb 109.6 79.5 20.1 3.0
Wcc 61.7 59.8 16.1 2.4

W+jets 347.5±22.0 213.8±16.1 50.4±4.0 7.5±0.6
tb 2.5 6.8 2.0 0.4
tqb 4.9 11.8 3.9 1.0
Zjj 1.4 2.4 1.1 0.5
Zbb 2.6 4.8 2.4 0.9
Zcc 1.1 2.3 1.2 0.5
WW 3.9 9.0 2.4 0.6
WZ 1.6 3.1 0.8 0.2
ZZ 0.1 0.2 0.1 0.0

tt̄ → ll 6.6 21.8 10.7 2.3
tt̄ → l+jets 1.6 22.1 60.2 57.8
Multijet 29.1±7.9 53.0±9.3 22.9±5.2 6.4±2.6

total 402.8±23.4 351.2±18.6 158.1±6.6 78.0±2.7

data 411.0 373.0 164.0 88.0

difference +2.0% +5.8% +3.6% +11.4%

Table 5.6: Summary of event yields with exactly one b-tag in the
e+jets channel.

µ+jets
1jet 2jets 3jets ≥ 4jets

Wjj 146.3 74.0 15.9 4.0
Wbb 91.5 77.5 22.3 4.8
Wcc 49.8 55.2 19.5 3.7

W+jets 287.7±17.8 206.7±14.8 57.8±4.2 12.5±0.9
tb 1.4 4.4 1.4 0.3
tqb 4.0 10.0 3.2 0.8
Zjj 5.8 4.0 1.5 0.5
Zbb 3.2 5.1 2.3 0.7
Zcc 3.8 4.2 1.5 0.5
WW 3.1 7.5 2.0 0.5
WZ 1.4 2.8 0.7 0.2
ZZ 0.2 0.4 0.1 0.0

tt̄ → ll 4.4 16.5 8.5 1.8
tt̄ → l+jets 0.8 13.6 44.8 47.7
Multijet 10.8±4.7 16.8±6.3 4.4±2.4 -0.7±1.4

total 326.5±18.4 292.0±16.1 128.2±4.9 64.8±1.6

data 324.0 300.0 130.0 91.0

difference -0.8% +2.7% +1.4% +28.8%

Table 5.7: Summary of event yields with exactly one b-tag in the
µ+jets channel.
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e+jets
1jet 2jets 3jets ≥ 4jets

Wjj - 0.3 0.1 0.0
Wbb - 12.4 3.8 0.6
Wcc - 1.8 0.7 0.2

W+jets - 14.5±1.8 4.7±0.5 0.8±0.1
tb - 2.8 0.9 0.2
tqb - 0.5 0.8 0.3
Zjj - 0.0 0.0 0.0
Zbb - 0.4 0.4 0.2
Zcc - 0.1 0.1 0.0
WW - 0.1 0.1 0.1
WZ - 0.7 0.2 0.0
ZZ - 0.0 0.0 0.0

tt̄ → ll - 8.3 4.7 1.1
tt̄ → l+jets - 3.8 22.0 28.6
Multijet - 1.2±1.1 2.4±1.5 0.8±0.9

total - 32.4±2.1 36.2±1.6 32.1±0.9

data - 39.0 41.0 26.0

difference - +16.8% +11.6% -23.5%

Table 5.8: Summary of event yields with two or more b-tags in
the e+jets channel.

µ+jets
1jet 2jets 3jets ≥ 4jets

Wjj - 0.3 0.1 0.1
Wbb - 12.5 4.4 1.1
Wcc - 1.5 1.0 0.3

W+jets - 14.4±1.8 5.5±0.6 1.4±0.2
tb - 1.9 0.6 0.1
tqb - 0.4 0.7 0.3
Zjj - 0.0 0.0 0.0
Zbb - 0.5 0.4 0.2
Zcc - 0.1 0.1 0.0
WW - 0.1 0.1 0.0
WZ - 0.6 0.2 0.1
ZZ - 0.1 0.0 0.0

tt̄ → ll - 6.7 3.9 0.9
tt̄ → l+jets - 2.4 17.3 25.1
Multijet - 0.3±0.5 0.8±0.9 -1.2±1.2

total - 27.5±1.8 29.5±1.1 27.0±1.2

data - 26.0 35.0 32.0

difference - -5.6% +15.7% +15.8%

Table 5.9: Summary of event yields with two or more b-tags in
the µ+jets channel.
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distributions of kinematic variables.
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Figure 5.1: Electron pT distributions for the preselected sample in the e+jets
channel. The plots show the results for different jet multiplicities: =1 jet (top
left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure 5.2: Muon pT distributions for the preselected sample in the µ+jets
channel. The plots show the results for different jet multiplicities: =1 jet (top
left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure 5.3: 6ET distributions for the preselected sample in the e+jets channel.
The plots show the results for different jet multiplicities: =1 jet (top left), =2
jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure 5.4: 6ET distributions for the preselected sample in the µ+jets channel.
The plots show the results for different jet multiplicities: =1 jet (top left), =2
jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).

72



 [GeV]
T

Leading Jet p
0 50 100 150 200 250

E
ve

nt
s

0

500

1000

1500

2000

2500

3000

3500

KS = 0.732DØ RunII 913 pb-1

DATA 15863
ttljets 5
ttdilepton 14
tch 13
sch 5
Wjj 13131
Wbb 345
Wcc 1031
Zjj 285
Zbb 12
Zcc 20
WW 113
WZ 16
ZZ 1
Multijet 871

0 50 100 150 200 2500

500

1000

1500

2000

2500

3000

3500

 [GeV]
T

Leading Jet p
0 50 100 150 200 250

E
ve

nt
s

0

500

1000

1500

2000

2500

3000

3500

 [GeV]
T

Leading Jet p
0 50 100 150 200 250

E
ve

nt
s

0

100

200

300

400

500

600

700

800

900

KS = 0.730DØ RunII 913 pb-1

DATA 6043
ttljets 50
ttdilepton 47
tch 27
sch 15
Wjj 3803
Wbb 218
Wcc 619
Zjj 225
Zbb 14
Zcc 24
WW 155
WZ 26
ZZ 2
Multijet 820

0 50 100 150 200 2500

100

200

300

400

500

600

700

800

900

 [GeV]
T

Leading Jet p
0 50 100 150 200 250

E
ve

nt
s

0

100

200

300

400

500

600

700

800

900

 [GeV]
T

Leading Jet p
0 50 100 150 200 250

E
ve

nt
s

0

20

40

60

80

100

120

140

KS = 0.809DØ RunII 913 pb-1

DATA 1300
ttljets 131
ttdilepton 23
tch 9
sch 4
Wjj 561
Wbb 53
Wcc 132
Zjj 62
Zbb 6
Zcc 10
WW 33
WZ 6
ZZ 1
Multijet 268

0 50 100 150 200 2500

20

40

60

80

100

120

140

 [GeV]
T

Leading Jet p
0 50 100 150 200 250

E
ve

nt
s

0

20

40

60

80

100

120

140

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

10

20

30

40

50

KS = 0.921DØ RunII 913 pb-1

DATA 320
ttljets 127
ttdilepton 5
tch 2
sch 1
Wjj 69
Wbb 8
Wcc 16
Zjj 19
Zbb 2
Zcc 3
WW 6
WZ 1
ZZ 0
Multijet 60

0 50 100 150 200 250 3000

10

20

30

40

50

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

10

20

30

40

50

Figure 5.5: Leading jet pT distributions for the preselected sample in the e+jets
channel. The plots show the results for different jet multiplicities: =1 jet (top
left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure 5.6: Leading jet pT distributions for the preselected sample in the µ+jets
channel. The plots show the results for different jet multiplicities: =1 jet (top
left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure 5.7: The eν transverse mass distributions for the preselected sample in
the e+jets channel. The plots show the results for different jet multiplicities:
=1 jet (top left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom
right).
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Figure 5.8: The µν transverse mass distributions for the preselected sample in
the µ+jets channel. The plots show the results for different jet multiplicities:
=1 jet (top left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom
right).
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Chapter 6

Cross Section Calculation

This analysis is a counting experiment. Therefore, the cross section of the top quark pair production

is extracted after subtracting backgrounds estimated from data. To calculate the cross section, a

maximum likelihood fit is performed to the observed number of events. In this chapter, it is described

how to extract the cross section and the result is presented.

6.1 Procedure

The likelihood function L used to calculate the top quark pair production cross section σtt̄ is given

by

L =
∏

γ

P(Nobs
γ , Npredicted

γ (σtt̄)) (6.1)

where γ indicates the channel and N obs
γ denotes the number of observed events in the channel γ. This

analysis has eight different channels: e+jets (3 jets), e+jets (4 or more jets), µ+jets (3 jets), and

µ+jets (4 or more jets) with exactly one b-tag and two or more b-tags. P(N obs, Npredicted) denotes

the Poisson probability to observe N obs events when the number of predicted events is Npredicted.

The number of predicted events is the sum of the number of estimated background events (W+jets,

Z+jets, single top, diboson, and multijet) and the number of expected signal events (tt̄ → l+jets
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and tt̄ → ll) which are proportional to the tt̄ cross section. It is assumed that the cross section is

the same in the tt̄ → l+jets and tt̄ → ll channels. The tt̄ cross section is determined by maximizing

the likelihood function in Equation 6.1. The number of predicted background events also depend on

σtt̄ because the number of W+jets events are normalized to the data after subtracting the number

of expected events for signal and other background, as shown in Equation 5.9.

The matrix method, which is discussed in Section 5.1, is applied three times in this analysis for

both untagged and tagged samples.

1. In the untagged sample (rejected by b-tagging), the solutions of the matrix method are

N0tag

W+tt
= εsig

Ñ0tag
tight − εQCDÑ0tag

loose

εsig − εQCD

N0tag
QCD = εQCD

εsigÑ
0tag
loose − Ñ0tag

tight

εsig − εQCD
(6.2)

where N0tag

W+tt
and N0tag

QCD are the number of events with true and fake isolated leptons in

the untagged tight sample. 0tag indicates the number of events in untagged sample shown

in Table 5.2 and 5.3. The tilde denotes it is an observed number in this analysis. Therefore,

Ñ0tag
loose and Ñ0tag

tight are the number of events observed in the loose and the tight untagged samples,

respectively. In addition, Ñ0tag
loose and Ñ0tag

tight are not independent variables because Ñ0tag
tight is a

subsample of Ñ0tag
loose. To solve this problem, Ñ0tag

loose can be split into Ñ0tag
tight and Ñ0tag

loose−tight.

The Equation 6.2 can be re-expressed by these independent variables as follows

N0tag

W+tt
= εsig

Ñ0tag
tight − εQCD(Ñ0tag

tight + Ñ0tag
loose−tight)

εsig − εQCD

N0tag
QCD = εQCD

εsig(Ñ
0tag
tight + Ñ0tag

loose−tight) − Ñ0tag
tight

εsig − εQCD
. (6.3)

The number of observed events, Ñ0tag
tight and Ñ0tag

loose−tight, are put into the likelihood function,

L0

L0 = P(Ñ0tag
tight, N

0tag
tight) ×P(Ñ0tag

loose−tight, N
0tag
loose−tight) (6.4)

78



where N0tag
tight and N0tag

loose−tight without the tilde denote the true values. The Poisson proba-

bility P is the probability to observe Ñ0tag
tight (Ñ0tag

loose−tight) events given the true value N 0tag
tight

(N0tag
loose−tight). N0tag

tight and N0tag
loose−tight are allowed to float at each step of the maximization

procedure to find the best estimate of their true values.

2. The solution of the matrix method in the exactly one b-tag sample can be derived by same

formula as Equation 6.2

N1tag

W+tt
= εsig

Ñ1tag
tight − εQCD(Ñ1tag

tight + Ñ1tag
loose−tight)

εsig − εQCD

N1tag
QCD = εQCD

εsig(Ñ
1tag
tight + Ñ1tag

loose−tight) − Ñ1tag
tight

εsig − εQCD
. (6.5)

In Equation 6.5, the numbers of observed loose-tight and tight events in the exactly one b-tag

samples, Ñ1tag
loose−tight and Ñ1tag

tight, are used. The likelihood function, L1 is

L1 = P(Ñ1tag
tight, N

1tag
tight) ×P(Ñ1tag

loose−tight, N
1tag
loose−tight). (6.6)

3. Equation 6.7 and 6.8 show the solution of the matrix method and the likelihood function in

the two or more b-tag sample,

N2tag

W+tt
= εsig

Ñ2tag
tight − εQCD(Ñ2tag

tight + Ñ2tag
loose−tight)

εsig − εQCD

N2tag
QCD = εQCD

εsig(Ñ
2tag
tight + Ñ2tag

loose−tight) − Ñ2tag
tight

εsig − εQCD
(6.7)

L2 = P(Ñ2tag
tight, N

2tag
tight) ×P(Ñ2tag

loose−tight, N
2tag
loose−tight). (6.8)

In the above likelihood functions, the number of events without a tilde is a floating parameter that is

constrained to its observed value by including a Poisson probability term in the likelihood function.

The three subsamples (untagged, exactly one tag, and two or more tags) can be combined and
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the solutions of the matrix method for the number of overall events (before b-tagging) are given by

NW+tt = N0tag

W+tt
+ N1tag

W+tt
+ N2tag

W+tt

=
εsig

εsig − εQCD

((

N0tag
tight + N1tag

tight + N2tag
tight

)

− εQCD

(

N0tag
tight + N1tag

tight + N2tag
tight

))

− εsigεQCD

εsig − εQCD

(

N0tag
loose−tight + N1tag

loose−tight + N2tag
loose−tight

)

NQCD = N0tag
QCD + N1tag

QCD + N2tag
QCD

=
εQCD

εsig − εQCD

(

εsig

(

N0tag
tight + N1tag

tight + N2tag
tight

)

−
(

N0tag
tight + N1tag

tight + N2tag
tight

))

+
εsigεQCD

εsig − εQCD

(

N0tag
loose−tight + N1tag

loose−tight + N2tag
loose−tight

)

(6.9)

and the likelihood function can be expressed as follows

L = L0 ×L1 ×L2

= P(Ñ0tag
tight, N

0tag
tight) ×P(Ñ0tag

loose−tight, N
0tag
loose−tight)

× P(Ñ1tag
tight, N

1tag
tight) ×P(Ñ1tag

loose−tight, N
1tag
loose−tight)

× P(Ñ2tag
tight, N

2tag
tight) ×P(Ñ2tag

loose−tight, N
2tag
loose−tight). (6.10)

Next, N1tag
tight and N2tag

tight are re-expressed in terms of σtt̄, the number of background events pre-

dicted from MC, and the number of observed events in order to account for their dependence on σtt̄

in the likelihood, with respect to σtt̄

N1tag
tight = P 1tag

tt
Ntt + N1tag

QCD + P 1tag
W NW + P 1tag

MC bkgNMC bkg

N2tag
tight = P 2tag

tt
Ntt + N2tag

QCD + P 2tag
W NW + P 2tag

MC bkgNMC bkg (6.11)

where P 1tag (P 2tag) with subscriptions denotes the event probability calculated using Equation 5.16

(5.17). Equation 6.11 simply expresses that the number of tagged events is equal to the sum of

number of tagged events from tt̄ , multijet, W+jets and other physics backgrounds estimated in
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Chapter 5.

According to the Equation 5.9, the contribution of W+jets events in the before-tagging sample

is

NW = NW+tt − Ntt − NMC bkg . (6.12)

After this is inserted into Equation 6.11, it is obtained that

N1tag
tight = P 1tag

tt
Ntt + N1tag

QCD + P 1tag
W NW+tt − P 1tag

W NMC bkg − P 1tag
W Ntt + P 1tag

MC bkgNMC bkg

N2tag
tight = P 2tag

tt
Ntt + N2tag

QCD + P 2tag
W NW+tt − P 2tag

W NMC bkg − P 2tag
W Ntt + P 2tag

MC bkgNMC bkg . (6.13)

In Equation 6.13, N1tag
tight and N2tag

tight appear on both sides of the equation, giving a system of two

equations with two unknowns (N 1tag
tight and N2tag

tight). Since NW+tt, N1tag
QCD and N2tag

QCD can be expressed

explicitly as a functions of N0tag
tight, N1tag

tight, N2tag
tight, N0tag

loose−tight, N1tag
loose−tight, and N2tag

loose−tight using

Equations 6.5, 6.7 and 6.9, the system of equations can be rewritten as

N1tag
tight = k1 + a1N

0tag
tight + b1N

1tag
tight + c1N

2tag
tight

+ d1N
0tag
loose−tight + e1N

1tag
loose−tight + f1N

2tag
loose−tight

N2tag
tight = k2 + a2N

0tag
tight + b2N

1tag
tight + c2N

2tag
tight

+ d2N
0tag
loose−tight + e2N

1tag
loose−tight + f2N

2tag
loose−tight (6.14)

where k1 and k2 are defined as

k1 = P 1tag

tt
Ntt − P 1tag

W NMC bkg − P 1tag
W Ntt + P 1tag

MC bkgNMC bkg

k2 = P 2tag

tt
Ntt − P 2tag

W NMC bkg − P 2tag
W Ntt + P 2tag

MC bkgNMC bkg . (6.15)

In Equation 6.14, a1, b1, c1, d1, e1, and f1 are given by

a1 =
P 1tag

W εsig(1 − εQCD)

εsig − εQCD
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b1 =
εsigεQCD − εQCD + P 1tag

W εsig − P 1tag
W εsigεQCD

εsig − εQCD

c1 = a1

d1 =
−P 1tag

W εsigεQCD

εsig − εQCD

e1 =
εsigεQCD − P 1tag

W εsigεQCD

εsig − εQCD

f1 = d1 (6.16)

and a2, b2, c2, d2, e2, f2 are given by

a2 =
P 2tag

W εsig(1 − εQCD)

εsig − εQCD

b2 = a2

c2 =
εsigεQCD − εQCD + P 2tag

W εsig − P 2tag
W εsigεQCD

εsig − εQCD

d2 =
−P 2tag

W εsigεQCD

εsig − εQCD

e2 = d2

f2 =
εsigεQCD − P 2tag

W εsigεQCD

εsig − εQCD
. (6.17)

Solving Equation 6.14 for N 1tag
tight and N2tag

tight gives

N1tag
tight =

1

(c2 − 1)(b1 − 1) − c1b2
×

( k2c1 − k1c2 + k1

+ N0tag
tight(c1a2 − (c2 − 1)a1)

+ N0tag
loose−tight(c1d2 − (c2 − 1)d1)

+ N1tag
loose−tight(c1e2 − (c2 − 1)e1)

+ N2tag
loose−tight(c1f2 − (c2 − 1)f1) ) (6.18)

N2tag
tight =

1

(c2 − 1)(b1 − 1) − c1b2
×
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( k1b2 − k2b1 + k2

+ N0tag
tight(b2a1 − (b1 − 1)a2)

+ N0tag
loose−tight(b2d1 − (b1 − 1)d2)

+ N1tag
loose−tight(b2e1 − (b1 − 1)e2)

+ N2tag
loose−tight(b2f1 − (b1 − 1)f2) ). (6.19)

Thus, N1tag
tight and N2tag

tight are expressed as a function of the tagging probabilities, efficiencies for the

matrix method, the number of predicted events for the processes such as single top, diboson, Z+jets,

the floating parameters N0tag
tight, N0tag

loose−tight, N1tag
loose−tight and N2tag

loose−tight in Equation 6.18 and 6.19,

and the expected number of tt̄ events in the sample.

A single likelihood function is constructed by taking the product of the likelihoods e+jets (3

jets), e+jets (4 or more jets), µ+jets (3 jets), and µ+jets (4 or more jets) channels

L =
∏

i

P(Ñ0tag
tight, N

0tag
tight) ×P(Ñ0tag

loose−tight, N
0tag
loose−tight)

× P(Ñ1tag
tight, N

1tag
tight) ×P(Ñ1tag

loose−tight, N
1tag
loose−tight)

× P(Ñ2tag
tight, N

2tag
tight) ×P(Ñ2tag

loose−tight, N
2tag
loose−tight) (6.20)

where i denotes the channel. L summarizes all Poisson constraints used in the cross section calcula-

tion. The top quark pair production cross section, σtt̄ is determined by maximizing the likelihood L

by varying the parameters N 0tag
loose−tight, N1tag

loose−tight, N2tag
loose−tight, N0tag

tight, N1tag
tight, and N2tag

tight. N1tag
tight

and N2tag
tight are the functions of σtt̄.

6.2 Cross Section with Statistical Uncertainty

The results of the cross section calculation are presented in this section for exactly one tag events

and two or more tags events using the procedure discussed in the previous section. Table 6.1 shows

the cross sections measured for each channel and each sample. Combined results are shown in
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Table 6.2. The errors in the tables are statistical only. The statistical error is determined by the

width bewteen two points that change one unit from the maximized likelihood at the parabolic curve

of the likelihood.

Channel
e+jets (pb) µ+jets (pb)

3 jets 4 or more jets 3 jets 4 or more jets

Exactly One Tagged Events
7.48 +1.45

−1.38 8.05 +1.25
−1.17 7.12 +1.74

−1.65 11.05 +1.58
−1.48

7.81 +0.94
−0.90 9.48 +1.14

−1.09

Two or More Tagged Events
8.05 +1.84

−1.67 5.39 +1.33
−1.18 8.60 +2.18

−1.96 8.22 +1.72
−1.53

6.47 +1.10
−1.01 8.37 +1.33

−1.23

Table 6.1: The tt̄ cross section results for each channel. The errors are statistical only.

e+jets (pb) µ+jets (pb)

Combined Cross Section
7.27 +0.72

−0.69 9.03 +0.87
−0.83

8.05 +0.55
−0.53

Table 6.2: The combined results of cross section. The
errors are statistical only.

Figures 6.1 ∼ 6.3 show the signal and background compositions that result from these fits. The

combined cross section result of σtt̄ = 8.05 pb is used for these figures.

6.3 Systematic Uncertainties

The systematic uncertainties from different sources can effect the preselection efficiencies and b-

tagging probabilities. In this section, the various sources of systematic uncertainties and their

results are discussed.

The biggest systematic uncertainty is resulted from uncertainty on the integrated luminosity

measurement and it is 6.1% [49]. It is assigned as additional systematic uncertainty on the measured

cross section.

A complete list of systematic uncertainties is shown in Table 6.3, where a cross denotes that the

uncertainty is applicable to the channel. Uncertainties whose origin is statistical are treated as being
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Figure 6.1: The predicted signal and background compositions for exactly one tag
(left) and two or more tags (right) samples in the e+jets channel with the measured
tt̄ cross section. The combined cross section result for all channels (8.05 pb) is used
in the figure. The red area is the contribution of tt̄ → l+jets signal events and the
shaded region in the plots indicates the statistical uncertainty in the predicted number
of events.
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Figure 6.2: The predicted signal and background compositions for exactly one tag
(left) and two or more tags (right) samples in the µ+jets channel with the measured
tt̄ cross section. The combined cross section result for all channels (8.05 pb) is used
in the figure. The red area is the contribution of tt̄ → l+jets signal events and the
shaded region in the plots indicates the statistical uncertainty in the predicted number
of events.
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Figure 6.3: The predicted signal and background compositions for exactly one tag
(left) and two or more tags (right) samples in the lepton+jets channel with the mea-
sured tt̄ cross section. The combined cross section result for all channels (8.05 pb) is
used in the figure. The red area is the contribution of tt̄ → l+jets signal events and
the shaded region in the plots indicates the statistical uncertainty in the predicted
number of events.

uncorrelated, and while non-statistical uncertainties are related as being fully correlated between

the e+jets and µ+jets channels.

6.3.1 Uncertainties on the Preselection Efficiency

The systematic uncertainties contributing to the preselection efficiency are briefly described in this

section.

Primary Vertex scale factor This systematic uncertainty arises from the difference between data

and MC for the selection of primary vertices, where |Z| < 60 cm, ≥ 3 tracks and ∆|PV −

PVLepton| < 1 cm are required. This uncertainty is estimated to be 1.5% in Reference [56].

Vertex Z position simulation This uncertainty is based on Reference [63]. The uncertainty is

from the inaccuracies in the vertex z position simulation. It is measured to be 1.6% for the

data set used in this analysis.

Luminosity profile in data and MC There is a difference between MC and data luminosity pro-

files and it is necessary to reweight the MC to match the luminosity profile in the data. This

correction is not added to the central value, instead it is treated as a systematic uncertainty

86



in this analysis.

Z pT reweighting The uncertainty due to Z pT reweighting in the Monte Carlo to match data was

taken into account using the constant value of 12% uncertainty quoted in [55].

Electron identification efficiency According to studies by the dilepton cross section measure-

ment group at DØ, this systematic uncertainty is 2.5%. 1.3% is from a jet multiplicity depen-

dence [60] in the electron ID efficiency and 2.3% [64] from dependence on other quantities.

Muon identification efficiency This systematic uncertainty is estimated by the muon ID group

to be 0.7%, and is due to the uncertainty in the muon reconstruction efficiency [24].

Muon tracking efficiency This systematic uncertainty is also estimated by the muon ID group

to be 0.7%, and is due to the uncertainty in the efficiency for matching tracks reconstructed

in the central tracker and the local muon track reconstructed by the muon detector [24].

Muon isolation efficiency This is the uncertainty in the isolation scale factor for muons and is

found to be 2% [24].

Trigger efficiency The trigger efficiency as a function of pT for each object in MC event is shifted

up and down by one standard deviation and then the weight of the event is recalculated. This

shift is taken as an overall constant systematic error on the MC acceptance.

Parton distribution functions The computed acceptance for tt events depends on the parton

distribution functions used. It is an uncertainty that corresponds to the shift observed when

the parton momenta are reweighted from the CTEQ6L1 pdf set to the CTEQ6.1M sets [60].

Cross section for MC background estimation The errors on the NLO cross sections used in

the single top, Z+jets, and diboson samples, are 12.6% [53], 15% [54], and 20% [56] respectively.

These NLO cross sections are shifted up and down by those errors and the tt̄ cross section is

recalculated. This uncertainty is determined by the difference between the central value and

recalculation.
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Signal Modeling In this analysis, the tt̄ MC sample is generated using PYTHIA. To determine the

generator dependence, the tt̄ MC sample generated with PYTHIA is substituted by a sample

generated with ALPGEN. Then, the relative error in the signal preselection efficiency between

the two different tt̄ MC simulations is calculated.

6.3.2 Uncertainties on Both Preselection Efficiency and Tagging Proba-

bility

In this section, the sources of systematic uncertainties contributing to the preselection efficiency as

well as the b-tagging probability are described.

JES Uncertainty The effect of the jet energy scale (JES) uncertainty [29] is obtained by varying

the JES by ±1σ, where

σ =
√

σ2
stat,data + σ2

syst,data + σ2
stat,MC + σ2

syst,MC . (6.21)

Jet energy resolution (JSSR) The uncertainty on the jet energy resolution in data is already

included in the systematic uncertainty due to the jet energy scale. The energy of jets in Monte

Carlo is smeared to the jet energy resolution of the data. The jet energy resolution in Monte

Carlo has an uncertainty which is not taken into account in the jet energy scale. To account for

this effect, the parameters of the jet energy smearing are varied by the size of the uncertainty

in the jet energy resolution parameters in Monte Carlo.

Jet Reconstruction and Identification Efficiency (JetID) This is the systematic uncertainty

on the correction of the jet reconstruction × identification efficiency in the simulation.

b fragmentation The DØ MC simulation uses the default b-quark fragmentation function provided

by PYTHIA. The difference between this default fragmentation function and the fragmentation

function tuned to LEP data [65] is quoted as a systematic uncertainty. The LEP fragmentation

function was implemented by reweighting the events accordingly.
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Tag Rate Functions (TRF) The b-ID group provide the b-ID package and the errors for tag-

gability and TRF are summed quadratically. The uncertainty associated with the TRF is

evaluated by raising and lowering the error by one standard deviation in order to determine

the new event tagging weight. The TRF uncertainties originate from several sources: statisti-

cal errors in MC data sets, the assumed fraction of heavy flavor in the MC QCD sample used

for the mistag rate determination, and the parameterizations of the tag rate functions.

Flavor dependence of taggability (FDT) This uncertainty is obtained by substituting the pa-

rameterized taggability for the QCD MC sample by the taggability for the Wbb̄ and Wcc̄ MC

samples for the b-jets and c-jets, respectively. The result, which was studied in p14 analy-

sis [66], is used in this analysis.

W TRF correction At low jet pT, there is a discrepancy in the Wbb̄ and Wcc̄ MC samples between

the actual tagging efficiency and the TRF because of the low b-quark momentum in these

samples [67]. The correction factor is measured and the effect of this factor is treated as a

systematic uncertainty.

MC Factorization scale The factorization scale is estimated by calculating the fitted number of

tt̄ events in the W+jets background Monte Carlo sample generated with Q2 =< pTj
>2 instead

of the default scale Q2 = M2
W +

∑

p2
Tj

. Changing the factorization scale from the default Q2 =

M2
W +

∑

p2
Tj

to Q2 =< pTj
>2 leads to a softer pT spectra, whereas other tested factorization

scales lead to a harder pT spectra. Since the distributions for Q2 = M2
W +

∑

p2
Tj

are found

to be well centered between these other choices, it is a good approximation to symmetrize the

one-sided error determined from the choice of Q2 =< pTj
>2 as the factorization scale [68].

Heavy flavor (HF) scale factor This systematic uncertainty comes from the heavy flavor scale

factor between Wjj and Wbb/Wcc samples, which is 1.17±0.18. For Z+jets, 1.35 is used as

the heavy flavor scale factor with 50% uncertainty.

Limited MC statistics This uncertainty results from limited MC statistics. The statistical un-

certainties on the determined preselection efficiencies in MC samples are used to calculate this
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uncertainty.

Uncertainty on εsig and εQCD The uncertainty in the number of W+jets and QCD events per

exclusive jet multiplicity is obtained by varying εsig and εQCD by one standard deviation. The

results of the two variations are summed in quadrature. The uncertainties are assumed to be

totally uncorrelated between the e+jets and µ+jets channels.

6.3.3 Summary of Systematic Uncertainties

Summaries of systematic uncertainties are shown in Tables 6.4 ∼ 6.6. The systematic uncertainty

on the cross section is calculated for each independent source by making a one standard deviation

variation up and down and then propagating the variation into both the fitted number of tt̄ events

and the signal efficiencies.

6.4 Results

The final results of the top quark pair production cross section measurements are presented in this

section. The results from the combined cross sections for exactly one b-tag and two or more b-tags

in the lepton+jets channel are

` + jets (= 1 tag) : σpp→tt+X = 8.53 +0.72
−0.70 (stat) +0.58

−0.54 (syst) ± 0.52 (lum) pb

` + jets (≥ 2 tags) : σpp→tt+X = 7.33 +0.84
−0.79 (stat) +1.01

−0.89 (syst) ± 0.45 (lum) pb

and the final combined result for all channels is

` + jets : σpp→tt+X = 8.05 +0.55
−0.53 (stat) +0.72

−0.67 (syst) ± 0.49 (lum) pb

The dependence of the cross section on the top quark mass is shown in Figure 6.4. It is fitted with
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a second order polynomial and the result is σtt̄ = 0.001090 ·Mtop
2 − 0.457093 ·Mtop + 54.610092. In

the figure, the result measured in this analysis is compared to two different theoretical cross sections

by Cacciari et al. (σ = 6.70 + 0.71 − 0.88 pb at Mtop = 175 GeV) [8] and Kidonakis and Vogt

(6.77 ± 0.42 pb at Mtop = 175 GeV) [7]. The green (blue) dotted lines indicates the uncertainties

in the cross section predictions (the measurement in this analysis).
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Figure 6.4: The measured top quark pair production cross section as a func-
tion of the top quark mass. The two green lines are the theoretical cross sec-
tions calculated by Cacciari et al. and Kidonakis and Vogt. The green (blue)
dotted lines denote the uncertainties in the cross section The world average
top quark mass at present, predictions (the measurement in this analysis).
172.6 ±0.8(stat) ±1.1(sys) [11], is also shown in this figure.
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Channel e+jets µ+jets

Correlated

Primary Vertex × ×
Luminosity Reweighting × ×

Z pTReweighting × ×
Jet Trigger × ×

PDF × ×
Signal Modeling × ×
MC cross section × ×

JES × ×
JSSR × ×

Jet Identification × ×
b-fragmentation × ×
Factorization × ×

TRF × ×
Flavor Dependence of taggability × ×

W TRF correction × ×
W Heavy Flavor Scale Factor × ×
Z Heavy Flavor Scale Factor × ×

Uncorrelated

EM ID ×
EM Trigger ×
Muon ID ×

Muon Tracking ×
Muon Isolation ×

µ Trigger ×
MC statistics × ×

εsig × ×
εQCD × ×

Table 6.3: Summary of the systematic uncertainties. The notation “uncorrelated” and “correlated”
refer to the treatment of the sources of errors in the cross section combination.

92



e+jets µ+jets l+jets

type source σ+ σ− σ+ σ− σ+ σ−

preselection

Luminosity Reweighting +0.02 -0.00 +0.15 -0.00 +0.07 -0.00

Primary V ertex +0.14 -0.13 +0.17 -0.16 +0.15 -0.15

Z pT Reweighting +0.00 -0.00 +0.00 -0.00 +0.00 -0.00

e+jets only

EM ID +0.18 -0.18 - - +0.12 -0.11

L1EMtrigger +0.08 -0.01 - - +0.05 -0.01

L2EMtrigger +0.00 -0.00 - - +0.00 -0.00

L3EMtrigger +0.05 -0.05 - - +0.03 -0.03

L1JetT rigger +0.00 -0.00 - - +0.00 -0.00

L2JetT rigger +0.00 -0.00 - - +0.00 -0.00

L3JetT rigger +0.00 -0.00 - - +0.00 -0.00

µ+jets only

Muon ID - - +0.07 -0.07 +0.03 -0.03

Muon Tracking - - +0.07 -0.07 +0.03 -0.03

Muon Isolation - - +0.20 -0.19 +0.07 -0.07

Muon Trigger - - +0.27 -0.24 +0.10 -0.09

Jets

Jet T rigger +0.02 -0.02 +0.02 -0.02 +0.02 -0.02

JES +0.30 -0.25 +0.30 -0.23 +0.30 -0.24

JSSR +0.00 -0.09 +0.00 -0.08 +0.00 -0.08

Jet Identification +0.12 -0.12 +0.11 -0.11 +0.12 -0.12

Matrix Method
εsig +0.03 -0.03 +0.08 -0.07 +0.05 -0.05

εQCD +0.02 -0.02 +0.01 -0.01 +0.03 -0.03

MC Modeling

W HF Scale Factor +0.20 -0.19 +0.28 -0.26 +0.24 -0.22

b-fragmetation +0.18 -0.00 +0.18 -0.00 +0.19 -0.00

Factorization +0.04 -0.03 +0.06 -0.04 +0.05 -0.03

b-tagging

FDT +0.00 -0.13 +0.00 -0.00 +0.00 -0.07

W TRF correction +0.07 -0.00 +0.10 -0.00 +0.09 -0.00

b-jets TRF +0.20 -0.15 +0.21 -0.16 +0.21 -0.16

c-jets TRF +0.06 -0.06 +0.08 -0.08 +0.07 -0.07

light-jets TRF +0.06 -0.06 +0.08 -0.08 +0.07 -0.07

Others

Z HF Scale Factor +0.09 -0.09 +0.12 -0.12 +0.10 -0.10

Signal Modeling +0.00 -0.23 +0.00 -0.23 +0.00 -0.23

MC cross section +0.04 -0.04 +0.04 -0.04 +0.04 -0.04

MC statistics on signal +0.01 -0.01 +0.01 -0.01 +0.01 -0.01

MC statistics on background +0.04 -0.05 +0.05 -0.06 +0.05 -0.05

PDF +0.02 -0.02 +0.02 -0.02 +0.02 -0.02

Total +0.56 -0.54 +0.69 -0.62 +0.58 -0.54

Table 6.4: Summary of the total systematic uncertainties for the combined results (exactly one
b-tag sample).
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e+jets µ+jets l+jets

type source σ+ σ− σ+ σ− σ+ σ−

preselection

Luminosity Reweighting +0.02 -0.00 +0.11 -0.00 +0.06 -0.00

Primary V ertex +0.12 -0.11 +0.15 -0.14 +0.13 -0.13

Z pT Reweighting +0.00 -0.00 +0.00 -0.00 +0.00 -0.00

e+jets only

EM ID +0.15 -0.15 - - +0.09 -0.09

L1EMtrigger +0.07 -0.01 - - +0.04 -0.01

L2EMtrigger +0.00 -0.00 - - +0.00 -0.00

L3EMtrigger +0.04 -0.04 - - +0.02 -0.02

L1JetT rigger +0.00 -0.00 - - +0.00 -0.00

L2JetT rigger +0.00 -0.00 - - +0.00 -0.00

L3JetT rigger +0.00 -0.00 - - +0.00 -0.00

µ+jets only

Muon ID - - +0.06 -0.06 +0.02 -0.02

Muon Tracking - - +0.06 -0.06 +0.02 -0.02

Muon Isolation - - +0.18 -0.17 +0.07 -0.07

Muon Trigger - - +0.24 -0.21 +0.09 -0.08

Jets

Jet T rigger +0.01 -0.01 +0.02 -0.02 +0.02 -0.02

JES +0.32 -0.27 +0.36 -0.30 +0.34 -0.28

JSSR +0.00 -0.09 +0.00 -0.10 +0.00 -0.10

Jet Identification +0.13 -0.13 +0.12 -0.12 +0.13 -0.13

Matrix Method
εsig +0.03 -0.03 +0.08 -0.07 +0.05 -0.05

εQCD +0.02 -0.02 +0.05 -0.04 +0.00 -0.01

MC Modeling

W HF Scale Factor +0.08 -0.08 +0.10 -0.10 +0.09 -0.09

b-fragmetation +0.20 -0.00 +0.19 -0.00 +0.20 -0.00

Factorization +0.02 -0.02 +0.03 -0.02 +0.03 -0.02

b-tagging

FDT +0.00 -0.01 +0.00 -0.03 +0.00 -0.02

W TRF correction +0.04 -0.00 +0.05 -0.00 +0.05 -0.00

b-jets TRF +0.80 -0.69 +0.99 -0.86 +0.89 -0.76

c-jets TRF +0.06 -0.06 +0.07 -0.07 +0.07 -0.07

light-jets TRF +0.02 -0.02 +0.03 -0.03 +0.02 -0.02

Others

Z HF Scale Factor +0.04 -0.04 +0.05 -0.05 +0.04 -0.04

Signal Modeling +0.00 -0.22 +0.00 -0.23 +0.00 -0.22

MC cross section +0.03 -0.03 +0.03 -0.03 +0.03 -0.03

MC statistics on signal +0.01 -0.01 +0.01 -0.01 +0.01 -0.01

MC statistics on background +0.01 -0.01 +0.01 -0.02 +0.01 -0.01

PDF +0.02 -0.02 +0.02 -0.02 +0.02 -0.02

Total +0.92 -0.82 +1.15 -1.01 +1.01 -0.89

Table 6.5: Summary of the total systematic uncertainties for the combined results (two or more
b-tags sample).
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e+jets µ+jets l+jets

type source σ+ σ− σ+ σ− σ+ σ−

preselection

Luminosity Reweighting +0.02 -0.00 +0.13 -0.00 +0.07 -0.00

Primary V ertex +0.13 -0.13 +0.16 -0.15 +0.14 -0.14

Z pT Reweighting +0.00 -0.00 +0.00 -0.00 +0.00 -0.00

e+jets only

EM ID +0.17 -0.16 - - +0.11 -0.11

L1EMtrigger +0.08 -0.01 - - +0.05 -0.01

L2EMtrigger +0.00 -0.00 - - +0.00 -0.00

L3EMtrigger +0.04 -0.04 - - +0.03 -0.03

L1JetT rigger +0.00 -0.00 - - +0.00 -0.00

L2JetT rigger +0.00 -0.00 - - +0.00 -0.00

L3JetT rigger +0.00 -0.00 - - +0.00 -0.00

µ+jets only

Muon ID - - +0.07 -0.06 +0.02 -0.02

Muon Tracking - - +0.07 -0.06 +0.02 -0.02

Muon Isolation - - +0.19 -0.18 +0.07 -0.07

Muon Trigger - - +0.26 -0.23 +0.09 -0.09

Jets

Jet T rigger +0.02 -0.02 +0.02 -0.02 +0.02 -0.02

JES +0.31 -0.26 +0.32 -0.25 +0.32 -0.26

JSSR +0.00 -0.09 +0.00 -0.09 +0.00 -0.09

Jet Identification +0.12 -0.12 +0.12 -0.12 +0.12 -0.12

Matrix Method
εsig +0.03 -0.03 +0.08 -0.07 +0.05 -0.05

εQCD +0.03 -0.03 +0.02 -0.02 +0.02 -0.03

MC Modeling

W HF Scale Factor +0.16 -0.15 +0.21 -0.19 +0.18 -0.17

b-fragmetation +0.19 -0.00 +0.19 -0.00 +0.19 -0.00

Factorization +0.03 -0.03 +0.05 -0.03 +0.04 -0.03

b-tagging

FDT +0.00 -0.08 +0.00 -0.01 +0.00 -0.05

W TRF correction +0.06 -0.00 +0.08 -0.00 +0.07 -0.00

b-jets TRF +0.46 -0.42 +0.54 -0.49 +0.49 -0.45

c-jets TRF +0.06 -0.06 +0.08 -0.08 +0.07 -0.07

light-jets TRF +0.04 -0.04 +0.06 -0.06 +0.05 -0.05

Others

Z HF Scale Factor +0.07 -0.07 +0.09 -0.09 +0.08 -0.08

Signal Modeling +0.00 -0.23 +0.00 -0.23 +0.00 -0.23

MC cross section +0.04 -0.04 +0.04 -0.04 +0.04 -0.04

MC statistics on signal +0.01 -0.01 +0.01 -0.01 +0.01 -0.01

MC statistics on background +0.03 -0.03 +0.04 -0.04 +0.03 -0.04

PDF +0.02 -0.02 +0.02 -0.02 +0.02 -0.02

Total +0.68 -0.64 +0.82 -0.75 +0.72 -0.67

Table 6.6: Summary of the total systematic uncertainties for the combined results (all channels).
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Chapter 7

Conclusion

The tt̄ pair production cross section is measured by this analysis in the lepton+jets channel using a

b-tagging algorithm for about 900 pb−1 data taken at
√

s = 1.96 TeV. The combined result for all

channels is

` + jets : σpp→tt+X = 8.05 +0.55
−0.53 (stat) +0.72

−0.67 (syst) ± 0.49 (L) pb.

In this analysis, the tt̄ pair production cross section is measured with 12.6 % precison. The theoretical

calculations [7, 8] have uncertainties of 6.2 % and 11.9 %, respectively. Therefore, the experimental

precision is close to the theoretical precision at present.

The experimental result will continue to increase in precision as additional data is acquired at

the Tevatron. The LHC accelerator will also start soon and it is expected that one tt̄ pair event

per second will be created in the LHC. By making accurate measurements of the tt̄ cross section, a

precise comparison of the experimental result and the perturbative QCD calculation can be made,

with any difference between theory and experiment being an indication of new physics beyond the

Standard Model.

Moreover, tt̄ pair production is the dominant background for Higgs boson production and the

search for new physics beyond the Standard Model. Therefore, it is very important to understand
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accurately tt̄ pair production in order to suppress the tt̄ background and discriminate signal from

background in these analyses.

Figure 7.1 shows a comparison of the tt̄ production cross sections in other channels measured by

the DØ experiment and selected results from the CDF experiment. In the figure, the inner error bar

indicates the statistical uncertainty and the outer error bar is the systematic uncertainty.
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Figure 7.1: Summary of selected top quark pair production cross section measurements made by the
CDF and DØ. The shaded area is the theoretical cross section with its uncertainty.
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Appendix A

Calibration of the Luminosity

Monitor Readout Electronics

The Luminosity Monitor (LM) detector, whose primary purpose is to determine luminosity at the

DØ detector, is briefly described in Section 2.2.5. The LM readout system consists of two parts:

the front-end electronics mounted on the detector and the readout electronics located in the Moving

Counting House (MCH) at DØ [69]. In this appendix, the readout system and its calibration are

described in detail.

A.1 LM Readout Electronics

A.1.1 Configuration

An overview of the LM readout system is shown in Figure A.1. As shown in the figure, the signal

from the LM scintillators is readout by Hamamatsu photomultiplier tubes (PMT), which have a

gain of approximately 104 in the 1 T magnetic field at the LM detector. The signal pulse from the

tubes is about 10 ns long. The preamplifiers amplify the signal by a factor of 60.5. The amplified

signal is sent to the MCH through high quality LMR-400 coaxial cables with lengths of about 200

ft. The signal is split in the MCH, with 10/11 of the signal sent to the VME-based electronics and

98



1/11 of the signal sent to the NIM-based electronics [69]. Only the VME-based electronics will be

described in this section.

Figure A.1: Overview of the LM readout system [69].

There are two types of electronic boards in the VME-based readout system: the LM Timing

(TDC) board and the LM Vertex (VTX) board. The role of the TDC board is to digitize the analog

PMT signals and calculate several quantities from these signals described in Section A.1.2. The

TDC board accepts signals from 8 PMTs and therefore 6 TDC boards are needed to readout the 48

LM counters (24 from the north array and 24 from the south array). The VTX board processes the

outputs from the TDC boards and sends the processed data to the Level 1 Trigger Framework and

the DAQ system. There is one VTX board in the LM readout system. Figure A.2 shows the LM

VME crate and TDC and VTX boards. The VME crate is a 9U 280 mm deep crate [69] and has a

standard DØ muon backplane [70]. The crate includes a PowerPC crate processor, a Single Board

Computer (SBC) connected to the DAQ readout, a Muon Fanout Controller (MFC) that distributes

timing signals and provides readout control, 6 TDC boards and one VTX board.

A.1.2 TDC Board

The TDC boards precisely measure the arrival time when a paricle hits the scintillator of the LM

detector. The arrival time is converted into charge for each channel using a Time-to-Charge con-

version technique. A current source (10 mA) is switched on when the input signal from the PMT

passes through a progammable threshold and it is switched off when the common stop signal from
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Figure A.2: Photograph of the LM VME crate. The PowerPC, SBC, MFC, three LM TDC
boards for the north (−z) detector, LM VTX board, and three LM TDC boards for the
south (+z) LM detector are shown from left to right [69].
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the DØ clock system is detected. The threshold voltage for each channel is determined by an 8-bit

Digital-to-Analog Converter (DAC) that is VME addressable. The threshold is given by

VTh = 0.1− DAC/640 (A.1)

where VTh is the threshhold voltage (V) and DAC denotes the DAC setting with 0 - 0xff range.

The current source is integrated and digitized using CAFÉ daughter cards, which were originally

developed by the CDF collaboration for their calorimeter readout system. Two CAFÉ cards are

allocated for each channel in the TDC board. One CAFÉ card is used to measure the PMT charge by

integrating the current from the PMT. The other is used to measure the arrival time by integrating

the current source between switch-on and switch-off. The former is called, the Charge CAFÉ and

the latter is the Time CAFÉ. The CAFÉ card consists of the following main elements:

• An input buffer with about 50 ohm input impedence,

• A QIE chip to integrate the charge from the current source,

• An ADC to digitize the analog signal of the QIE, and

• A lookup table to produce a calibrated digital output.

The QIE chip, which was developed by Fermilab to provide multi-range pipelined charge inte-

gration, divides the input current into eight ranges: 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 and 1/256,

with the greatest to the lowest sensitivity from left to right. There is a four stage pipeline in the

QIE, requiring four integration capacitors for each range. Table A.1 describes the QIE chip pipeline

stages. As shown in the table, the charge is integrated on one of the four capacitors during the first

Capacitor t = 0 ns t = 132 ns t = 264 ns t = 396 ns t = 528 ns
0 Integration Range Select Output Reset Integration
1 Reset Integration Range Select Output Reset
2 Output Reset Integration Range Select Output
3 Range Select Output Reset Integration Range Select

Table A.1: The operation on four capacitors in each stage.
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stage. The second stage examines the integrated charge for all eight ranges and then selects the

optimal range. The integrated charge is driven onto the analog output during the third stage and

the capacitors are reset during the last stage. The pipeline operates with a 132 ns clock.

The output of the QIE is sent to the Analog-Digital-Converter (ADC). A 10-bit flash ADC

digitizes the integrated charge. The ADC output is used as the address of the lookup table memory.

The lookup table memory is divided into two sections: “pass-through” and “calibrated”. The pass-

through table outputs the input address and is used for calibration of the CAFÉ card. The calibrated

table provides the calibrated output. More details are discussed in Section A.2 on calibration.

The TDC board calculates an 8-bit corrected time signal by summing the measured time from

the Time CAFÉ and a charge slewing correction from the Charge CAFÉ for valid hits. Using the

corrected time values, the TDC calculates several quantities used as inputs by the VTX board,

including the number of PMT hits with a valid time measurement (NHIT), the number of halo hits,

and the sum of the slewing corrected times for valid hits. Seven Xilinx Spartan FPGAs (Xilinx

XCS40PQ240-3) [69] are used to implement the functions of the TDC. Figure A.3 is a photograph

of the TDC board. The 7 FPGAs are located around the edge of the board and the 16 CAFÉ cards

are located in the middle.

A.1.3 VTX Board

The outputs of TDC boards are combined using a daisy chain approach. The three TDC boards

receiving the signals from the north (−z) LM detector and the other three TDC boards receiving

the signals from the south (+z) LM detector are separately chained together. The first TDC board

in the chain is connected to a 40-conductor flat cable and the output is sent to the second TDC.

The second and the third TDC boards receive the signal from the previous board and their outputs

are the combined result. Therefore, the output of the third TDC is the final combined output for

three TDC boards. It is sent to the VTX board as an input.

The purpose of the VTX board is to generate the LM coincidence signals that are used to

calculate the luminosity. The VTX board also generates proton and antiproton halo signals which
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Figure A.3: Photograph of the TDC board [69].
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are based on detecting early hits, and uses timing to estimate the position of the primary interaction

vertex. Figure A.4 is a photograph of the VTX board.

Figure A.4: Photograph of the VTX board [69]. The mounted circuit is the mezzanine card
with the FPGA.

The functions of the VTX board are implemented using a single Xilinx Virtex FPGA, Xilinx

XCV600E [69]. This FPGA implements the major logic functions and it is mounted on a mezzanine

card which was developed by UCLA for the CMS muon trigger. A block diagram of the FPGA

functionality is shown in Figure A.5. As shown in Figure A.5, the FPGA includes seven functional

blocks as follows:
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Figure A.5: High-level block diagram of the VTX board showing the flow of major signals.
Signals are generally labeled near their source. In some cases, only a subset of the bus lines
may be connected to a particular element [71].
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• BUFFER: buffer the input signals from the TDC boards

• DIVISION: calculate the average time of the hits in the north and south LM arrays

• MULTIPLE: determine the multiple interaction (MI) flags which are used to identify whether

there is a single or multiple interactions in a beam crossing

• TRIGFW: generate the signals set to the trigger framework, including the luminosity and halo

scalar signals and the L1 trigger input terms from the LM

• TGRMGR: multiplex 96 bits of data into six 16-bits frame for use by the forward proton

detector trigger system

• HIST: perform histogramming functions used for calibration, monitoring and diagnostics

• VMEBUS: provide the VME and MFC interface [71].

The HIST block is important for the calibration of readout electronics. It is discussed in the next

section in detail.

A.2 Calibration

A.2.1 CAFÉ Card Calibration

The calibration of the LM readout electronics requires calibrating the CAFÉ cards on the TDC

boards. The CAFÉ card has a variable current source for calibration. Using the current source,

a known charge can be injected into the CAFÉ input and compared to the measured value after

processing by the CAFÉ card. The true value of the injected calibration charge can be calculated

using the following equation [72]

Q = (132 ns) ×
(

V CAL

216
× 10 V

)

× (1 mA/V ) = (0.0201 pC) · V CAL (A.2)

where V CAL denotes the value loaded into the 16-bit V CAL DAC on the TDC board. The output

of the V CAL DAC is a voltage ranging between 0 and 10 V. The calibration current source provides
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1 mA/V and is integrated for 132 ns. Therefore, the integrated charge from the calibration current

source is given by the Equation A.2.

On the other hand, the integrated charge is measured using the formula

Q = Q0 + Qslope × ADC (A.3)

where Q0 and Qslope are calibration constants which have to be determined. By comparing this

integrated charge to the true value from Equation A.2, the CAFÉ card can be calibrated. The

CAFÉ card is very close to linear and hence a linear fit is sufficient to calibrate the CAFÉ card. One

CAFÉ card has 8 different ranges, each with 4 pipeline capacitors. Therefore, 32 sets of calibration

constants are required for each CAFÉ card. Figure A.6 shows a plot of ADC vs. VCAL. The eight

ranges are clearly visible, with each range exhibiting good linearity.

Figure A.6: ADC vs. VCAL taken from CAFÉ card for calibration.

The calibration data shown in Figure A.6 are taken using the “pass-through” mode of the lookup

table. Table A.2 shows the format of the lookup table address. If the H/L bit is set to 1 (“pass-

through” mode), the output of the lookup table is identical to the input address and the output (raw

data) can be used for calibration. On the other hand, if the H/L is set to 0 (“calibrated” mode), the

output of the lookup table provides the calibrated measurement. The CapID bits specify which of
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
H/L CapID Range ADC

Table A.2: The lookup table address, 16 bits. 10 bits of 16 bits are
ADC output. Range is the information from the QIE and the CapID is
the capacitor ID of the QIE. H/L decides a mode of “pass-through” or
“calibrated”.

the four pipeline capacitors is used, and the range bits specify which of the eight ranges is selected.

Figure A.7 shows a cartoon for the lookup table, and Figure A.8 shows the result of calibration

(calibrated charge for all ranges in a CAFÉ card).

Figure A.7: Cartoon of the lookup table. Data flows
from left to right. Mode = 1 is “calibrated” and
mode = 0 is “pass-through” [73].

For calibration, the 16-bit output of the lookup table is sent to the histogrammer on the VTX

board via the histogram bus. The histogram memory is 64k×32-bits, allowing the output of the

lookup table to be accumulated. The HIST block of the VTX board FPGA controls to access

this memory. The histogram is accumulated by the following procedure: identifying the bin to be

updated, reading the current value in the bin, adding one, and writing the updated value back into

the histogram memory.
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Figure A.8: A comparsion between the true integrated charge (x-
axis) and the calibrated charge (y-axis) for all of the ranges in a
CAFÉ card. It is observed to be almost linear.

There are a toal of 48 channels for the LM detector and each channel has 2 CAFÉ cards. Each

CAFÉ card contains four pipeline capacitors, and 63 VCAL DAC values are measured in a typical

calibration to cover the eight ranges. Around 18k entries per pipeline capacitor are accumulated for

each VCAL DAC setting. Therefore, total number of charge measurements is 18k×63×4×2×48 =

435.5M. This huge number of entries can be taken during only one hour due to the histogramming

feature in the VTX board.

The author was responsible for the CAFÉ calibration procedure. To perform the calibration,

it is necessary to first set up the TDC and VTX boards to acquire data for a specific CAFÉ

card and VCAL setting. To control and acquire calibration data efficiently, the author developed a

Graphic User Interface (GUI) based histogramming controller, using python programming language.

Figure A.9 shows a screen shot of the histogramming controller.

The biggest panel in the middle is the main controller and the others are pop-up panels from

the main controller to set options such as the TDC board, channel, CAFÉ card (Time or Charge),

and so on. The user can take calibration data channel by channel, and also can take data from all

channels automatically by the click of one button. This GUI based controller communicates with
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Figure A.9: The GUI based histogramming controller.

the VxWorks OS in the crate processor using EPICS control system.

Finally, the calibration constants are determined by linear fits of the calibration data and are

stored with the format shown in Table A.3.

TDC Module ID (1-6)
Channel number for the TDC (0-7)

QFlag (0 = Time, 1 = Charge)
Range (0-7)

Capacitor ID (0-3)
Q0 (pC)

Qslope (pC/ADC count)
RMS of Fit Residuals (pC)

Table A.3: The data format used to store the CAFÉ card calibra-
tion results [72].

A.2.2 Global Time Calibration

There is another important step for the LM readout system calibration, called “Global Time Cal-

ibration”. This calibration provides the time-of-flight calibration for each channel using collider
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data.

To measure the precise arrival time of particles in the LM detector, the slewing correction is

applied for the measured arrival time, and the corrected time is given by:

T = T0 + Tslope × QT − K√
QP

(A.4)

where QT is the integrated charge measured by Time CAFÉ, QP is the integrated charge measured

by Charge CAFÉ, and T0, Tslope, K are calibration constants determined by global fitting. The

calibration constants for each channel can be calculated by minimizing the following χ2

χ2 =
∑

Events

(

〈

T N
〉

−
〈

T S
〉

− 2zv

c

)2

+
λ

NHits

∑

Events

∑

Counters

T (T0, Tslope, K) (A.5)

where
〈

T N
〉

and
〈

T S
〉

are the average arrival time for the north and south LM counters in the event

respectively, zv is the z coordinate of the primary interaction vertex, and λ is a Lagrange multiplier

that is used to impose the constraint < T >= 0 and remove the ambiguity in the definition of T = 0.

Equation A.5 is minimized for all 48 channels simultaneously by solving a system of 3× 48+1 =

145 linear equations with 145 unknowns (1 is for λ). The results are stored for each channel with

the format shown in Table A.4.

TDC Module ID (1-6)
Channel number for the TDC (0-7)

T0 (ns)
Tslope (ns/pC)

K (ns pC1/2)
Q0 (pC)

RMS of Fit Residuals (pC)

Table A.4: The data format used to store the global time calibra-
tion results [72].

The calibrated outputs of the CAFÉ cards incorporate the results of the CAFÉ and global
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calibrations. For the Time CAFÉ, the measured time is given by:

T ime = Toff − NINT

(

T0 + Tslope · QT

Tlsb

)

(A.6)

where Toff is the time lookup table offset, Tlsb is the time binning, and NINT is the nearest integer

function. The calibrated time is loaded into the lookup table with the format shown in Table A.5.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 VT Time

Table A.5: Format of the Time CAFÉ lookup table output.

For the Charge CAFÉ, the charge slewing correction is given by:

Slew = Soff − NINT

(

K√
QP · Tlsb

)

(A.7)

where Soff is the charge lookup table offset. It is loaded into the lookup table with the format

shown in Table A.6 [72]:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Q Range Q Data Slewing Correction

Table A.6: Format of the Charge CAFÉ lookup table output.
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Appendix B

Soft Lepton Tagger with Neural

Network Method (SLTNN tagger)

A new b-tagging algorithm, the “SLTNN” tagger is described in this appendix.

B.1 Introduction

The SLTNN tagger is a combination of the SLT tagger and a neural network (NN) method that

includes both muon and lifetime variables. Around 20% of b-jets decay semi-leptonically with a

muon in the final state (b → µX is 10.95% and b → c → µX is 9.58% [3]). On the other hand, only

a very small fraction of light-quark or gluon jets decay semi-leptonically, and therefore a jet can be

identified as a b-jets if a muon is found inside the jet. This is called the Soft Lepton Tagging (SLT).

The SLT tagger is a very powerful b-identification algorithm with a fake rate below 1%.

The basic idea for the SLTNN tagger is to reduce the fake rate without significant b-tagging

efficiency loss. The NN method is applied to do this. Using the NN method, the fake rate of this

new tagger is decreased by about factor of 10 compared to the SLT tagger.
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B.1.1 Samples

The data samples shown in Table B.1 are used in this analysis.

Name Skim Criteria Number of Events
MUinclusive One loose µ pT > 4 GeV inside a 0.7 cone jet 262M
QCD Jet Triggers 72M

Table B.1: The data samples used in this analysis.

A summary of the MC samples used in this analysis is shown in Table B.2. The table includes

the number of taggable jets in each MC sample, where the taggable jet is a calorimeter jet matched

to a track jet within ∆R < 0.5 [74].

Name NEvents NJets NTaggable Jets

tt̄ 571,750 4,236,391 3,162,736
Z → bb̄ 105,250 187,034 136,183

Z → bb̄ with µ 105,750 210,418 135,445
Z → cc̄ 107,250 197,207 134,290

Z → cc̄ with µ 107,750 226,060 150,693
Z → qq̄ 103,750 192,170 138,843

Z → qq̄ with µ 107,000 279,548 175,247
direct bb̄ pT = 20 ∼ 40, 40 ∼ 80, 80 ∼ 160, 160 ∼ 320, 320 ∼ 980 265,000 617,923 462,746
direct cc̄ pT = 20 ∼ 40, 40 ∼ 80, 80 ∼ 160, 160 ∼ 320, 320 ∼ 980 239,287 561,735 413,329
QCD qq̄ pT = 20 ∼ 40, 40 ∼ 80, 80 ∼ 160, 160 ∼ 320, 320 ∼ 980 2,067,711 8,910,178 7,176,256
γ+jets pT = 20 ∼ 980, 40 ∼ 980, 80 ∼ 980, 160 ∼ 980, 320 ∼ 980 2,800,000 4,022,662 2,737,789

Table B.2: MC samples which are used in this study

B.1.2 Object Selection

In order to ensure high quality of the reconstructed vertex, while keeping the efficiency high, the

following PV selections are required:

• |zPV | ≤ 60 cm (PV within the SMT fiducial region)

• At least three tracks fitted to the PV.

For jets, the following requirements are applied:

• taggable jet
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• Jet pT > 15 GeV

• Jet |η| < 2.5

• JESMU correction

• Muon smearing for MC sample.

Four different muon definitions are used in this analysis (see Table B.3) and they are studied in

parellel. Their kinematic requirements are as follows:

• Muon pT > 4 GeV

• Muon |η| < 2.0

• ∆R between jet and muon < 0.5.

Definition Muon Quality Muon Type Central Track Matching
loose loose nseg > 0

χ2 < 100
medium medium nseg > 0
medium3 medium nseg = 3

tight tight nseg = 3

Table B.3: Muon definitions used in this analysis

B.1.3 Method Description

The SLTNN tagger is the combination of the SLT tagger and the NN method. First, the SLT tagger

(muon-tagging) is applied. Then, the NN method is applied to the muon-tagged jets. An outline of

this study is as follows:

• Muon-tagging

• NN method: find operating points for each muon definition using the NN output

• Tagging Efficiency: measure the scale factor and tagging efficiency for the data sample using

the system8 method
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• Fake Rate: measure the fake rate using the negative tag rate (NTR) method

• Estimation of systematic uncertainties.

B.2 Neural Network Method

Starting with the muon-tagged jets, the NN method is then applied. There are 11 input variables

for the NN training. Table B.4 shows the variables and their descriptions. In the table, SV T mutrk

means the only secondary vertex (SV) that is reconstructed using the tracks which the muon track

is included in. The reason why this restriction is applied is to minimize the correlation between the

SLTNN tagger and the lifetime tagger. The absence of correlation between them is very important

for the system8 method [37]. The system8 method is needed to measure the b-tagging efficiency in

the data sample, and it will be discussed in the next section.

Input Variable Description
Muon pT Muon pT in a jet

Muon pT
rel Muon pT measured relative to the jet axis

Muon ∆R ∆R between the muon and the nearest jet
Muon χ2 Muon central matching χ2

Muon IP sig Impact parameter (IP) significance of the muon
SV T mutrk

SL DLS Decay length significance of the SV
SV T mutrk

SL Mass Mass of the SV
SV T mutrk

SL χ2
ndof χ2 per degree of freedom of the SV

SV T mutrk
SL Ntracks Number of tracks used to reconstruct the SV

SV T mutrk
SL Nvertices Number of SV found in the jet

CSIPcomb Weighted combination of the tracks’ IP significances

Table B.4: NN input variables and descriptions. The SL denotes the Super-
Loose operating point for the SVT tagger.

The distributions for the NN input variables for signal (direct bb) and background (QCD and

γ+jets combined) in MC samples are shown in Figures B.1 and B.2. The figures are for the medium

muon definition. A comparison of variables between the direct bb MC sample and the MUinclusive

data sample of b-jets is shown in Figures B.3 and B.4. The following selections are applied to the

MUinclusive sample in order to make an enriched bb̄ sample in the figures:
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• away tagging with JLIPprob < 0.01 (b-enriched sample)

• JLIPprob < 0.01 on a taggable jet

where it is called as an away tag if a jet is taggable and it has only one other back-to-back taggable

jet which passes some tagging criteria (JLIPprob < 0.01 in this analysis) in the same event.
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Figure B.1: The distribution of NN input variables for the Medium muon definition. Muon vari-
ables. From left to right, muon pT, prel

t , ∆R(muon, jet), χ2 and IP significance. The red histogram
is for b-jets and the blue histogram is for uds-jets.

Using the NN input variables, the NN training is performed with 500 epochs for each muon

definition. The hidden nodes for the training is set to 24:1. The outputs for the NN training are

shown in Figure B.5.
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The final b-tagging efficiency for the SLTNN tagger is

εSLTNN = εmuon−tagging × εNN (B.1)

namely, the combination of both muon-tagging efficiency and pure NN tagging efficiency. Figure B.6

shows the final tagging efficiency of the SLTNN tagger (εSLTNN ) for b-jets. Figure B.7 shows the

plot for the c-tagging efficiency. To measure the tagging efficiency and fake rate, the direct bb MC

sample is used as signal and the QCD and γ+jets combined MC sample is used as background. Three

NN operating points (Loose, Medium, Tight) for each muon definition are selected by considering

the fake rate, 0.15% for Loose, 0.10% for Medium and 0.04% for Tight. The NN cuts of the operating

points are shown in Table B.5.
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Figure B.6: 2D plot for Efficiency vs. Fake Rate measured in MC samples.
The y-axis is the b-tagging efficiency (the SLTNN tagging efficiency) measured
in the direct bb MC sample and the x-axis is the fake rate determined in
the QCD + γ+jets combined MC sample. The large points indicate the 3
operating points (Tight, Medium, and Loose from left to right) in this study
for each muon definition.
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Figure B.7: 2D plot for Efficiency vs. Fake Rate measured in MC samples. The
y-axis is the c-tagging efficiency (the SLTNN tagging efficiency) measured in
the direct cc MC sample and the x-axis is the fake rate determined in the QCD
+ γ+jets combined MC sample. The large points indicate the 3 operating
points (Tight, Medium, and Loose from left to right) in this study for each
muon definition.

operating points Loose Medium Medium3 Tight
Loose 0.172 0.089 0.067 0.045

Medium 0.258 0.160 0.134 0.114
Tight 0.505 0.429 0.394 0.375

Table B.5: The NN cuts for the operating points for each muon definition.

B.3 Tagging Efficiency

B.3.1 Muon Tagging Efficiency in the MC Samples

The muon-tagging efficiency in the MC samples can be simply estimated by dividing the number of

b-jets (c-jets) passing the muon selection by the total number of b-jets (c-jets) in MC sample,

εbjets
muon−tagging =

N bjets
passed muon selection

N bjets
total

εcjets
muon−tagging =

N cjets
passed muon selection

N cjets
total

. (B.2)
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The muon-tagging efficiency has a different dependance on jet pT for each η region (CC, ICR,

EC). Therefore, the jet pT dependent muon-tagging efficiency is measured separately for each η

region. Figure B.8 shows the muon-tagging efficiency vs jet pT for each MC sample (tt̄ , Z → bb(cc),

direct bb(cc)). There are discrepancies between the MC samples with respect to the muon-tagging

efficiency. This MC sample dependence is added as a systematic uncertainty.

To measure the muon-tagging efficiency, the muon correction factors, muon reconstruction and

muon track-matching described in Section 3.1, are applied. The certified correction factors provided

by the muon ID group are used in this analysis [24].

The systematic uncertainties in the muon-tagging efficiency originate from two sources: MC

sample dependence and muon correction factors. The former is estimated by a closure test to

compare the difference between direct tagging and applying TRFmuon−tagging shown in Figure B.8.

The latter is determined by varying the muon correction factors (muon id reconstruction and muon

track matching) by ±1σ errors. Systematic uncertainties are individually measured for several jet

pT bins. Figure B.9 shows the systematic uncertainties for each η region and pT bins.

B.3.2 System8 Method

To measure the tagging efficiency in the data sample, the so-called “system8” method is used in

this analysis [37]. The system8 method consists of 8 equations with 8 unknowns, and the tagging

efficiency of the SLTNN tagger in the data sample is one of the 8 unknowns. The data tagging

efficiency can be measured with almost no input from MC simulations by using the system8 method.

The system8 method needs two independent taggers and two different data samples. In this study,

the SLTNN tagger and JLIP (Jet Lifetime Probability) tagger are used. JLIP is the probability that

the jet orignates from the PV. The SLTNN tagger uses the some of variables for the secondary

vertex (lifetime information), therefore the SLTNN tagger is correlated with the JLIP. To reduce

the correleation (it it assumed that two taggers are totally uncorrelated in the system8 method),

only SV information not involving the muon track (SV T mutrk) are used in the SLTNN tagger.

The JLIP tagger is also modified by removing the muon track in the JLIP probability, and is called
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Figure B.9: Measured systematic uncertainties for each η region. From left to right, the plots show
the results for Loose muon, Medium muon, Medium3 muon and Tight muon, respectively.
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“modified JLIP (modJLIP)” in this analysis. These two requirements reduce the correlation between

the SLTNN tagger and the lifetime tagger, allowing the system8 method to be used to estimate the

data tagging efficiency. Figure B.10 shows the distribution of the modJLIP for each muon definition.

A modJLIP < 0.1 cut is required in the system8 method.

mod JLIP prob
0 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-210

-110

b-jets

uds-jets
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b-jets
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Figure B.10: modJLIP distribution for each muon definition. Loose (top left), Medium (top right),
Medium3 (bottom left), and Tight (bottom right). A modJLIP < 0.1 cut is required in this study.

The muonic and b-enriched samples are used as two different samples in the system8 method.

The muonic sample contains events having a jet associated with a muon (Loose, Medium, Medium3,

and Tight). The b-enriched sample is a subsample of the muonic sample. An away tag (JLIP < 0.01)

is applied to the muonic sample to make the b-enriched sample. An away tag is defined as an event

having a back-to-back jet which passes b-tagging criteria (JLIP < 0.01 in this analysis).
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The system8 equations are defined as follows

n = nb + ncl (B.3)

p = pb + pcl

nmodJLIP = εmodJLIP
b · nb + εmodJLIP

cl · ncl

pmodJLIP = δ · εmodJLIP
b · pb + γ · εmodJLIP

cl · pcl

nSLTNN = εSLTNN
b · nb + εSLTNN

cl · ncl

pSLTNN = β · εSLTNN
b · pb + α · εSLTNN

cl · pcl

nmodJLIP,SLTNN = κb · εmodJLIP
b · εSLTNN

b · nb + κcl · εmodJLIP
cl · εSLTNN

cl · ncl

pmodJLIP,SLTNN = κb · δ · β · εmodJLIP
b · εSLTNN

b · pb + κcl · γ · α · εmodJLIP
cl · εSLTNN

cl · pcl

where n (p) denotes the number of jets measured in the muonic sample (b-enriched sample). The

subscripts b (cl) of n and p indicate the flavor content of the jet is b (udcs). The superscripts indicate

the applied tagger. For example, nSLTNN means the number of jets passed by the SLTNN tagger

in the muonic sample. εb (εcl) denotes the data tagging efficiency estimated for a data sample of

b-jets (udcs-jets). In system8, the eight n and p terms with superscripts on the left side are input

numbers from the data sample, and nb, ncl, pb, pcl, εmodJLIP
b , εmodJLIP

cl , εSLTNN
b and εSLTNN

cl

on the right side are the 8 unknowns which will be determined by the system8 calculation. εSLTNN
b

is the data tagging efficiency for the SLTNN tagger determined by the system8 method.

The 6 Greek symbols, κb, κcl, β, α, δ, and γ are correlation coefficients measured in MC samples.

The correlation coefficients would ideally be 1.0, but they are not 1.0 because the samples are not

totally uncorrelated. Hence the correlation coefficients are determined in MC samples to account

for the correlations. The definitions of the correlation coefficients are as follows:

1. κb: Correlation between the SLTNN tagger and the modJLIP tagger on b-jets

κb =
εmodJLIP,SLTNN

b

εmodJLIP
b · εSLTNN

b

(B.4)
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2. κcl: Correlation between the SLTNN tagger and the modJLIP tagger on cl-jets.

κcl =
εmodJLIP,SLTNN

cl

εmodJLIP
cl · εSLTNN

cl

(B.5)

3. β: Ratio of the b-tagging efficiencies of the SLTNN in the two samples

β =
εSLTNN

b in b − enriched sample

εSLTNN
b in muonic sample

(B.6)

4. α: Ratio of the cl-tagging efficiencies of the SLTNN in the two samples

α =
εSLTNN

cl in b − enriched sample

εSLTNN
cl in muonic sample

(B.7)

5. δ: Ratio of the b-tagging efficiencies of modJLIP in the two samples

δ =
εmodJLIP

b in b − enriched sample

εmodJLIP
b in muonic sample

(B.8)

6. γ: Ratio of the cl-tagging efficiencies of modJLIP in the two samples

γ =
εmodJLIP

cl in b − enriched sample

εmodJLIP
cl in muonic sample

. (B.9)

Each correlation coefficient for b-jets is measured using the tt̄ and Z → bb → µ combined MC sample

for jet pT and η dependences, respectively. For udcs-jets, it is assumed that c-jets and other light-

quark jets have similar correlation coefficients, hence the correlation coefficients are measured in the

direct cc and Z → cc → µ combined MC sample. The Figures from B.11 ∼ B.14 show the results of

the correlation coefficient measurement. Table B.6 shows the measured correlation coefficients for

the overall sample (without any jet dependence).
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Figure B.11: κb for the Loose Muon and its Tight NN operating point. Top left (right) plot
is the coefficient measured in jet pT (η) bins. Bottom left (right) plot is the comparison
between coefficients measured in Z → bb → µ and tt̄ MC samples, respectively. The red line
indicates εSLTNN

b , the pink line indicates εmodJLIP
b , the blue line indicates εSLTNN,modJLIP

b .
The black line indicates the coefficient estimated by fitting with a zeroth order polynomial
function.
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Figure B.12: κcl for the Medium Muon and its Medium NN operating point. Top left (right)
plot is the coefficient measured in jet pT (η). Bottom left (right) plot is the comparison
between coefficients measured in Z → cc → µ and directcc MC samples, respectively.
The red line indicates εSLTNN

cl , the pink line indicates εmodJLIP
cl , the blue line indicates

εSLTNN,modJLIP
cl . The black line indicates the coefficient estimated by fitting with a zeroth

order polynomial function.
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Figure B.13: β for the Medium3 Muon and its Loose NN operating point. Top left (right)
plot is the coefficient measured in jet pT (η). Bottom left (right) plot is the comparison be-
tween coefficients measured in Z → bb → µ and tt̄ MC samples, respectively. The red (blue)
line indicates εSLTNN meaured in muonic (b-enriched) sample. The black line indicates the
coefficient estimated by fitting with a zeroth order polynomial function.
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Figure B.14: α for the Tight Muon and its Tight NN operating point. Top left (right) plot
is the coefficient measured in jet pT (η). Bottom left (right) plot is the comparison between
coefficients measured in Z → cc → µ and directcc MC samples, respectively. The red (blue)
line indicates εSLTNN meaured in muonic (b-enriched) sample. The black line indicates the
coefficient estimated by fitting with a zeroth order polynomial function.
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Muon selection Operating point κb κcl β

Loose
Loose 1.090±0.003 1.469±0.027 1.001±0.002

Medium 1.110±0.003 1.579±0.030 0.999±0.002
Tight 1.162±0.003 1.789±0.038 0.998±0.003

Medium
Loose 1.038±0.003 1.185±0.019 1.000±0.001

Medium 1.055±0.003 1.310±0.023 0.999±0.002
Tight 1.105±0.003 1.600±0.032 1.000±0.002

Medium3
Loose 1.022±0.003 1.081±0.016 0.999±0.001

Medium 1.038±0.003 1.206±0.021 0.998±0.001
Tight 1.087±0.003 1.512±0.030 0.998±0.002

Tight
Loose 1.011±0.003 1.044±0.014 0.999±0.001

Medium 1.026±0.003 1.152±0.019 1.000±0.001
Tight 1.070±0.003 1.440±0.029 0.998±0.002

Muon selection Operating point α δ γ

Loose
Loose 1.004±0.014 0.998±0.005 0.993±0.041

Medium 0.992±0.017 0.997±0.006 0.985±0.044
Tight 1.018±0.022 0.995±0.006 1.023±0.047

Medium
Loose 0.993±0.009 0.998±0.006 1.011±0.040

Medium 1.014±0.011 0.999±0.006 1.011±0.041
Tight 1.010±0.018 0.999±0.006 1.022±0.044

Medium3
Loose 0.998±0.006 0.998±0.006 1.015±0.040

Medium 1.004±0.009 0.997±0.006 1.007±0.041
Tight 1.001±0.017 0.999±0.006 1.012±0.044

Tight
Loose 1.004±0.004 1.000±0.006 1.008±0.041

Medium 0.999±0.008 1.000±0.006 1.009±0.042
Tight 1.008±0.015 1.000±0.007 1.019±0.044

Table B.6: Summary of correlation coefficients with statistical uncertainties.

B.3.3 The Results for Tagging Efficiencies

The b-tagging efficiency is measured in the overall MUinclusive sample and the TMinuit fitting

program [75] is used to solve the system8 equations. The fit is carried out on the entire sample and

in jet pT and η bins to create a profile over the jet pT and η phase space variables. Table B.7 shows

the results for b-tagging efficiencies measured for the data sample.

There are discrepancies in the measured tagging efficiencies between the MC and data samples.

Therefore, a scale factor is calculated from the ratio of tagging efficiencies, parameterized by jet

pT and η. To create the 2D parameterization, it is assumed that the efficiency can be factorized

into pT and η components. The 2D parameterization is given by the product of the two projections
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Muon selection Operating point b-tagging efficiency

Loose
Loose 0.876 ± 0.001

Medium 0.848 ± 0.001
Tight 0.773 ± 0.001

Medium
Loose 0.950 ± 0.000

Medium 0.926 ± 0.001
Tight 0.857 ± 0.001

Medium3
Loose 0.973 ± 0.000

Medium 0.951 ± 0.000
Tight 0.886 ± 0.001

Tight
Loose 0.987 ± 0.000

Medium 0.965 ± 0.000
Tight 0.905 ± 0.001

Table B.7: b-tagging efficiency measured by the system8 method
for the MUinclusive sample for each muon definition and its NN
operating points.

scaled by the total efficiency of the sample:

ε(pT, η) =
1

εAll
· ε(pT) · ε(η)

=
1

εAll
· (a + b · pT + c · pT

2 + d · pT
3) · (e + f · η + g · η2 + h · η3) (B.10)

where a ∼ h are constants to be determined by fitting and the fitting funtion is a third order

polynomial. The scale factor is calculated by dividing the data tagging efficiency by the MC tagging

efficiency. Figure B.15 shows the tagging efficiencies in both MC and data samples as a function of

jet pT and η and the scale factor between them.

The inclusive b-tagging efficiency in the data sample can be computed by taking the product

of the inclusive b-tagging efficiency in MC sample and the scale factor. It is called the “Tag Rate

Function” (TRFb) for b-jets, and the same procedure is applied to c-jets to create TRFc. Figure B.16

shows TRFb and TRFc for the medium3 muon, Medium operating point.

B.3.4 Systematic Uncertainties

There are two sources of systematic unceratinties for the scale factor and TRF . The systematic

unceratinty caused by the system8 method can be determined by varying by ±1σ the statistical
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Figure B.15: b-tagging efficiency and scale factor for the Tight muon, Tight NN operating point.
Left plots are the b-tagging efficiency of data (red) and MC sample (blue). Right plots are the scale
factors for jet pT (top) and η (bottom). The dashed lines denote estimated statistical uncertainties.
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Figure B.16: TRFb (top) and TRFc (bottom) measured in the medium3 muon, medium NN oper-
ating point. Left plots are for the jet pT distribution and right plots are for the jet η distribution.
The blue line is the MC b-tagging efficiency and the black line is the TRF . The dashed lines
denotes estimated statistical uncertainties.
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error of individual correlation coefficients. The systematic uncertainty caused by the MC sample

dependence in the system8 method can be estimated by a closure test, which is the difference between

direct tagging and multiplying the untagged sample by the TRF . The closure test is performed as

a function of jet pT in 3 jet η regions (CC, ICR and EC) individually, where CC region covers

0 < |η| < 1.2, ICR covers 1.2 < |η| < 1.8 and EC covers 1.8 < |η| < 2.5. The closure test is

performed for all of the MC samples and the combined sample which are used in system8 method.

Then, the largest uncertainty among them is chosen as the uncertainty of the closure test. Using

the estimated systematic uncertainties from the two sources, the total systematic uncertainties for

the scale factor and TRF are calculated by the following formula:

δSF =
√

(δsys8)2 + (δclosure
selected)2

δTRFb
=

√

(δSF )2 + (δclosure
b combined)

2

δTRFc
=

√

(δSF )2 + (δclosure
c combined)

2. (B.11)

Table B.8 shows the estimated systematic uncertainties.

Muon Def. NN Operating Point
Systematic Uncertainty

System8 Closure (b) Closure (c) SF TRFb TRFc

Loose
Loose 0.49% 2.87% 6.12% 2.91% 2.97% 6.77%

Medium 0.59% 3.22% 6.52% 3.28% 3.35% 7.30%
Tight 0.89% 3.86% 8.05% 3.96% 4.03% 8.97%

Medium
Loose 0.37% 1.37% 1.93% 1.41% 1.55% 2.39%

Medium 0.42% 1.67% 2.09% 1.72% 1.85% 2.71%
Tight 0.48% 2.45% 2.79% 2.52% 2.67% 3.76%

Medium3
Loose 0.33% 0.68% 0.93% 0.76% 0.80% 1.20%

Medium 0.37% 1.06% 1.08% 1.12% 1.18% 1.56%
Tight 0.53% 1.40% 1.36% 1.50% 1.57% 2.03%

Tight
Loose 0.32% 0.27% 0.38% 0.41% 0.45% 0.56%

Medium 0.35% 0.57% 0.64% 0.67% 0.69% 0.93%
Tight 0.50% 1.20% 0.17% 1.30% 1.36% 1.31%

Table B.8: Estimated systematic uncertainties for SF , TRFb, and TRFc. The systematic uncer-
tainties estimated by the system8 method and closure tests are also shown in this table.
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B.4 Fake Rate

The negative tag rate (NTR) method is used to measure the fake rate for light-quark jets. The

formula for the NTR is as follows:

εlight = ε−data · Fhf · Fll (B.12)

where

ε−data is the negative tag rate measured in QCD data

Fhf =
ε−

QCDlight

ε−

QCDall

is the fraction of light-quark jets among all negative tagged jets in the

MC

Fll =
ε+

QCDlight

ε−

QCDlight

is the ratio of positive tagged jets to negative tagged jets from light

quarks in the MC. It is sensitive to long lived hadron decays in light quark jets.

The two scale factor, Fhf and Fll are measured in the QCD and γ+jets combined MC sample and

ε−data is measured in the QCD data sample.

To evaluate the NTR, muon IP significance is used. The muon IP significance is described in

Table B.4 and shown in Figure B.1. There are more jets with positive muon IP significance than

with negative significance. The NTR is evaluated by using this difference. Each jet η region has a

different distribution for the NTR, therefore the NTR is measured for CC, ICR and EC individually

with a jet pT dependence.

The fake rate estimated in the overall QCD data sample is shown in Table B.9. Figure B.17

shows the results for Fhf (top left), Fll (top right), ε−data (bottom left), and εlight (bottom right) in

the CC region for the loose muon, tight NN operating point as a function of jet pT.

Systematic uncertainties in the fake rate are measured by the closure test used for the systematic

uncertainty estimation of the TRF . A second source of systematic uncertainty is estimated by

varying the b-fraction and c-fraction by ±20% in the QCD and γ+jets combined MC sample. Using

the remeasured scale factor Fhf and Fll, the fake rates are recalculated, and the differences are taken

as the systematic uncertainties. The total systematic uncertainty is calculated by the quadrature
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Muon selection Operating point
Fake Rate (%)

CC ICR EC

Loose

Nocut 0.914 ± 0.005 0.488 ± 0.003 0.200 ± 0.002
Loose 0.090 ± 0.003 0.046 ± 0.002 0.013 ± 0.001

Medium 0.051 ± 0.003 0.027 ± 0.001 0.007 ± 0.000
Tight 0.011 ± 0.001 0.006 ± 0.001 0.001 ± 0.000

Medium

Nocut 0.225 ± 0.003 0.190 ± 0.003 0.039 ± 0.001
Loose 0.080 ± 0.002 0.068 ± 0.002 0.014 ± 0.000

Medium 0.056 ± 0.002 0.047 ± 0.002 0.009 ± 0.000
Tight 0.017 ± 0.001 0.014 ± 0.001 0.003 ± 0.000

Medium3

Nocut 0.130 ± 0.003 0.132 ± 0.003 0.034 ± 0.001
Loose 0.080 ± 0.002 0.082 ± 0.002 0.020 ± 0.001

Medium 0.054 ± 0.002 0.054 ± 0.002 0.013 ± 0.000
Tight 0.015 ± 0.001 0.014 ± 0.001 0.003 ± 0.000

Tight

Nocut 0.099 ± 0.002 0.124 ± 0.003 0.032 ± 0.001
Loose 0.073 ± 0.002 0.091 ± 0.003 0.023 ± 0.001

Medium 0.047 ± 0.002 0.056 ± 0.002 0.014 ± 0.001
Tight 0.017 ± 0.001 0.019 ± 0.001 0.004 ± 0.000

Table B.9: Fake rate measured in the overall QCD data sample (without any jet dependence).
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Figure B.17: The fake rate as fuction of jet pT measured in the loose muon, tight NN operating
point, CC region. Fhf (top left), Fll (top right), ε−data (bottom left), and εlight (bottom right).
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Muon selection Operating point
Systematic Uncertainty
CC ICR EC

Loose

NoCut 2.20% 2.33% 2.33%
Loose 6.72% 6.79% 6.79%

Medium 7.77% 7.80% 7.93%
Tight 10.12% 10.16% 10.22%

Medium

NoCut 3.99% 4.04% 4.07%
Loose 6.52% 6.54% 6.55%

Medium 7.39% 7.42% 7.43%
Tight 9.72% 9.75% 9.80%

Medium3

NoCut 5.24% 5.29% 5.28%
Loose 6.50% 6.56% 6.56%

Medium 7.37% 7.42% 7.42%
Tight 9.69% 9.70% 9.75%

Tight

NoCut 5.71% 5.77% 5.77%
Loose 6.41% 6.48% 6.51%

Medium 7.31% 7.38% 7.38%
Tight 9.54% 9.53% 9.53%

Table B.10: Systematic uncertainty in the fake rate for CC, ICR and EC
regions.

sum of all systematic uncertainties. Table B.10 shows the estimated systematic uncertainties for the

fake rate.

B.5 tt̄ Cross Section Measurement Using the SLTNN Tag-

ging

The newly developed b-tagging algorithm, the SLTNN tagger, is applied to the tt̄ pair production

cross section measurement. The procedure for the tt̄ cross section measurement (discussed in Chap-

ters 4 ∼ 6) is applied to this analysis with the SLTNN tagger. In this section, the results of the

analysis using the SLTNN tagger are described.

B.5.1 b-tagging Optimization

There are 16 operating points for the SLTNN tagger including the pure SLT tagger (called “NoCut”).

To decide on one of the 16 operating points, the same procedure of b-tagging optimization described

in Section 4.4 is applied. Namely, the signal and background ratio, S/
√

S + B is calculated for
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each operating point and the operating point having largest ratio is selected. Table B.11 shows the

results of S/
√

S + B ratio for each operating point. This optimization is performed for the combined

e+ ≥ 3 jets and µ+ ≥ 3 jets channels. The best operating point is the loose NN operating point for

the loose muon definition.

Muon selection Operating point S B S/
√

S + B

Loose

NoCut 106.68 113.78 7.18
Loose 97.20 51.69 7.97

Medium 81.11 40.49 7.36
Tight 86.79 36.52 7.82

Medium

NoCut 80.34 61.19 6.75
Loose 70.50 39.36 6.73

Medium 58.48 31.62 6.16
Tight 63.06 27.59 6.62

Medium3

NoCut 74.06 49.47 6.66
Loose 66.80 39.02 6.49

Medium 64.84 34.81 6.50
Tight 56.09 25.01 6.23

Tight

NoCut 67.63 43.44 6.42
Loose 67.25 40.12 6.49

Medium 67.00 36.26 6.59
Tight 55.36 24.93 6.18

Table B.11: The results of S/
√

S + B ratio for each operating
point. The best operating point is the Loose NN operating point
with the loose muon definition.

B.5.2 Control Plots

In this section, the control plots for the main kinematic distributions (lepton pT, 6ET , leading jet pT,

and W transverse momentum) are shown in Figures B.18 ∼ B.25. The number of events for two or

more btags are very small because the efficiency of the SLTNN tagger is low (∼ 6%). Therefore the

exactly one tagged sample and the two or more tagged sample are combined in this analysis (called

the single tagged sample). The control plots are shown only for the single tagged sample in this

section because the control plots for before tagging are the same as the figures in Chapter 5 and

Appendix C. Table B.12 and B.13 show the summaries of event yields after SLTNN tagging.
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Figure B.18: Electron pT distributions for single tagged sample in the e+jets
channel. The plots show the data for different jet multiplicities: =1 jet (top
left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure B.19: 6ET distributions for single tagged sample in the e+jets channel.
The plots show the data for different jet multiplicities: =1 jet (top left), =2
jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure B.20: Leading jet pT distributions for single tagged sample in the e+jets
channel. The plots show the data for different jet multiplicities: =1 jet (top
left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure B.21: The eν transverse mass distributions for single tagged sample in
the e+jets channel. The plots show the data for different jet multiplicities: =1
jet (top left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom
right).
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Figure B.22: Muon pT distributions for single tagged sample in the µ+jets
channel. The plots show the data for different jet multiplicities: =1 jet (top
left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure B.23: 6ET distributions for single tagged sample in the µ+jets channel.
The plots show the data for different jet multiplicities: =1 jet (top left), =2
jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).

145



 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

20

22

KS = 0.220DØ RunII 871 pb-1

DATA 94
ttljets 0
ttdilepton 1
Single Top 1
Wjj 35
Wbb 21
Wcc 16
Zjets 3
Diboson 1
Multijet -1

0 50 100 150 200 250 3000

2

4

6

8

10

12

14

16

18

20

22

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

20

22

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

KS = 0.427DØ RunII 871 pb-1

DATA 89
ttljets 4
ttdilepton 7
Single Top 4
Wjj 16
Wbb 21
Wcc 16
Zjets 3
Diboson 3
Multijet 5

0 50 100 150 200 250 3000

2

4

6

8

10

12

14

16

18

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

KS = 0.946DØ RunII 871 pb-1

DATA 47
ttljets 18
ttdilepton 4
Single Top 2
Wjj 3
Wbb 6
Wcc 5
Zjets 1
Diboson 1
Multijet 0

0 50 100 150 200 250 3000

2

4

6

8

10

12

14

16

18

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

2

4

6

8

10

12

KS = 0.689DØ RunII 871 pb-1

DATA 33
ttljets 21
ttdilepton 1
Single Top 0
Wjj 1
Wbb 1
Wcc 1
Zjets 0
Diboson 0
Multijet -1

0 50 100 150 200 250 3000

2

4

6

8

10

12

 [GeV]
T

Leading Jet p
0 50 100 150 200 250 300

E
ve

nt
s

0

2

4

6

8

10

12

Figure B.24: Leading jet pT distributions for single tagged sample in the µ+jets
channel. The plots show the data for different jet multiplicities: =1 jet (top
left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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Figure B.25: The µν transverse mass distributions for single tagged sample in
the µ+jets channel. The plots show the data for different jet multiplicities: =1
jet (top left), =2 jets (top right), =3 jets (bottom left), and ≥ 4 jets (bottom
right).
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e+jets
1jet 2jets 3jets ≥ 4jets

Wjj 42.0 15.8 2.8 0.4
Wbb 24.7 21.0 5.4 0.8
Wcc 19.1 16.7 4.3 0.6

singletop 1.8 5.6 1.9 0.5
Z + jets 1.3 2.3 1.2 0.5
Diboson 1.6 3.4 0.9 0.2
tt̄ → ll 1.6 8.5 4.3 0.9

tt̄ → l+jets 0.4 6.9 23.4 25.0
Multijet 10.0±3.4 21.3±4.9 7.3±2.6 2.6±1.6

total 102.4±4.8 101.5±6.9 51.6±3.7 31.6±2.2

data 96.0 116.0 52.0 31.0

difference -6.6% +12.5% +0.7% -1.8%

Table B.12: Summary of event yields for the e+jets channel after SLTNN
tagging.

B.5.3 Cross Section Calculation

The cross section calculation discussed in Chapter 6 needs to be modified for this analysis using the

SLTNN tagger because the tagged sample is not split into two independent samples. Therefore, the

total number of channels are reduced to four: e+jets (3 jets and ≥ 4 jets) and µ+jets (3 jets and

≥ 4 jets) with the SLTNN b-tagging.

Equation 6.9 and 6.10 can be modified as follows:

NW+tt = N0tag

W+tt
+ N tag

W+tt

NQCD = N0tag
QCD + N tag

QCD (B.13)

L = L0 × L1

= P(Ñ0tag
tight; N

0tag
tight) ×P(Ñ0tag

loose−tight; N
0tag
loose−tight)

× P(Ñ tag
tight; N

tag
tight) ×P(Ñ tag

loose−tight; N
tag
loose−tight)

(B.14)

where “0tag” denotes the sample that is not passed by the SLTNN tagging, and “tag” denotes the
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µ+jets
1jet 2jets 3jets ≥ 4jets

Wjj 34.9 15.9 3.3 0.8
Wbb 21.0 20.7 6.0 1.3
Wcc 15.7 15.6 5.4 1.0

singletop 1.3 4.2 1.5 0.4
Z + jets 3.2 3.3 1.3 0.4
Diboson 1.4 3.0 0.8 0.2
tt̄ → ll 1.1 6.6 3.5 0.8

tt̄ → l+jets 0.2 4.3 17.9 21.3
Multijet -0.7±1.0 5.0±2.6 0.5±0.7 -0.8±1.0

total 78.1±1.4 78.6±3.7 40.2±1.0 25.5±1.5

data 94.0 89.0 47.0 33.0

difference +16.9% +11.7% +14.4% +22.7%

Table B.13: Summary of event yields for the µ+jets channel after SLTNN
tagging.

sample that is passed by the SLTNN tagging. The solution, Equation 6.18 and 6.19, can be modified

as follows:

N tag
tight =

1

1 − (a − c) + (b − c)P tag
W

×
(

k + P tag
W (b − c)N0tag

tight + c(1 − P tag
W )N tag

loose−tight − cP tag
W N0tag

loose−tight

)

k = N tag

tt
− P tag

W NMC bkg − P tag
W Ntt + N tag

MC bkg

a =
εQCD

εsig − εQCD

b =
εsig

εsig − εQCD

c =
εsigεQCD

εsig − εQCD
. (B.15)

The solution N tag
tight is inserted into the likelihood (Equation B.14). The observed number of events

(N0tag
tight, N tag

loose−tight and N0tag
loose−tight), are inserted into the same likelihood function. The input

numbers are floated in the fit to find the optimized values using the same procedure discussed in

Chapter 6.

For the optimized operating point (loose muon, loose NN), the result for tt̄ pair production cross
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section using the SLTNN tagging is

e + jets : σpp→tt+X = 6.75 +1.36
−1.26 (stat) pb

µ + jets : σpp→tt+X = 9.30 +1.68
−1.55 (stat) pb

` + jets : σpp→tt+X = 7.88 +1.05
−1.00 (stat) pb.

Figure B.26 shows the signal and background compositions estimated using MC samples and are

compared to the number of events in data sample as a function of jet multiplicity. The measured

cross section for all channels (7.88 pb) is used to create this plot.
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Figure B.26: The signal and background composition predicted using
MC samples and the number of events in the data sample as a function
of jet multiplicity for the SLTNN tagging algorithm. The plot shows the
result in the lepton+jets channel.

B.5.4 Systematic Uncertainty

To estimate the systematic uncertainties for this analysis, the same list of systematic sources (shown

in Section 6.3) is used. Table B.14 shows the systematic uncertainties estimated for each source.
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e+jets µ+jets l+jets

type source σ+ σ− σ+ σ− σ+ σ−

preselection

Luminosity Reweighting +0.06 -0.00 +0.08 -0.00 +0.07 -0.00

Primary V ertex +0.11 -0.10 +0.15 -0.14 +0.12 -0.12

Z pT Reweighting +0.00 -0.00 +0.00 -0.03 +0.00 -0.01

e+jets only

EM ID +0.18 -0.17 - - +0.12 -0.12

L1EMtrigger +0.07 -0.01 - - +0.05 -0.01

L2EMtrigger +0.00 -0.00 - - +0.00 -0.00

L3EMtrigger +0.04 -0.04 - - +0.03 -0.03

L1JetT rigger +0.00 -0.00 - - +0.00 -0.00

L2JetT rigger +0.00 -0.00 - - +0.00 -0.00

L3JetT rigger +0.00 -0.00 - - +0.00 -0.00

µ+jets only

Muon ID - - +0.07 -0.07 +0.02 -0.02

Muon Tracking - - +0.07 -0.07 +0.02 -0.02

Muon Isolation - - +0.19 -0.19 +0.07 -0.07

Muon Trigger - - +0.26 -0.23 +0.09 -0.08

Jets

Jet T rigger +0.01 -0.01 +0.02 -0.02 +0.02 -0.02

JES +0.36 -0.29 +0.43 -0.34 +0.39 -0.31

JSSR +0.00 -0.09 +0.00 -0.15 +0.00 -0.12

Jet Identification +0.11 -0.11 +0.06 -0.06 +0.09 -0.09

Matrix Method
εsig +0.03 -0.03 +0.08 -0.08 +0.05 -0.05

εQCD +0.06 -0.06 +0.08 -0.07 +0.02 -0.02

MC Modeling

W HF Scale Factor +0.14 -0.13 +0.20 -0.19 +0.17 -0.16

b-fragmetation +0.18 -0.00 +0.18 -0.00 +0.19 -0.00

Factorization +0.03 -0.02 +0.04 -0.03 +0.03 -0.02

b-tagging

FDT +0.00 -0.09 +0.00 -0.12 +0.00 -0.11

b-jets TRF +0.55 -0.44 +0.75 -0.56 +0.64 -0.49

c-jets TRF +0.16 -0.09 +0.23 -0.11 +0.19 -0.10

light-jets TRF +0.03 -0.03 +0.04 -0.04 +0.03 -0.03

Others

Z HF Scale Factor +0.06 -0.06 +0.08 -0.08 +0.07 -0.07

Signal Modeling +0.00 -0.21 +0.00 -0.25 +0.00 -0.23

MC cross section +0.03 -0.03 +0.03 -0.03 +0.03 -0.03

MC statistics on signal +0.01 -0.01 +0.01 -0.01 +0.01 -0.01

MC statistics on background +0.04 -0.03 +0.05 -0.04 +0.04 -0.03

PDF +0.02 -0.02 +0.02 -0.02 +0.02 -0.02

Total +0.77 -0.66 +1.03 -0.84 +0.86 -0.72

Table B.14: Summary of total systematic unertainties for combined results (all channels).
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B.5.5 Conclusion

The final result for all channels is

` + jets : σpp→tt+X = 7.88 +1.05
−1.00 (stat) +0.86

−0.72 (sys) ± 0.48 (lumi) pb.

Figure B.27 shows the various results for tt̄ production cross section in both CDF and DØ collabo-

rations to compare with the result using the SLTNN algorithm (5th from top). The red bars denote

the statistical uncertainty and the blue bars denote the total uncertainty for the measurement.
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Figure B.27: Summary of the various tt̄ cross section measurements made by CDF
and DØ. The shade areas denote the theoretical cross sections with its uncertainty.
The red bars denote the statistical uncertainty and the blue bars denote the total
uncertainty for the measurement.

151



Appendix C

Control Plots

In this chapter, control plots for the kinematic variables, Centrality, Sphericity, HT , ∆φ(leading

jet,6ET ), and ∆φ(lepton,6ET ) are shown for each jet multiplicity bin. The defintions of the kinematic

variables are as below. Three samples (preselection, exactly one b-tagged, and two or more b-tagged

samples) are presented individually.

• HT : sum of the transverse momentum of all jets (
∑

ET ) with Et > 15 and |η| < 2.5

• Centrality : HT /H , where H is the scalar sum of the jet energies

• Sphericity : S = 3
2 (λ2 + λ3), where λ2 and λ3 are the smallest eigenvalues of the normalized

momentum tensor M

• ∆φ(leading jet,6ET ): ∆φ between the leading jet and 6ET

• ∆φ(lepton,6ET ): ∆φ between the lepton and 6ET .

The figures show these distributions for the four jet multiplicity bins: =1 jet (top left), =2 jets

(top right), =3 jets (bottom left), and ≥ 4 jets (bottom right).
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C.1 Control Plots for the e+jets Channel

C.1.1 Preselection Events
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Figure C.1: Centrality distributions for the preselected sample in the e+jets
channel.
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Figure C.2: Sphericity distributions for the preselected sample in the e+jets
channel.
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Figure C.3: HT distributions for the preselected sample in the e+jets channel.
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Figure C.4: ∆φ(leading Jet,6ET ) distributions for the preselected sample in the
e+jets channel.
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Figure C.5: ∆φ(electron,6ET ) distributions for the preselected sample in the
e+jets channel.
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C.1.2 Exactly One b-tagged Events
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Figure C.6: Electron pT distributions for the exactly one tagged sample in the
e+jets channel.
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Figure C.7: 6ET distributions for the exactly one tagged sample in the e+jets
channel.
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Figure C.8: Leading jet pT distributions for the exactly one tagged sample in
the e+jets channel.
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Figure C.9: The eν transverse mass distributions for the exactly one tagged
sample in the e+jets channel.
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Figure C.10: Centrality distributions for the exactly one tagged sample in the
e+jets channel.
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Figure C.11: Sphericity distributions for the exactly one tagged sample in the
e+jets channel.
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Figure C.12: HT distributions for the exactly one tagged sample in the e+jets
channel.
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Figure C.13: ∆φ(leading Jet,6ET ) distributions for the exactly one tagged sam-
ple in the e+jets channel.
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Figure C.14: ∆φ(electron,6ET ) distributions for the exactly one tagged sample
in the e+jets channel.

160



C.1.3 Two or More b-tagged Events
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Figure C.15: Electron pT distributions for the two or more tagged sample in
the e+jets channel.

161



 [GeV]
T

Missing E
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s

0

2

4

6

8

10

12

14

16

KS = 0.989DØ RunII 913 pb-1

DATA 39
ttljets 4
ttdilepton 8
tch 0
sch 3
Wjj 0
Wbb 12
Wcc 2
Zjj 0
Zbb 0
Zcc 0
WW 0
WZ 1
ZZ 0
Multijet 1

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

12

14

16

 [GeV]
T

Missing E
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s

0

2

4

6

8

10

12

14

16

 [GeV]
T

Missing E
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

KS = 0.852DØ RunII 913 pb-1

DATA 41
ttljets 22
ttdilepton 5
tch 1
sch 1
Wjj 0
Wbb 4
Wcc 1
Zjj 0
Zbb 0
Zcc 0
WW 0
WZ 0
ZZ 0
Multijet 2

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

12

14

16

18

 [GeV]
T

Missing E
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

 [GeV]
T

Missing E
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

KS = 0.542DØ RunII 913 pb-1

DATA 26
ttljets 29
ttdilepton 1
tch 0
sch 0
Wjj 0
Wbb 1
Wcc 0
Zjj 0
Zbb 0
Zcc 0
WW 0
WZ 0
ZZ 0
Multijet 1

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

12

14

16

18

 [GeV]
T

Missing E
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

Figure C.16: 6ET distributions for the two or more tagged sample in the e+jets
channel.
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Figure C.17: Leading jet pT distributions for the two or more tagged sample
in the e+jets channel.
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Figure C.18: The eν transverse mass distributions for the two or more tagged
sample in the e+jets channel.
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Figure C.19: Centrality distributions for the two or more tagged sample in the
e+jets channel.
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Figure C.20: Sphericity distributions for the two or more tagged sample in the
e+jets channel.

 [GeV]TH
0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s

0

2

4

6

8

10

12

KS = 0.950DØ RunII 913 pb-1

DATA 39
ttljets 4
ttdilepton 8
tch 0
sch 3
Wjj 0
Wbb 12
Wcc 2
Zjj 0
Zbb 0
Zcc 0
WW 0
WZ 1
ZZ 0
Multijet 1

0 50 100 150 200 250 300 350 400 450 5000

2

4

6

8

10

12

 [GeV]TH
0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s

0

2

4

6

8

10

12

 [GeV]TH
0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s

0

1

2

3

4

5

6

7

8

KS = 0.806DØ RunII 913 pb-1

DATA 41
ttljets 22
ttdilepton 5
tch 1
sch 1
Wjj 0
Wbb 4
Wcc 1
Zjj 0
Zbb 0
Zcc 0
WW 0
WZ 0
ZZ 0
Multijet 2

0 50 100 150 200 250 300 350 400 450 5000

1

2

3

4

5

6

7

8

 [GeV]TH
0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s

0

1

2

3

4

5

6

7

8

 [GeV]TH
0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s

0

1

2

3

4

5

6

7

KS = 0.465DØ RunII 913 pb-1

DATA 26
ttljets 29
ttdilepton 1
tch 0
sch 0
Wjj 0
Wbb 1
Wcc 0
Zjj 0
Zbb 0
Zcc 0
WW 0
WZ 0
ZZ 0
Multijet 1

0 50 100 150 200 250 300 350 400 450 5000

1

2

3

4

5

6

7

 [GeV]TH
0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s

0

1

2

3

4

5

6

7

Figure C.21: HT distributions for the two or more tagged sample in the e+jets
channel.
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Figure C.22: ∆φ(leading Jet,6ET ) distributions for the two or more tagged
sample in the e+jets channel.
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Figure C.23: ∆φ(electron,6ET ) distributions for the two or more tagged sample
in the e+jets channel.
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C.2 Control Plots for the µ+jets Channel

C.2.1 Preselection Events
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Figure C.24: Centrality distributions for the preselected sample in the µ+jets
channel.
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Figure C.25: Sphericity distributions for the preselected sample in the µ+jets
channel.
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Figure C.26: HT distributions for the preselected sample in the µ+jets channel.
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Figure C.27: ∆φ(leading Jet,6ET ) distributions for the preselected sample in
the µ+jets channel.
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Figure C.28: ∆φ(muon, 6ET ) distributions for the preselected sample in the
µ+jets channel.
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C.2.2 Exactly One b-tagged Events
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Figure C.29: Muon pT distributions for the exactly one tagged sample in the
µ+jets channel.
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Figure C.30: 6ET distributions for the exactly one tagged sample in the µ+jets
channel.
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Figure C.31: Leading jet pT distributions for the exactly one tagged sample in
the µ+jets channel.
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Figure C.32: The µν transverse mass distributions for the exactly one tagged
sample in the µ+jets channel.

Centrality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

0

10

20

30

40

50

60

KS = 0.548DØ RunII 871 pb-1

DATA 324
ttljets 1
ttdilepton 4
tch 4
sch 1
Wjj 146
Wbb 92
Wcc 50
Zjj 6
Zbb 3
Zcc 4
WW 3
WZ 1
ZZ 0
Multijet 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

Centrality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

0

10

20

30

40

50

60

Centrality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

0

5

10

15

20

25

30

35

40

45
KS = 0.978DØ RunII 871 pb-1

DATA 300
ttljets 14
ttdilepton 17
tch 10
sch 4
Wjj 74
Wbb 77
Wcc 55
Zjj 4
Zbb 5
Zcc 4
WW 7
WZ 3
ZZ 0
Multijet 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

45

Centrality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

0

5

10

15

20

25

30

35

40

45

Centrality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

20

22

KS = 0.557DØ RunII 871 pb-1

DATA 130
ttljets 45
ttdilepton 8
tch 3
sch 1
Wjj 16
Wbb 22
Wcc 20
Zjj 1
Zbb 2
Zcc 2
WW 2
WZ 1
ZZ 0
Multijet 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

20

22

Centrality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

20

22

Centrality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

20

KS = 0.818DØ RunII 871 pb-1

DATA 91
ttljets 48
ttdilepton 2
tch 1
sch 0
Wjj 4
Wbb 5
Wcc 4
Zjj 1
Zbb 1
Zcc 1
WW 1
WZ 0
ZZ 0
Multijet -1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

20

Centrality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

0

2

4

6

8

10

12

14

16

18

20

Figure C.33: Centrality distributions for the exactly one tagged sample in the
µ+jets channel.
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Figure C.34: Sphericity distributions for the exactly one tagged sample in the
µ+jets channel.
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Figure C.35: HT distributions for the exactly one tagged sample in the µ+jets
channel.
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Figure C.36: ∆φ(leading Jet,6ET ) distributions for the exactly one tagged sam-
ple in the µ+jets channel.
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Figure C.37: ∆φ(muon,6ET ) distributions for the exactly one tagged sample in
the µ+jets channel.
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C.2.3 Two or More b-tagged Events
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Figure C.38: Muon pT distributions for the two or more tagged sample in the
µ+jets channel.
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Figure C.39: 6ET distributions for the two or more tagged sample in the µ+jets
channel.
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Figure C.40: Leading jet pT distributions for the two or more tagged sample
in the µ+jets channel.
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Figure C.41: The µν transverse mass distributions for the two or more tagged
sample in the µ+jets channel.
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Figure C.42: Centrality distributions for the two or more tagged sample in the
µ+jets channel.
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Figure C.43: Sphericity distributions for the two or more tagged sample in the
µ+jets channel.
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Figure C.44: HT distributions for the two or more tagged sample in the µ+jets
channel.
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Figure C.45: ∆φ(leading Jet,6ET ) distributions for the two or more tagged
sample in the µ+jets channel.
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Figure C.46: ∆φ(muon, 6ET ) distributions for the two or more tagged sample in
the µ+jets channel.
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