COOR

scott snyder

October 8, 2002

For on100-58-00

Contents

1 Notational Conventions

2 Overview

3 Summary of Requirements

4 Running COOR
4.1 Online Setup
4.2 Starting and Stopping COOR
4.3 Controlling COOR
4.4 Files o
4.5 Simulation Mode oo

5 Running TAKER
6 Detector Model
7 Begin/End Run File Format

8 Protocols
8.1 CooORr-Client Communication
8.2 Coor-Downloader Communication
8.2.1 Common Protocol
8.2.2 COMICS it i st s

11

13
13
13
13
13
15

18

19

25

823 Level 1. 44

824 Level 2. 47
825 Level 3. 47
826 SDAQ 49
8.2.7 Data Logging ol
8.2.8 Calibration manager 52

8.3 CooOR-Loghbook Communication 54
8.4 Run Transition SES Messages 54
8.5 Name Server Messages 5%}
9 Run Transitions 57
10 Writing Trigger Configurations 58
10.1 Finding Configurations 58
10.1.1 Python Scripto 58
10.1.2 XMLo 58
10.1.3 Dumped States, 59
10.1.4 Custom XML 59

10.2 XML . . . oo 59
10.3 Exampleo 60
10.4 Runmodes 67
10.5 Generic Element Reference 68
10.5.1 Element calibration 68
10.5.2 Element client 69
10.5.3 Element clients 70
10.5.4 Element configuration 71
10.5.5 Element crate_list 73
10.5.6 Element crateref 74
10.5.7 Element download 74
10.5.8 Element expogroup 75
10.5.9 Element 1lem refset 76
10.5.10 Element 11hadveto_refset 7
10.5.11 Element 11jet refset 78
10.5.12Element 111t _refset 79
10.5.13Element 1irefsets 80
10.5.14Element 11termlist 80
10.5.15Element 11trigger 81
10.5.16 Element 12filter 83

10.5.17Element 12global 83

10.5.18 Element 12script 84
10.5.19Element 12trigger 84
10.5.20 Element 13trigger 85
10.5.21 Element level2 86
10.5.22Element sdaqo 86
10.5.23 Element sdag_-l11trigger 87
10.5.24 Element stream 89
10.5.25Element trigdef 90
10.5.26 Element triglist 91
10.6 Device Type Reference 91
10.6.1 Element Calpulser 92
10.6.2 Element Cal ADC Crate 93
10.6.3 Element Cal TC Crate 94
10.6.4 Element CFT Crate 95
10.6.5 Element L1 Crate 96
10.6.6 Element L2 Crate 97
10.6.7 Element Muo Crate 98
10.6.8 Element Null Device 99
10.6.9 Element SMT Crate 100
10.6.10 Element STT Crate 101
10.6.11 Element Trig Crate 102
10.7 Level 1 Trigger Term Reference 103
10.7.1 Element 1lctt 103
10.7.2 Element 1lemcount 104
10.7.3 Element llemcountr 104
10.7.4 Element 1lemquad 105
10.7.5 Element 11jetcount 106
10.7.6 Element 11jetcountr 107
10.7.7 Element 11jetquad 108
10.7.8 Element 11ltcount 109
10.7.9 Element 1lemetsum 109
10.7.10 Element 11fpd 110
10.7.11Element 11fps 111
10.7.12Element 11hdetsum 111
10.7.13Element 111lum 112
10.7.14 Element 1imisspt 113
10.7.15Element 1imuo 113

10.7.16 Element 11specterm 114

10.7.17Element 11totetsum 114

10.8 Level 2 Preprocessor Reference 115
10.8.1 Element 12calem 115
10.8.2 Element 12caljet 116
10.8.3 Element 12calmet 117
10.8.4 Element 12cps 117
10.8.5 Element 12ctt, 118
10.8.6 Element 12fps 118
10.8.7 Element 12muc 119
10.8.8 Element 12muf 119

10.9 Level 2 Tool Reference 120
10.9.1 Element 12commissiontool 120
10.9.2 Element 12emfilter 120
10.9.3 Element 12emtool 121
10.9.4 Element 12etafilter 121
10.9.5 Element 12etaphisepfilter 122
10.9.6 Element 12etasepfilter 123
10.9.7 Element 12failallfilter 124
10.9.8 Element 12htfilter 124
10.9.9 Element 12invmassfilter 125
10.9.10 Element 12jetfilter 125
10.9.11 Element 12jetfilter 126
10.9.12 Element 12metfilter 127
10.9.13 Element 12mettool 127
10.9.14 Element 12muonfilter 128
10.9.15 Element 12muontool 128
10.9.16 Element 12phifilter 129
10.9.17Element 12phisepfilter 130
10.9.18 Element 12randompassfilter 130
10.9.19 Element 12trackfilter 131
10.9.20 Element 12tracktool 131
10.9.21 Element 12transmassfilter 132
10.10Prescale Sets 133
11 Defining cOOR Resources 134
11.1 Resource Definitions 134
11.2 Resource Element Reference 141

11.2.1 Element attribute 141

11.2.2 Element calpulser 142
11.2.3 Element crate 143
11.2.4 Element crates 144
11.2.5 Element device 144
11.2.6 Element devices 145
11.2.7 Element devtype 145
11.2.8 Element 1ict_emcount 146
11.2.9 Element 1ict_emcountr 147
11.2.10 Element 11ct_emquad 148
11.2.11 Element 11ct_jetcount 148
11.2.12Element 11ct_jetcountr 149
11.2.13Element 11ct_jetquad 150
11.2.14Element 11ct_ltcount 151
11.2.15Element 11ct_refset 151
11.2.16 Element 11ct_thresh 152
11.2.17Element 11qual 153
11.2.18 Element 12global 154
11.2.19Element 12input 155
11.2.20 Element 12mbt 155
11.2.21 Element 12parm 156
11.2.22Element 12pp 157
11.2.23 Element 12ppcrate 158
11.2.24Element 12tool 158
11.2.25Element levell 159
11.2.26 Element level2 160
11.2.27Element resources 160
11.2.28 Element subdevice 161
11.2.29Element term 162
11.2.30 Element tieto 162
11.2.31 Element trigmgr 163
12 TAKER 165
12.1 Run Transition Dialogs 165
12.2 TAKER plugins Lo oL 166
12.2.1 Finding plugins 0oL 166
12.2.2 Activating plugins 167
12.2.3 Taker proxy methods 167

12.2.4 Plugin interactions

13 The Name/Value Service
13.1 Introduction
13.2 The Python Name Service API
13.3 The C++ Name Service API.
13.4 The Name Service Editor

A Document Type Definitions
A.1 Trigger Configuration
A11 trigger_config.dtd
A12 literms.dtdo
A2 Resources
A.21 resources.dtd

B Run Mode Examples
B.1 External
B2 FW-Only
B.3 PDAQ
B.4 Parasitic-SDAQ
B.5 FW-SDAQ
B.6 PDAQ-SDAQ
B.7 SDAQ

C State Diagrams

169
169
169
171
172

174
174
174
181
184
184

190
190
190
191
192
193
194
195

197

1 Notational Conventions

Text in this font refers to features of COOR which are planned, but not yet
implemented.

2 Overview

The COOR program is responsible for coordinating changes in state of the
software and hardware components comprising the data acquisition system.
Clients wishing to use pieces of the system must send requests to the COOR,
which will ensure that the request does not conflict with those of other clients.
CooOR will then communicate with the rest of the system to put it in the
state requested by the client.

Requests to begin and end runs are also considered state changes which
should go through the COOR. In response to such a request, it will step
the other components of the system through the proper sequence of actions.
These requests may come not only directly from clients, but may also be
generated by the data logging and alarm systems to automatically stop or
pause a run due to an error condition.

Figure 1 illustrates the main communication paths to and from COOR. At
the top of the figure are the clients, which make requests of COOR. These will
most commonly be instances of the TAKER program, which is the primary
user interface for controlling data taking. However, there will also be clients
to display status information about COOR, and to provide expert-level control
of COOR itself. At the bottom of the figure are the targets, with which COor
communicates in order to effect changes in the system. At present the set of
targets includes the Level 1 and 2 triggers (through the L1TCC), the Level 3
trigger (through the L3 supervisor), the EPICS system (though a translator
program), and the data logging system.

CoOR also talks to the alarm system (illustrated on the left), not only
to report its own errors, but also to report major state changes, such as the
beginnings and ends of runs. The alarm system will then make these state
change notifications available to any other components of the system which
want them.

Note the following:

e COOR is not in the data path. It is responsible for setting up and
terminating runs, but does not directly participate in them:.

e The flow of commands is largely one-way, from the clients, through
COOR, and finally down to the targets. The exception is that COOR may
send a notification back to a client if its run has been asynchronously
stopped or paused. Note in particular that this implies that if the alarm
system or one of the targets wants to change the run state — such as

Coor \

Figure 1: Primary communication paths to and from COOR.

pausing physics runs on a fatal alarm or stopping a run after a fixed
number of events has been recorded — that component should make a
separate client connection back to COOR to send the command. (This
is illustrated by the dashed lines in Figure 1.)

Some of the targets, such as Level 3 or the data logging system, are
actually a collection of cooperating processes. For these targets, there
should be a single process with which COOR communicates; this process
is then responsible for distributing the commands from COOR to the
rest of the subsystem. This strategy should help to insulate COOR from
the internal subsystem details and make it easier to isolate the various
pieces for testing and debugging.

10

3

Summary of Requirements

COOR receives requests from clients to use pieces of the data acquisition
system. If such a request is compatible with other concurrent users of
the system, COOR communicates with the other system components to
put them in the desired state.

The subsystems which COOR should be able to configure include:

— The Level 1, Level 2, and Level 3 triggers.
— The data logging system.
— The digitizing crates and VBDs.

Other components may be added as the need arises, or they may be
controlled through other pathways. For example, in run I, calibration
pulsers were controlled through cOOR, while the high voltage, low volt-
age, and clock control subsystems were not.

COOR receives requests from clients to begin and end runs. It again
ensures that the request is compatible with other users and, if so, com-
municates with the triggers and the data logging system to start data
flowing.

COOR receives requests from clients to pause and resume ongoing runs.
Pausing a run means disabling the Level 1 trigger bits used by that run.
This halts the flow of data in such a way that it can be rapidly restarted.

COOR may also receive requests to pause runs from the alarm system
(due to the detection of an error which may compromise the quality
of the data) or from the data logging system (if a limit was set on the
number of events to be collected in a run).

CooR should send notification of significant state changes (such as runs
starting or ending) to the alarm system for distribution to any other
interested parties.

COOR should arrange to record in an appropriate database the infor-
mation it has about each recorded run taken. (This may not actually
be done by COOR, but instead by some other process with which it
communicates.)

11

e COOR should be able to supply information to clients and monitor-
ing programs concerning the current state of the detector components

which it manages.

e Client programs should be provided for taking data runs and displaying
the current status.

12

4 Running COOR

4.1 Online Setup

COOR is normally set up for running on the online cluster with the command
‘setup dOonline’. You can also set up just coor (and the other products
that it requires to run) with ‘setup coor’.

4.2 Starting and Stopping COOR

Start COOR with the command ‘start_daq coor’. This will attempt to start
it up on the host given in the parameters file (d0olc as of this writing). The
script should refuse to start a new instance if there’s already one running.
You can also use ‘startcoor’. (The latter option does not require dOonline.)

CoOOR may be stopped with the command ‘stop_daq coor’ (from any
host). Note that this requires that COOR be functioning sufficiently to process
commands. If it is not, you’ll need to use the ‘kill’ command. You can also
use ‘stopcoor’. (The latter option does not require dOonline.)

4.3 Controlling COOR

A simple interactive client, coortalk, is available to control COOR. Start it
with coortalk, exit with Control-D. Any of the commands listed in Sec. 8.1
may be sent. The responses from COOR are echoed to the terminal.

4.4 Files

Besides the files in the COOR product (which should not be altered), COOR
reads files from the following locations.

e /online/data/coor/coor.params — The COOR parameters file. This
file sets all of COOR’s configurable parameters, including network ad-
dresses. This file is reread after a reinitialization; however, the values
of some of the variables are used only on the initial startup.

e /online/data/coor/resources/coor_resources.xml — COOR’s re-
source file. This file defines the static detector configuration — which

crates are available, names for trigger terms, and so on. Its format is
described in Sec. 11.

13

e /online/data/coor/resources/init_devtypes.dtd — This file is
used for initialization, and should not be changed.

e /online/data/coor/configurations — This is the root of the tree
of trigger configuration files. The format of these files is described in
Sec. 10.

e /online/data/coor/runnumber — This file is used to keep track of
the current run number. Don’t change this unless you know exactly
what you are doing — you can screw up offline processing if you make
two runs with the same run number.

e /online/data/coor/resources/excluded_devices.dat — This file
contains a list, one entry per line, of names of devices and crates that
should be ignored (i.e., because they’re not working). A hash mark (#)
may be used for comments. This file is reread whenever any trigger
configuration is loaded.

e /online/data/coor/name_server_db.dat — The database for the
name service. This is a Python pickle file.

COOR writes the following files:

e /online/log/coor/coor.out. timestamp — This is where the stan-
dard output and error streams from COOR get written. This is useful
mainly in cases where COOR fails to start or has crashed — this is where
Python stack traces will appear.

e /online/log/coor/yyyy/mm/coor_yyyy-mm-dd.hhmm .log —
This is COOR’s log file. All activities are logged here, so it can get rather
lengthy. Each day at midnight, the log file is closed and reopened with
a new name. This can also be forced with the reopen command (see
Sec. 8.1). In the event the name given above is not unique, COOR will
append a suffix of the form -n.

e /online/data/coor/state/runnnnnnnn.state — For each recorded
run, COOR writes out one of these state files, describing the state of the
detector for that run. This is in a format that can be read back into
COOR as a trigger configuration.

14

e /online/data/coor/brun/brunnnnnnnn.dat — At the beginning of
each recorded run, COOR writes out one of these files, containing in-
formation to be entered into the database. The format of these files is
given in Sec. 7.

e /online/data/coor/brun/erunnnnnnnn.dat — At the end of each
recorded run, COOR writes out one of these files, containing information
to be entered into the database. The format of these files is given in
Sec. 7.

e /online/data/coor/elog_spool/coor XXX .tolog — These are tem-
porary files used by COOR to hold logbook entries before they’re shipped
to the logbook. The format is as outlined in Sec. 8.3. Other processes
may also write files here with an extension of .tolog; they will even-
tually get picked up and sent to the logbook. (Be careful, though, not
to give the file a .tolog extension while it is still being written. Best
to write it first with some other name, then rename it.)

e /online/data/coor/name_server_db.dat — The database for the
name service. This is a Python pickle file.

4.5 Simulation Mode

COOR can also be run in “simulation” mode. In this mode, COOR will not
attempt to connect to any of the normal targets, will not listen for connec-
tions, and will not write files in the usual places. Instead, it will read a
trigger configuration file and dump into the current directory logs of what it
would have sent to the various processes, had it been running for real.

This is useful for verifying trigger configurations before using them and
for generating input for the trigger simulator.

There are two variants of simulation: offline and online. They differ
mainly in where COOR looks for resource information.

The offline simulation is set up as part of the DORunII setup (provided
the release includes coor). Run it with ‘coorsim trig-config’, where trig-
config is the trigger configuration file you want to process. COOR will look
for a resource file in the library release tree, or you can specify a custom
resource file using the --resource option to coorsim. Coorsim will sim-
ulate downloading the configuration and starting a run. It will write out
in the current directory a collection of .sim files (‘11dnl.sim’, 13dnl.sim,

15

etc.)

containing the commands that COOR would have sent to the various

processes. It also writes a file ‘coor.log’, giving the verbose log of COOR’s
actions. The messages that COOR would have sent back to taker are sent to
standard output.

The coorsim script takes the following options:

--online: Use the online copy of COOR’s resources and search the
online configuration tree.

--resource=F": Use F' as COOR’s top-level resource file. Look for other
resource files in F’s directory.

--fetch-resources: Try to fetch the latest version of the resources
from the trigger database.

These three options are mutually exclusive.
The output written to the .sim file is exactly what COOR would have
sent out except for the following:

The initial command-id field is not present. In logger.sim, the initial
‘COOR’ is removed as well.

If a message contains an embedded newline, the second and all sub-
sequent lines of the message will have a single space prepended. This
is to help in finding message boundaries in this case: the first lines of
messages (and only those) will have a nonblank character in the first
column.

The following .sim files are currently written:

calib.sim
epics.sim
levell.sim
level2.sim
level3.sim
logger.sim

sdaqg.sim

16

In addition, the coorsim scripts write out an additional file that is called
level2.sim-stripped, which is the same as level2.sim except that only
12script messages are retained, and the 12script keyword itself is deleted.

An optional second parameter may be given to coorsim, giving a script
of commands to feed to cOORr. If it is omitted, a default script will be
constructed, which loads the requested configuration and starts a run.

The online version will get set up when you do ‘setup dOonline’ (or
‘setup coor’). For this version, run ‘coorsim_onl trig-config’. In this case,
COOR will read the current online resource definitions. In addition, it will
look for the input trig-config first in the online trigger configuration tree
(though it will also look in the current directory, or an absolute path can be
used). Otherwise, it works like the offline version. (Note: coorsim_onl is a
synonym for coorsim --online.)

17

5 Running TAKER

18

6 Detector Model

This section briefly summarizes the concepts COOR uses to model the current
state of the system.

All objects used to model the system state are instances of a class deriving
from Object_Base.Object. Each object has an object name. Objects are
associated with a registry, deriving from Object_Base.Object_Registry.
The Object_Base.0bject class provides hooks for tracking all changes to
the object contents. This is used for logging, monitoring, and to allow for
undoing changes after discovering an error in a configuration.

Object names are conventionally divided into two parts: a class tag, and
the name itself, written like tag:name. The class tag identifies the type of
the object. Note that it is possible for two objects with different class tags
to be implemented by the same Python class.

All objects which can be allocated derive from Ownership.Ownable, and
those which can allocate other objects derive from Ownership.Owner.

All objects which represent things which must be configured derive from
Generic_Item.Item. Such objects have a set of attributes which define their
downloadable state. These are ordinary Python attributes of the object, but
they follow a special naming convention. Downloadable attributes which may
be changed at any time should start with ‘d_". There are also ‘immutable’
attributes, which start with ‘i_’. These can be set when the item is first
allocated, but not afterwards. These are usually used to represent structural
relationships between items.

Two copies of the attributes are maintained. The actual Python at-
tributes of the item represent COOR’s idea of the current state of the item. If
the value of an attribute is None, that means the current state is unknown.
Each item also maintains a requested value for each attribute. This is what
has requested by the owner of the item, and is what cOOR will try to make
the current values reflect by means of a download.

Each item can be in one of four states:

e UNKNOWN — The current state of the attributes in the external system
is unknown.

e VALID — The current state of the attributes in the external system
matches what has been requested.

e DOWNLOADING — There is a download operation in progress on this item,

19

to make the state of the attributes in the external system match what
has been requested.

e DOWNLOADING_INVALID — There is a download operation in progress,
but while it was in progress, this item has been invalidated. (Probably
due to a lost connection to the download target.) When the download
completes, the state of this item will become UNKNOWN.

When which has been owned is deallocated, the list of requested attribute
values is cleared and the item state is changed to UNKNOWN. Also, the state of
an owned object can be changed to UNKNOWN either by an explicit invalidation
request or due to a broken connection to the download target.

For most item types, the set of attributes used is defined by the Python
class representing that item. For most EPICS devices, however, a more generic
representation is used, implemented by the class Devices.Device. Each
device has a device type associated with it (class Devices.Devtype); the
device type defines the set of attributes which the device holds. The device
types are defined during COOR initialization.

Some items are generic, in that there is a set of identical items. Such items
are usually implemented using the Generic_Item.Numbered_Item class. In
this case, the name of the item is simply a number. Each distinct set of such
objects must thus have a distinct class tag.

The registry into which the objects are collected is implemented by the
class Global_State.DO_State. This class has high-level methods for allo-
cating the various item types.

The following table gives the presently defined class tags, the Python
classes used to implement them, and a brief description of each.

calibclient Calib.Calib_Client
These objects hold information sent to the cali-
bration manager which is specific to a given con-
figuration. It also provides an identifier to allow
associating streams uniquely with configurations.

calpulser Devices.Calpulser
A calorimeter pulser device.
calibstream Calib.Calib_Stream

These objects shadow the stream objects. They
are used to tell the calibration manager the corre-
spondence between stream names and numbers.

20

client

conn

crate
dev

global_info

lleg

liglobal

lispecterm

lictt
lifps
11fpd
111lum
limuo

llemetsum
lihdetsum
limisspt
litotetsum

Clients.Client

Represents an external program requesting ser-
vices of COOR. This includes instances of TAKER,
as well as monitoring and control programs. This
class derives from Ownership.Owner, so these ob-
jects can own others.
Config.Connection_Status_Reporter_Object
Used to send status information about the down-
loader connections to monitoring programs.
Devices.Device

A digitization crate; a geographic section.
Devices.Device

A generic EPICS device.
Global_State.Global_Info

Holds miscellaneous global information, such as
the store number

Levell.Lleg

A Level 1 exposure group.

Levell.Llglobal

Holds global Level 1 information. This is where
the current state of the Level 2 extra crate list is
maintained.

Levell.Llspecterm

A Level 1 specific (named) and/or term. These are
terms for which the definitions are fixed; they do
not require downloading.

Levell.Lltrigmgr

Levell.Lltrigmgr

Levell.Lltrigmgr

Levell.Lltrigmgr

Levell.Lltrigmgr

Level 1 and/or terms from trigger manager cards.
Levell.Lict_Thresh

Levell.Llct_Thresh

Levell.Llct_Thresh

Levell.Llct_Thresh

Level 1 calorimeter trigger global energy threshold
and/or terms.

21

llem_refset Levell.Lict_Refset
llhdveto_refset Levell.Llct_Refset

111t_refset Levell.L1lct_Refset
lljet_refset Levell.Llct_Refset
Level 1 calorimeter trigger reference sets.
llemcountO Levell.Llct_Count
llemcountl Levell.Llct_Count
llemcount?2 Levell.L1lct_Count
llemcount3 Levell.L1lct_Count
lljetcountO Levell.Llct_Count
l1jetcountl Levell.Llct_Count
1l1jetcount2 Levell.Llct_Count
lljetcount3 Levell.Llct_Count
Level 1 calorimeter trigger count threshold and/or
terms.
llemcountrOs Levell.Llct_Static_Count
llemcountrOc Levell.Llct_Static_Count
llemcountrOn Levell.Llct_Static_Count
llemcountrils Levell.Llct_Static_Count
llemcountric Levell.Llct_Static_Count
llemcountrin Levell.Llct_Static_Count

1l1jetcountrOs Levell.Llct_Static_Count

1l1jetcountrOc Levell.Llct_Static_Count

lljetcountrOn Levell.Llct_Static_Count
Level 1 calorimeter trigger region-specific count
threshold and/or terms.

111tcountO Levell.Llct_Static_Count
11ltcounti Levell.Llct_Static_Count
11ltcount?2 Levell.Llct_Static_Count
111ltcount3 Levell.Llct_Static_Count
11ltcount4 Levell.Llct_Static_Count
111ltcountb Levell.Llct_Static_Count
111ltcount6 Levell.Llct_Static_Count
11ltcount?7 Levell.Llct_Static_Count

Level 1 calorimeter trigger large tile count thresh-
old and/or terms.

llemquadl Levell.Llct_Static_Count

llemquad2 Levell.Lict_Static_Count

22

llemquad3
llemquad4
lljetquadl
lljetquad2
lljetquad3
1l1jetquad4
l1ibit
12bit

12global

12pp

12ppcrate

12tool

12tooltype

1311shad

1312shad

13bit

Levell.Lict_Static_Count
Levell.Lict_Static_Count
Levell.Llct_Static_Count
Levell.Llct_Static_Count
Levell.Llct_Static_Count
Levell.Lict_Static_Count

Level 1 calorimeter trigger quadrant matching
and/or terms.

Levell.L1bit

Level 1 specific trigger bit.

Level2.L2bit

Level 2 trigger bit.

Level2.L2global

Holds global Level 2 information. This object
holds the global parameter values specified in
12global elements. It also holds the names used
for the global processor.

Level2.L2pp

Represents a Level 2 preprocessor.
Level2.L2pp_Crate

Holds the information common to all preprocessors
in a crate.

Level2.L2tool

Represents a Level 2 tool/filter.
Level2.L2tool_Type

Holds the (static) information describing a Level 2
tool type.

Level3.L311shad

Level 3 ‘shadow’ of Level 1 information. There is
one of these objects for each 11bit object. Some
information associated with a Level 1 trigger bit
needs to be sent to Level 3 as well (such as the
crate readout list). The attributes of this object
keep track of that information.

Level3.L312shad

Level 3 ‘shadow’ of Level 2 information. Similar
to 1311shad, but for Level 2.

Level3.L3bit

23

13client

13clattribs

13stream

logclient

logtriggers

sdagclient

sdagstream

stream

Level 3 trigger bit.

Level3.Level3_Client

The level 3 system needs to be able to separate
streams and filter bits by the individual configura-
tions, in order to be able to resolve stream names
which are not globally unique. These objects pro-
vide an identifier for correlating this information.
Level3.Level3_Client_Attribs

Additional attributes associated with a 13client.
These are broken out into a separate object be-
cause level 3 gets confused if it sees a set_client
command more than once.

Level3.L3stream

These objects shadow the stream objects. They
are used to tell level 3 the correspondence between
stream names and numbers.
Logger.Logger_Client

The data logging system needs to be told some
information about each client which could start a
run, such as whether or not it has recording turned
on (see Sec. 8.2.7). These objects have the at-
tributes containing that information.
Logger.Logger_Triggers

We also tell the data logging system the names of
all trigger bits a client has allocated. These objects
have attributes containing that information.
SDAQ.SDAQ_Client

These objects hold information sent to the SDAQ
supervisor which is specific to a given configura-
tion. It also provides an identifier to allow associ-
ating streams uniquely with configurations.
SDAQ.SDAQ_Stream

These objects shadow the stream objects. They
are used to tell SDAQ the correspondence between
stream names and numbers.

Logger .Stream

A recording stream.

24

7

Begin/End Run File Format

At the beginning of each recorded run, COOR writes a “begin run” (brun)

file, containing information to be entered into the database. At the end of

each recorded run, COOR also writes an “end run” (erun) file. See Sec. 4.4

for the location of these files. This section lists the contents of these files.
Each line of each type of file has the following form:

keyword : value

Possible keywords that may appear are listed below. Note that, as men-
tioned below, not all keywords will always be present, and some may be
present more than once.

Here are the keywords that may appear in the brun file:

Calibtype — The calibration type keyword. This is present only for
calibration runs.

Comics_Runtype — The value of the comics_runtype attribute of the
configuration element.

Configname — The name of the trigger configuration that was loaded.

Configtype — The configuration type keyword, as specified in the
trigger configuration.

Configvers — The version of the trigger configuration that was loaded.

Crate — One of these are emitted for each crate that this configuration
has allocated (including ‘crates” with the novbd flag set that don’t get
read out). The value for this keyword has the form

crate-id name attribs

where crate-id is the geographic sector number of this crate and name
is its name. attribs is a list of all the settings for the downloadable
attributes of this crate, each in the form name="value".

Libit — One of these is emitted for each Level 1 bit that this config-
uration uses. The value for this keyword has the form

number prescale name

25

where number is the number of the bit, as assigned by COOR, prescale
is the prescale value set for this run, and name is the name of this
bit, as set in the trigger configuration. The prescale value may have a
percent sign on the end, to indicate a percentage prescale.

Libiteg — One of these is emitted for each Level 1 bit that this con-
figuration uses. The value for this keyword has the form

bit-number eg-number

where bit-number is the number of the bit, as assigned by COOR, and eg-
number is the number of its exposure group. (This keyword is separate
from Libit for backwards compatibility reasons.)

Libitterms — One of these is emitted for each Level 1 bit that this
configuration uses. The value for this keyword has the form

bit-number term-list

where bit-number is the number of the bit, as assigned by COOR, and
term-list is the and/or term list requested for this bit. The form of
term-list is the same that COOR uses when comminicating with Level 1
(see Sec. 8.2.3): a space-separated list of term numbers, preceded by a
dash if the term is being vetoed upon. (Note: ‘0’ and ‘-0’ are different!)

Lieg — One of these is emitted for each Level 1 exposure group that
this configuration uses. The value for this keyword has the form

number name

where number is the number of the exposure group, as assigned by
COOR, and name its name, as set in the trigger configuration.

Liegcrates — One of these is emitted for each Level 1 exposure group
that this configuration uses. The value for this keyword has the form

number crates

where number is the number of the exposure group, as assigned by
COOR, and crates is a space-separated list of crate names read out by
this exposure group.

26

e Liegterms — One of these is emitted for each Level 1 exposure group
that this configuration uses. The value for this keyword has the form

number term-list

where number is the number of the exposure group, as assigned by
COOR, and term-list is the and/or term list requested for this exposure
group. The form of term-list is the same that COOR uses when com-
minicating with Level 1 (see Sec. 8.2.3): a space-separated list of term
numbers, preceded by a dash if the term is being vetoed upon. (Note:
‘0" and ‘-0’ are different!)

e Literm — One of these is emitted for each Level 1 and/or term that
this configuration uses. The value for this keyword has the form

number descrip

where number is the number of this and/or term. The string descrip
is a description of the programming of this term, as follows:

— Direct-in term (11specterm): The name of the term.

— Trigger manager term: A string of the form ‘class-name’, where
class is the class name of this manager, as specified in the resource
file (‘11muo’, ‘11ictt’, etc.) and name is the name of the requested
input term for this manager.

— Calorimeter trigger count threshold terms: A string of the form
‘class—count-rsnames’. Here, class is one of the following:
x ‘llemcount N’
* ‘1ll1jetcount N’
x ‘111tcount N’
* ‘1lemcountr N’
x ‘ll1jetcountr N’
* ‘1llemquad N’
x ‘ll1jetquadN’
where N is the number of the reference set that this term uses.

The count field is the count threshold for this term, and rsnames
gives the names of the reference sets used for this term, either a

27

single name for jet or large-tile terms, or two names, the EM and
hadronic veto reference sets, separated by a dash for EM terms.

— Calorimeter trigger threshold terms: A string that has the form
‘class-wvalue’, where class is either ‘1lmisspt’ or ‘litotetsum’,
and wvalue is the threshold value.

L2bit — One of these is emitted for each Level 2 bit that this config-
uration uses. The value for this keyword has the form

number [1bit name

where number is the number of the bit, as assigned by COOR, [1bit is
the number of the Level 1 bit on which this Level 2 bit depends, and
name is the name of this bit, as set in the trigger configuration.

L3bit — One of these is emitted for each Level 3 bit that this config-
uration uses. The value for this keyword has the form

number [2bit name

where number is the number of the bit, as assigned by COOR, [2bit is
the number of the Level 2 bit on which this Level 3 bit depends, and
name is the name of this bit, as set in the trigger configuration.

L3type — The name of the requested Level 3 node type. This is present
only for runs using Level 3. [Note: at present, for configurations spec-
ifying more than one level 3 type (with multiple trigdef elements),
only the first level 3 type is reported.]

LBN — The luminosity block number for the start of the run. All data
in this run should have a LBN greater than or equal to this value. This
number will be —1 if this run does not use the primary DAQ path.

Physics — Either 0 or 1, depending on whether this configuration has
the physics flag set.

Prescname — The name of the last prescale set that was loaded. This
may be blank if no prescale set has been loaded.

Recording — Either 0 or 1, depending on whether recording is enabled
for this run.

28

Run — The run number.

Sdagtype — The SDAQ type keyword. This is present only for runs
using SDAQ.

Store — The current store number. This is present only if there is
currently a store in progress.

Stream — One of this is emitted for each stream that this configuration
uses. The value is the name of the stream.

Stream_Scheme — The value of the stream_scheme attribute of the
configuration element.

Time — The time at which the run started. This will be a string like
this: ‘2000 Oct 26 02:16:25 UTC’. We use UTC rather than local
time in order to avoid ambiguity when switching from daylight savings
time to standard time.

Here are the keywords that may appear in the erun file:

e LBN — The luminosity block number for the end of the run. All data in
this run should have a LBN less than to this value. This number will
be —1 if this run does not use the primary DAQ path. It may also be
—1 if cOOR was unable to successfully retrieve the LBN from Level 1
at the end of the run.

e Run — The run number, as above.

e Time — The time at which the run ended. The format is the same as

in the brun file.

Some additional keywords may also appear, beyond those listed here. A

client may send keywords to be placed in these files along with the start
and stop commands. Normally, these will be encoded in the coor.params
variables brun_desc and erun_desc.

Also, any names in the name server database (see Sec. 13) with the ‘brun’

property set will be written to the brun file, and any names with the ‘erun’
property set will be written to the erun file. Such names may be distinguished
because they will always start with a period.

29

8 Protocols

This section summarizes the protocols used in the communication between
COOR and the various processes with which it communicates.

8.1 Coor-Client Communication

All communication between COOR and the clients is by way of ITC string mes-
sages. The usual scenario is for the client to send a command to COOR, then
wait for a response. Commands should not be overlapped (except for abort,
as noted below). There are also several responses which COOR may send asyn-
chronously; these include TEXT, MESG, UPDATE_MODATTR, UPDATE_NEWOBJ,
UPDATE_DELOBJ, and CMND, and are discussed further below.

Except as noted below, COOR will respond to each command with a mes-
sage starting with either DONE, FAIL, or ABORTED. In each case, there may
be further data following the keyword, as noted for the individual commands
below. DONE means that COOR has made the state change requested by the
command, FAIL or ABORTED means that it has not. (Note that this is not
necessarily the same as whether the command completed successfully or not.
However, modification commands that do not involve a state change should
return FAIL if the change did not actually take effect.) ABORTED is sent after
a download has been aborted, either explicitly by the user sending an abort
command, or automatically, following a timeout.

Commands which initiate a download may take considerable time to com-
plete. To confirm that the download has started, COOR will first reply with
WAIT. This will then be followed by one of DONE, FAIL, or ABORTED, once the
download is complete.

Before the DONE (or FAIL or ABORTED) reply, COOR may send any number
of TEXT messages to the client. These will contain additional text after the
keyword which should, in most cases, be displayed to the user. If COOR knows
that the message is an error, it will be prefixed with the string ‘*bad*’. In
addition, warning messages will be prefixed with the string ‘*warn*’. Client
programs can use this information to hilight these messages.

At any time, COOR may send a MESG message to the client. This will
contain additional text after the keyword which should, in most cases, be
displayed to the user. The distinction between MESG and TEXT is that TEXT
messages should be output generated by a command being executed, while
MESG messages may arrive asynchronously (from, for example, an operator’s

30

broadcast request). Some applications may request a report from COOR,
then attempt to parse the TEXT messages containing the body of the report.
Having a separate MESG type avoids the need to deal with the possibility of
parsing random asynchronous messages interspersed with the report text.

Also at any time, COOR may send a STAT message to the client. This
is just like MESG, except that the text is intended to be displayed in a short
“status” area, if there is one. For example, periodic reports of the number
of events in the run will use this.

If the run state is changed by COOR, it will send a CMND message to the
client in order to notify it of the change. The messages of this type presently
defined are:

e CMND free — COOR has freed all objects this client has allocated.
e CMND pause — COOR has paused the client’s run.
e CMND stop — COOR has stopped the client’s run.

Following are all the client commands which COOR recognizes. Note that
the set of these that are allowed depends on what COOR thinks the current
state of the client is — see the state diagrams for details.

e abort — Abort a download in progress. It should be sent after the
WAIT reply, but before the final reply. Note that COOR will not gener-
ate a DONE or FAIL response for this command — when the download
completes, the abort request is also considered ended.

e alarm text — Feed an (informational) alarm message through to the
alarm system.

e auto_pause runlist — Request the runs given by runlist to pause. Run-
list should be a space-separated list of integers; these should either be
run numbers or client port numbers. If it is omitted, all runs in progress
will be processed. A run will only actually pause if its configuration
has the autopause flag turned on. The intention is that this message
is sent by the alarm server to COOR when there is a fatal alarm.

e broadcast text — Send text to all clients as a TEXT message. The
message will be prefixed with ‘=->".

31

coor_auto_pause — Used internally to implement the auto_pause
command. This command should not be sent by clients.

coor_force_free — Used internally to implement the force_free
command. This command should not be sent by clients.

coor_force_pause — Used internally to implement the force_pause
command. This command should not be sent by clients.

coor_force_stop — Used internally to implement the force_stop
command. This command should not be sent by clients.

disconnect dnllist— Force the connections to the download targets
named in dnllist to go away. If dnllist is omitted, connections to all
download targets will be dropped.

dump pattern — Dump COOR’s internal configuration state to the client.
The argument pattern is a regular expression; information about all
objects matching pattern will be included in the dump. If pattern is
omitted, information for all objects is dumped.

The information returned from COOR will be in a message starting
with the keyword DUMP. The rest of the message will consist of a string
which, when passed through the Python reader, will produce a Python
dictionary containing the dump data.

The DUMP message will then be immediately followed by a DONE message.

dump_update pattern — This combines the effect of dump and update
in a single command. The advantage of using this rather than two
separate commands is that it eliminates the chance that a change could
occur between the dump and the update.

exitcoor — Exit COOR.
flush — Force a flush of COOR’s log file.

force_free runlist — Force the runs given by runlist to stop, and for
the clients to release all the resources they hold. Runlist should be a
space-separated list of integers; these should either be run numbers or
client port numbers. If it is ‘all’; all runs in progress will be affected.
If it is omitted, the command has no effect.

32

force_invalidate pattern — Invalidate all items which match the reg-
ular expression pattern. (If pattern is omitted, all items are considered
to match.) Only items which are owned by some client are invalidated.
This command differs from the invalidate command in that it does
not require that the client issuing the command own the items being
invalidated.

force_pause runlist — Force the runs given by runlist to pause. Run-
list should be a space-separated list of integers; these should either be
run numbers or client port numbers. If it is ‘all’; all runs in progress
will be affected. If it is omitted, the command has no effect.

force_reinit — Reinitialize COOR. Connections to clients are left in-
tact, but connections to download targets will be dropped and reestab-
lished. The parameters and resources files will be reread, but note that
not all parameters can be changed during a reinitialization. Any runs
in progress will be forcibly stopped, and all clients will have their owned
resources forcibly released.

force_stop runlist — Stop the runs given by runlist. Runlist should
be a space-separated list of integers; these should either be run numbers
or client port numbers. Ifit is ‘all’; all runs in progress will be affected.
If it is omitted, the command has no effect. The intention is that this
message is sent by the data logging system to stop a run.

free — Free all resources held by this client.
help — Summarize valid commands.

info report-type — Get back a formatted report of some aspects of the
current state. This report will be sent back as TEXT messages (followed
by a DONE message); it is intended to be human-readable. The report
types available are:

— clients — Print information about all clients presently connected
to COOR.

— configs [path] — Print the list of valid configuration names in
path. If path is omitted, use the root directory. In addition to

33

the configuration names, this command will also print any subdi-
rectories present in path. These are distinguished by ending in a
slash.

configuration — Return the current configuration in XML form.

crates — Print information about all readout crates that are
owned by some client.

downloaders — Print information about the status of COOR’s
connections to the download targets (and the alarm system).

itc — Print information about all of COOR’s I'TC connections.

1libits — Print information about all presently defined Level 1
trigger bits.

liegs — Print information about all presently defined Level 1
exposure groups.

12bits — Print information about all presently defined Level 2
trigger bits.

12tools — Print information about all presently defined Level 2
tools/filters.

13bits — Print information about all presently defined Level 3
filter bits.

13clients — Print information about all the presently defined
Level 3 client objects.

local_crates — Print information about all readout crates that
are owned by this client.

local_l1bits — Print information about the Level 1 trigger bits
owned by this client.

local_12bits — Print information about the Level 2 trigger bits
owned by this client.

local_12tools — Print information about the Level 2 tools and
filters owned by this client.

local_13bits — Print information about the Level 3 filter bits
owned by this client.

13clients — Print information about the Level 3 client objects
owned by this client.

34

local_llegs — Print information about the Level 1 exposure
groups owned by this client.

local_objects pattern — Return the names of all objects owned
by this client that match the regular expression pattern.

local_streams — Print information about the streams owned by
this client.

objects pattern — Return the names of all objects that match
the regular expression pattern.

prescale_path prescname — Print the pathname that would be
used for the prescale set named prescname for the currently loaded
configuration. Prints nothing if there’s no configuration loaded,
or if the configuration does not support prescale sets.

prescale_sets — Print the list of available prescale sets for the
currently loaded trigger configuration.

store — Print information about the current store.

streams — Print information about all presently defined streams.

e invalidate pattern — Invalidate all items which match the regular
expression pattern and are owned by this client. (If pattern is omitted,
all items are considered to match.)

e limit limit — Request that runs be stopped after approximately limit
events have been recorded. If limit is 0 or omitted, no limit is imposed.

e load configname — Load a new configuration, named configname. The
details of this are described in Sec. 10. COOR will return information
about the loaded configuration as an argument to the DONE message.
This will be a string representation of a Python dictionary, that can be
read with eval(). The keys in this dictionary can include:

autopause — True or false, depending on the autopause setting
for this configuration.

calib_reference — The calibration reference set keyword spec-
ified in the configuration. Only present for calibration configura-
tions.

calib_type — The calibration type keyword specified in the con-
figuration. Only present for calibration configurations.

35

— comics_runtype — The default comics run type keyword spec-
ified in the configuration.

— configname — The name of the configuration that was loaded.

— physics — True or false, depending on the physics flag setting
for this configuration.

— runtype — The run type keyword string specified in the configu-
ration.

— sdaq_type — The SDAQ type keyword specified in the configu-
ration. Only present for SDAQ configurations.

modify name — Modify the currently downloaded configuration, based
on the commands in name. This works like loading a configuration (see
the load command), except that the configuration read should contain
neither a trigdef nor a sdaq element. The details of this are subject
to change.

num_nodes [3client-num num-nodes — Request that the level-3 client
[3client-num be assigned to num-nodes nodes. If num-nodes is 0, all
otherwise uncommitted nodes should be used. The client making this
request must not have a run in progress, and must own the requested
level-3 client.

pause add-info — Pause the client’s run. add-info should be a set of
‘keyword : value’ pairs, separated by newlines. (It may be blank.) This
information will be sent to the significant event system, and may be
entered in the logbook.

prescale bitnumber prescale ... — Change the prescale for Level 1
trigger bit bitnumber to prescale. Multiple bitnumber—prescale pairs
may be given in the command. All trigger bits being modified must be
owned by this client.

If a prescale value ends in a percent sign, it is interpreted as a percent-
age prescale. If it is zero, then the trigger is disabled. Otherwise, the
prescale is interpreted as a ratio.

prescale_set set-name — Load a predefined prescale set named set-
name. See Sec. 10.10 for more information.

36

pulser block pulser-name pattern ...— Set the pulser pattern for the
pulser pulser-name to pattern. Note that if pattern contains spaces, it
should be quoted. Multiple pulser-name, pattern pairs may be given in
a single command.

The pulser must have been allocated exclusively for this to work.

pulser word pulser-name/ext value ... — Set COMICS device “pulser-
name/ext” to value. Note that if value contains spaces, it should
be quoted. Multiple pulser-name/ext, value pairs may be given in a
single command. This is a low-level command, intended for hardware
debugging.

The pulser must have been allocated exclusively for this to work.

reconnect dnllist— If the connections to any of the download targets
named in dnllist has been lost, this command will attempt to reestablish
them. If dnllist is omitted, this will be done for all the download
targets.

recording state — Set the recording state for this client. The state
argument should be either ‘on’ or ‘off’.

reenable [1bits — Tell the trigger framework to reenable some Level 1
trigger bits. The parameters [1bits should be a space-separated list
of trigger bit numbers. If it is empty, than all auto-disabled triggers
owned by this client will be reenabled. This only has an effect if the
bits were configured in auto-disable mode. The bits must be owned by
this client.

reinit — Reinitialize COOR. Connections to clients are left intact, but
connections to download targets will be dropped and reestablished. The
parameters and resources files will be reread, but note that not all pa-
rameters can be changed during a reinitialization. This command may
only be issued if no objects are owned by any client (use force_reinit
to avoid this restriction).

reopen — Tell COOR to close its current log file and start writing a
new one (with a new name).

resume add-info — Resume the client’s run after a pause. add-info
should be a set of ‘keyword: wvalue’ pairs, separated by newlines. (It

37

may be blank.) This information will be sent to the significant event
system, and may be entered in the logbook.

revalidate — If any of the items owned by this client are marked as
invalid, try to do the required downloads to make them valid again.
This is done automatically before starting a run.

scl_init — Request that the level-1 framework reinitialize the serial
command links.

start brun-info — Start a new run. The run number of the new run
will be returned as an argument in the DONE message. brun-info should
be a set of ‘keyword: value’ pairs, separated by newlines. (It may be
blank.) This information will be added to the brun file for this run.

stop erun-info — Stop the client’s run. erun-info should be a set of
‘keyword : value’ pairs, separated by newlines. (It may be blank.) This
information will be added to the erun file for this run.

store_begin store-number add-info — Declare that store store-number
is beginning. add-info should be a set of ‘keyword: wvalue’ pairs, sepa-
rated by newlines. (It may be blank.) This information will be sent to
the significant event system, and may be entered in the logbook.

store_end add-info — Declare that the current store is ending. add-
info should be a set of ‘keyword: wvalue’ pairs, separated by newlines.
(It may be blank.) This information will be sent to the significant event
system, and may be entered in the logbook.

When this command is issued, any physics runs in progress will be
automatically ended (as with force_stop).

timeout — Force the download in progress to timeout. Unlike abort,
it is global — abort will only affect a client’s own downloads. Like
abort, it does not generate a DONE or FAIL response.

update pattern — Request asynchronous updates for changes in COOR’s
configuration database for all objects matching the regular expression
pattern. If pattern is omitted, any previous update request is canceled.

The messages sent back by COOR when updates occur are of one of
three forms:

38

— UPDATE_MODATTR objname attrs — Some attributes of objname
have changed. Attrs is a string which when passed through the
Python reader will yield a Python dictionary containing the mod-
ified attributes.

— UPDATE_NEWOBJ objname attrs — The object objname has been
added to the configuration. Attrs is a string which when passed
through the Python reader will yield a Python dictionary contain-
ing the attributes of the new object.

— UPDATE_DELOBJ objname — The object objname has been re-
moved from the configuration.

Only the pattern from the last update command is remembered.

e username name [progname]/ — Set a username and optional program
name for this client, for use in status displays.

8.2 (Coor-Downloader Communication

There is a common protocol for communication between COOR and the tar-
gets. Within the context of this protocol are various target-specific com-
mands. We first describe the common protocol, then summarize the target-
specific parts.

8.2.1 Common Protocol

The design of the common downloading protocol was the result of several
considerations:

e The protocol should be usable for all the download targets.

e [t should allow the target to process requests concurrently. This implies
that cOOR should be able to send multiple download requests to the
target without receiving a reply, and that the replies may be sent back
to COOR in a different order than that in which the commands were
received.

e [t should allow the target to process requests in a “batched” fashion —
to queue up all the commands for a particular configuration request,
and only start processing them once all commands have been received.

39

This implies that there must be some way to mark the end of a config-
uration request.

e The protocol should be easy to test, debug, and extend.
The resulting protocol has the following characteristics:

e The 1TC package is used for the underlying transport. One command
or acknowledgment is sent per ITC message. All messages are of type
String_Message. Where it makes sense, targets should not be case-
sensitive.

e Commands are always sent one way: from COOR to the target. As
discussed in Sec. 2, a target that needs to make asynchronous requests
should explicitly open an additional command channel to COOR.

e Except as noted below, every command should result in an acknowl-
edgment from the target back to COOR. In some cases, the order of
acknowledgment may not be the same as the order in which the com-
mands were issued. In order to keep straight the correspondence be-
tween commands and acknowledgments, each command has a “com-
mand id” which is sent with the command and returned with the ac-
knowledgment. Targets should not assume anything about the format
of this id, other than that it consists of printable characters, contains no
whitespace, and is no longer than 32 characters. Do we want to make
stronger guarantees here? FE.g., that it’s a monotonically increasing
number?

e Except as explicitly, noted, commands can be batched. A batch is
implicitly started by the first batched command received. It is ended by
the special command ‘configure’. When configure is received, the
batched commands should describe a consistent configuration. Once
the configure command is sent, no additional commands will be sent
(except for abort, and, if the connection breaks, init) until every
command in the batch (including the configure command) has been
acknowledged.

The target can start processing commands at any time. It can pro-
cess them as they are received, or it can queue them up and process
them all once the configure command has been received. Acknowl-
edgments can be sent before the configure command arrives. Except

40

for the configure command (which must be acknowledged last) and
for commands within a block, commands may be acknowledged in any
order.

Note that it is possible for COOR to send a configure command with no
preceding commands. Targets should simply acknowledge and ignore
these requests. (Actually, this should not happen any more, but it’s
still a good idea for targets to be able to deal with it.)

Commands which are not batched are called immediate. They will not
be followed by a configure command, and in most cases, no other
commands will follow (except for abort and possibly init) until the
command is acknowledged.

The general format of a command sent by COOR to the targets is as
follows:

command-id command [args. ..]
The target should reply to the command with a message of the form
command-id status [text]

The status should be one of the strings ‘ok’, ‘bad’, ‘progress’, or ‘more’. The
optional text is either status information being returned from the command
(if status is ‘ok’) or an error message (if status is ‘bad’). If text would take
more than one line, each line should be sent separately, in order. For all
except the last line, status should be ‘more’. For the last line, status should
be the final value (either ‘ok’ or ‘bad’).

If status is ‘ok’ and the command was not requesting any information,
then tert may be blank. If status is ‘bad’, text should contain a brief error
message.

A status of ‘progress’ is similar to ‘more’, except that the message is
displayed to the user immediately, instead of being saved until an ‘ok’ or
‘bad’ is received. When a ‘progress’ message is processed, it will also reset
the download timeout. Thus, a downloader working on a lengthy operation
can prevent COOR from timing out by periodically sending these messages.
(In such a case, the text field should be a message reassuring the user that
things are still working properly.)

There is a set of common commands which should be recognized by all
targets. They might not have to do anything for some of them, but they
should be able to recognize and acknowledge them:

41

e configure — As discussed above. A simple target which processes all
commands as they are received can ignore these messages.

e abort — This command is somewhat special. It it sent to the targets
by cOOR when a download has been aborted. When this command is
received, the target may discard any commands which it has queued,
but has not yet processed. If there are no queued commands, the abort
request should be ignored. (In particular, the target should not undo
any commands which it has already reported as completing success-
fully.) The target need not respond to the abort command.

A simple target which processes all commands as they are received can
ignore these messages.

e init — This is an immediate command. The target should immedi-
ately end all ongoing DAQ), release resources, and restore all program-
ming to the default state.

It should not be necessary to reboot nodes, reload FPGAs, etc. in
response to this command. The assumption being made is that the
target system is still sane, but is in an unknown state.

This is sent by COOR on startup, and whenever a connection to a target
has been broken and reestablished.

e start_run runno spectrigs — This is an immediate command. Run
number runno is starting. A successful reply to this command im-
plies that the target is now ready for that run to start. Spectrigs is a
list of Level 1 specific triggers participating in the run. It is a space-
separated list of integers. (This may get abbreviated using a notation
like FIRST:LAST to specify a range.)

At the time this message is issued, all the triggers associated with the
run in question will be disabled, so data for that run will not be flowing
yet.

e stop_run runno — This is an immediate command. Run number
runno is stopping. A successful reply to this command implies that
the target has done what it needs to do in order to stop the run.

At the time this message is issued, all the triggers associated with the
run in question will be disabled. But there is presently nothing to
synchronize flushing of any buffered data. Is this needed?

42

e begin_block

e end_block — These are not really commands, per se, and need not
be acknowledged. Commands which occur between begin_block and
end_block must be processed in the order in which they were sent.

Only batched commands may appear within a block, and configure
may not appear within a block.

Not all order dependencies will be protected within a block. In general,
if it doesn’t make sense to reorder the commands they won’t be put
into a block. (This will probably only be used for EP1CS downloads.)

® pause_run runno

e resume_run runno — These are immediate commends. Note that run
runno is being paused or resumed. These messages are advisory only:
separate commands will be sent to actually enable or disable data flow
(for example, disabling levell trigger bits).

e begin_store storenum
e end_store storenum — Note that a store is beginning or ending.

Note one exception to the above protocol: all messages sent by COOR to
the data logging system will have the string ‘COOR ' prefixed to them.

The following sections summarize the target-specific commands for each
target. Note that these are not intended to be complete summaries of the
commands which the targets can accept; rather, they document the subset
of those commands which the present implementation of COOR will actually
send.

8.2.2 (CoMiIcs

The process used to download EPICS devices is called comics. Every down-
loadable EPICS device has an object name, which consists of a class-tag: name
pair. (See Sec. 6.) The downloadable state of a device consists of a set of
named attributes, each of which has some value.

The command to request a download consists of the device name (without
the class tag) followed by a list of attribute name-value pairs:

set name attr value ...

43

Any value which contains embedded whitespace should be enclosed in single
quotes.

If the command string contains “VERIFY ’YES”, then this is a request for
a verify transaction.

8.2.3 Level 1

The Level 1 target is presently used to configure both the Level 1 trigger
framework and the Level 1 calorimeter trigger.
Here are the commands used to configure the Level 1 framework:

e increment_lbn

Request a new luminosity block number from Level 1. The TCC should
increment its LBN count and return it (in decimal representation) as
the body of the reply message, in the format

<[bn>

e L1FW_Pause

e L1FW_Resume

Pause or resume all trigger processing. At present, these messages are
generated only around trigger enable or disable requests, to ensure that
they take effect simultaneously. (But the pause/resume framing may
be omitted if only a single bit is being enabled or disabled.)

e L1FW_Expo_Group egnumber
[Deallocate]
[And_Or_List termstring|
[Geo_Sect_List geosect-string|

Configure L1 exposure group egnumber. The list of associated and/or
terms is given by termstring. This is a space-separated list of integers;
a dash before an integer indicates that that particular term is to be
vetoed. The list of geographical sections to read out is given by geosect-
string. This is a space-separated list of integers, except that a range of
consecutive integers from first to last inclusive may be written using
the notation ‘first: last’.

If the Deallocate keyword is present, the exposure group should be
reset to its default configuration.

44

e L1FW_spec_trig bitnumber
[deallocate]
Prescale_Ratio prescale]
Prescale_Percent prescale]
L2_Unbiased_Sample ratio]
L1_Qualifier [Iqualifiers]
Obey_FE_Busy]|
Auto_Disabled]

coor_enable]
force_l2reject]
Obey_Individual_Disable O]
expo_group egnumber]
And_Or_List termlist|

[
[
[
[
[
[
[Re_Enable]
[
[
[
[
[

Configure L1 specific trigger bitnumber. If bitnumber starts with a
dash, any boolean options mentioned in the command are to be turned
off ; otherwise, they are to be turned on.

The keywords in the command have the following meanings:

deallocate — Reset the bit to its default configuration.

Prescale_Percent prescale — Set the bit’s prescale to prescale,
as a percentage. The prescale value should be between 0 and 100.

Prescale_Ratio prescale — Set the bit’s prescale to prescale, as
a ratio. (L.e., pass 1 of prescale events.)

L2_Unbiased_Sample ratio — Set the Level 2 unbiased sample
ratio for this bit. This feature controls the assertion of the L2
unbiased sample L1 qualifier flag for some fraction of the events.
(There is only one such L1 qualifier flag common to all 128 trigger
bits.) This feature is implemented with a 24-bit counter, giving
an allowed value range of 1-22* = 16, 777,216. When a ratio of NV
is programmed, the counter is initialized with a random number
between 0 and N — 1. The counter is decremented every time the
bit fires. The L2 unbiased sample L1 qualifier flag will be set for
the one event where this counter reaches the value zero. A ratio of
1 corresponds to asserting the qualifier for every event for which
this trigger bit fires. This feature cannot be disabled; instead, set
the ratio to its maximum value.

45

— L1_Qualifier [lqualifiers — Set the bit’s L1 qualifier mask to
[1qualifiers, which should be a space-separated list of integers.

— Obey_FE_Busy — Turn on/off whether or not the bit is disabled
on front-end-busy.

— Auto_Disabled — Turn on/off auto-disable (one-shot) mode.
— Re_Enable — Reenable an auto-disabled bit.
— coor_enable — Enable/disable this trigger bit.

— force_12reject — If true, then this bit should not be processed
by level 2. Instead, just treat it as if it was rejected by level 2.

— Obey_Individual_Disable 0 — If true, this bit can be disabled
by level 3. Otherwise, this bit ignores disables from level 3.

— expo_group egnumber — Set the exposure group associated with
this trigger bit to egnumber, which should be an integer.

— And_Or_List termlist — Set the list of and/or terms for this bit
to termlist. This is a space-separated list of integers; a dash before
an integer indicates that that particular term is to be vetoed.

e L2 _Global_Ignored

Specify that L2 is not to be used for making trigger decisions. Instead,
the L2 framework should wait a fixed amount of time (~ 100 us) and
automatically accept all the specific triggers present in the L1 specific
trigger fired mask (except for those specific triggers programmed with
the “Force_L2Reject” message).

COOR will send this message only immediately after an init.

e L2_Global_Obeyed
Specify that L2 is to be used for making trigger decisions.

COOR will send this message only immediately after an init.

e SCL_Initialize

Reinitialize the serial command links. This is an immediate command.

Here are the commands used to configure the Level 1 calorimeter trigger:

46

e L1CT_Energy_Threshold type Comparator number Value thresh

Set a threshold for comparator number (an integer) of type type to
value (a floating point number). The possibilities for type are ‘EM_Et’,
‘HD_Et’, “TOT_Et’, and ‘Miss_Pt’.

e LI1CT_Ref_Set type number contents

Set the reference set number of type type to the string contents. (This
string is passed through COOR uninterpreted, except that separate lines
are send as separate messages.) The type keyword may be one of the fol-
lowing: ‘EM_Et_Ref_Set’, ‘HD_Veto_Ref_Set’, ‘TOT_Et_Ref_Set’, and
‘Large_Tile_Ref_Set’.

Alternatively, if contents is the string ‘Deallocate’, then this reference
set, is being deallocated.

e L1CT_Count_Threshold type Ref_Set refset Comparator number
Value value

Set the count threshold number (an integer) of type type associated
with reference set refset (an integer) of that type to value (an integer).
The possibilities for type are: ‘EM_Et_Towers’ and ‘Tot_Et_Towers’.

8.2.4 Level 2

Here are the commands used to send Level 2 programming information:

e L2Crate_List crate-list Declare the set of Level 2 crates that are to be
used. crate-list is a space-separated list of names. This message gets
sent before a run transition.

e 12script script-text Send the text in script-text to Level 2.

8.2.5 Level 3

Here are the commands COOR sends to configure Level 3:

e clear_client client-number

Delete all configuration information for client client-number. The num-
ber may then be reused in subsequent configuration messages.

47

define_trigger [3bit client-number [1bit [2bit filter-name

Define L3 bit number [3bit for client client-number, associated with the
L1 bit [1bit and the L2 bit [2bit, with name filter-name.

dsm_addr dsm-host dsm-port

This tells Level 3 that the DAQ State Manager can be found at network
address dsm-host: dsm-port. This is an immediate command, and is
sent just after the init message.

farm_nodes client-number type-name num-nodes

The configuration being requested by client client-number wants to be
assigned num-nodes level-3 nodes of type type-name. A typename of
“REGULAR” will be used for normal running. If num-nodes is nonzero,
then that many nodes should be allocated for the exclusive use of this
client. Otherwise, if num-nodes is 0, this client wants to share all
otherwise unassigned nodes in the farm with other users. (For normal
running, num-nodes should be 0.)

11ibit [1bit [1bit-name geosect-list

Note that Level 1 bit [1bit is named [1bit-name and that it reads out
the crates specified by geosect-list. The latter is a space-separated list
of integers, except that a range of consecutive integers from first to last
inclusive may be written using the notation ‘first: last’.

12bit [2bit [2bit-name

Note that Level 2 bit (2bit is named [2bit-name.

runinfo client-number runnumber

Declare that run number runnumber is being started by client client-
number. This is an immediate command, and is sent just before the
start_run command.

set_client client-number configname

Start definitions for a new client client-number. Configname gives the
name of the configuration which this client is loading.

48

e stream stream-number client-number stream-name

Define a new stream for client client-number. The number of the stream
is stream-number. This is a small integer, and is globally unique. The
name of the stream is given by stream-name; this should be unique
among all streams for a given client, but will not necessarily be globally
unique.

e trigger_list client-number trigger-list-text

Provide the trigger list text for client client-number. The trigger list
should refer to Level 1, Level 2, and Level 3 bits and streams by name; it
is the responsibility of Level 3 to map these to the appropriate numbers
using the information contained in the other messages.

If trigger-list-text is missing, this should be interpreted as a request to
pass all events to all defined streams.

8.2.6 SDAQ

Here are the commands COOR sends to configure the secondary data acqui-
sition system.

e clear_client client-number

Delete all configuration information for client client-number. The num-
ber may then be reused in subsequent configuration messages.

e dsm_addr dsm-host dsm-port

This tells SDAQ that the DAQ State Manager can be found at network
address dsm-host: dsm-port. This is an immediate command, and it
sent just after the init message.

e 11bit client-number bitnumber. ..

Declare that the configuration for client client-number is using the trig-
ger framework with level-1 bit number bitnumber. For such configura-
tions, COOR will not send sdag_run or sdag_stop commands. If the
configuration uses multiple level-1 bits, they all will be listed in this
message (separated by spaces). Note that it is also possible for this
message to contain no level-1 bit numbers. This can happen, for ex-
ample, in the case where a SDAQ run is parasitic off of a PDAQ run
set up from a different configuration.

49

runinfo client-number runnumber

Declare that run number runnumber is being started by client client-
number. This is an immediate command, and is sent just before the
start_run command.

sdaq_crates client-number crate-list

Declare the list of crates to be read out by client-number. Crate-list
is the list of geographical sectors to use. It is a space-separated list of
integers, except that a range of consecutive integers from first to last
inclusive may be written using the notation ‘first: last’.

sdaq_run runnumber

SDAQ should start data flowing for run runnumber. This is an imme-
diate command.

sdaq_stop runnumber

SDAQ should stop the data flow for run runnumber. This is an imme-
diate command.

sdaq_type client-number type-string

Declare the SDAQ type string. The type-string parameter is passed
through unmodified from the input configuration.

set_client client-number configname

Start definitions for a new client client-number. Configname gives the
name of the configuration which this client is loading.

stream stream-number client-number stream-name

Define a new stream for client client-number. The number of the stream
is stream-number. This is a small integer, and is globally unique. The
name of the stream is given by stream-name; this should be unique
among all streams for a given client, but will not necessarily be globally
unique.

50

8.2.7 Data Logging

Since data logging configuration information is associated with particular
clients of COOR, we must have some way of identifying these clients to the
logging system. For this purpose, each client needing logger configuration is
assigned a small integer “client number.” The commands sent are as follows:

e clear_client client-number

Delete all configuration information for client client-number. The num-
ber may then be reused in subsequent configuration messages.

e 11bit client-number [1bit-number bit-name

Declare that client client-number is using level-1 trigger bit number
[1bit-number named bit-name.

e 12bit client-number [2bit-number [1bit-number bit-name

Declare that client client-number is using level-2 trigger bit number
[2bit-number, depending on level-1 trigger bit number [1bit-number and
named bit-name.

e 13bit client-number [3bit-number [2bit-number bit-name

Declare that client client-number is using level-3 trigger bit number
[3bit-number, depending on level-2 trigger bit number [2bit-number, and
named bit-name.

e 1bn client-number lbn

This message is sent before begin-run and end-run commands. Before a
begin-run command, it means that all events for the new run for client-
number will have a luminosity block number greater than or equal to
[bn. Before an end-run command, it means that all events for the run
being ended will have a luminosity block number less than [bn. The lbn
field will be —1 if the run does not use level-1 or if there was an error
retrieving it from level-1.

e QUERY RUN

Produce a report summarizing the status of all runs in progress. This
should be appended to the end of the reply message (the tezt field). For
each run, there should be a space-separated triple of numbers, giving

ol

the run number, number of events received for this run, and event rate
in Hz. The triples for different runs are separated by newlines.

e runinfo client-number runnumber

Declare that run number runnumber is being started by client client-
number. This is an immediate command, and is sent just before the
start_run command.

e set_client client-number [recording on| [recording off]|
[configname configname]

Change configuration information for client client-number. Configname
gives the name of the configuration which this client has loaded. The
strings ‘recording on’ and ‘recording off’ toggle recording on and
off for this client.

e stream stream-number client-number relrate stream-name family-name
family-rate
Define a new stream for client client-number. The number of the stream
is stream-number. This is a small integer, and is globally unique. The
name of the stream is given by stream-name; this should be unique
among all streams for a given client, but will not necessarily be globally
unique. The file family name is given by family-name. The parameter
relrate is a floating-point number, giving the relative expected data rate
for this stream. The logging system can use this as a hint for assigning
resources to streams. (The stream messages for a given client will be
sorted in order or descending relrate.) family-rate is the sum of relrate
over all of this client’s streams in family family-name.

8.2.8 Calibration manager

Here are the commands COOR sends to configure the calibration manager.

e calib_ref client-number reference-string
Declare the calibration reference string. The reference-string parameter
is passed through unmodified from the input configuration.

e calib_type client-number type-string

Declare the calibration type string. The type-string parameter is passed
through unmodified from the input configuration.

52

clear_client client-number

Delete all configuration information for client client-number. The num-
ber may then be reused in subsequent configuration messages.

coor_addr coor-host coor-port

This tells the calibration manager that COOR’s client port is at network
address coor-host: coor-port. This is an immediate command, and it
sent just after the init message.

crates client-number crate-id-list

Declare the list of crates to be read out by client-number. Crate-id-
list is gives the crate ID numbers of the crates participating in the
calibration. This is a space-separated list of integers, except that a
range of consecutive integers from first to last inclusive may be written
using the notation ‘first:last’.

dsm_addr dsm-host dsm-port

This tells the calibration manager that the DAQ State Manager can
be found at network address dsm-host : dsm-port. This is an immediate
command, and is sent just after the init message.

runinfo client-number runnumber

Declare that run number runnumber is being started by client client-
number. This is an immediate command, and is sent just before the
start_run command.

set_client client-number configname
Start definitions for a new client client-number. Configname gives the
name of the configuration which this client is loading.

stream stream-number client-number stream-name

Define a new stream for client client-number. The number of the stream
is stream-number. This is a small integer, and is globally unique. The
name of the stream is given by stream-name; this should be unique
among all streams for a given client, but will not necessarily be globally
unique.

53

8.3 Coor-Logbook Communication

The communication protocol between COOR and the loghook is based on
XML. CoOR sends to the logbook an XML-formatted log entry, as described
below. The response from the loghook should be one of the following strings,
along with a terminating newline:

e <SUCCESS/> — The entry was successfully committed to the logbook.

e <FAIL/> — There was a transient failure in committing the entry. The
operation might succeed if retried later.

e <ERROR/> — There was a permanent failure in committing the entry
(i.e., the message sent was formatted incorrectly). If the same operation
is retried, it would fail again.

The logbook entry message should consist of a single MESSAGE element,
containing the elements OPERATOR, CATEGORY, TOPIC, KEYWORD, and TEXT.
The MESSAGE element has a TYPE attribute, which should be set to "text".
Here is an example:

<MESSAGE TYPE="text'">
<OPERATOR>Coor</0OPERATOR>
<CATEGORY>DAQ_Shift/Log</CATEGORY>
<TOPIC>General_Log</TOPIC>
<KEYWORD>begin_run</KEYWORD>
<TEXT><! [CDATA[2001 Jul 02 17:15:41 CDT Start run 1355
calmuon-1.0
Config type: test Comics type: data
Recording on Store: 12345
Owned crates:
ecnse (0x4a) cmesc(0x3b) trgfr(0x1f) 1l3wakeup(0x7f)
Writing streams:
daq_test
11></TEXT>
</MESSAGE>

8.4 Run Transition SES Messages

For each run transition, COOR sends a message to the significant event sys-
tem (SES). These are messages of type SE_Run_Message. The body of the

54

message has the following form:
type number lbn d
In the above, type is one of the following strings:
e run_started
e run_ended
e run_paused
e run_resumed
e store_started
e store_ended

The field number is either the run number or the store number, and Ilbn
is the luminosity block number at the transition. The field d is a string
representation of a python dictionary. This dictionary will contain both the
run attribute information returned after a load command (see Sec. 8.1) as
well as any information that was entered by the operator via a TAKER dialog.

8.5 Name Server Messages

COOR also provides a simple name/value service. This service is accessed by
connecting to the port given by dOonline_names.COOR_NAME_SERVER_ADDR.

Names are hierchical, with components being separated by a “.’. This,
one can have names like ‘. coor.storenum’ or ‘.cal.ccne.peds’. The value
of a name is thus either a string or a set of other names. In addition to the
primary value, a name can have a set of string-valued properties associated
with it.

The messages sent to the server are itc String_Message’s, with the format
as below. A reply is sent to each message, also a String_Message (except
for “getall”); the first word in this string is either ‘ok’ or ‘bad’.

Here is a list of the messages recognized by the name server.

e get name — Return the value of name. If name has a simple string
value, this returns

ok name value

%)

If name is a directory, this returns
ok name. namelist

(note the trailing period on name). The field namelist is a space-
separated list of the names in the directory. Any of these which are
themselves directories will have a trailing period.

Otherwise, this returns ‘bad’.

set name value — Set name (which must not already be a directory) to
value. Any nonexistent directories specified in name are automatically
created. Returns either ‘ok’ or ‘bad’.

getprop name prop — Return the property prop of name. The prop-
erty must have been previously set with “setprop.” Returns either ‘ok
value’ or ‘bad’.

setprop name prop value — Set property prop (which must not start
with an underscore) of name (which must already exist) to value. Re-
turns either ‘ok’ or ‘bad’.

del name — Delete name. If name is a directory, delete the entire tree
under it. Returns either ‘ok’ or ‘bad’.

getall name — Returns name, and everything underneath it (if it’s a
directory) as a Python dictionary wrapped in a Py_Message. If there’s
a problem, None will be returned instead.

checkpoint — Forces the database to be written to disk immediately.
Returns either ‘ok’ or ‘bad’

56

9

Run Transitions

Here we summarize the actions taken when starting and stopping runs.
Starting a run:

Do a revalidation step. If this fails, the run cannot start.

Request a new luminosity block number from Level 1 (only for runs
using primary DAQ). If this fails, the run cannot start.

Send a start_run message to all targets. Wait until all have responded.
If any report an error, the run cannot start. Once all have responded,
we take care of all the other actions taken at start-run: writing the
brun file, notifying the significant event system, and so on.

Tell the L1 framework to enable the trigger bits for this run.

Stopping a run:

Tell the L1 framework to disable the trigger bits for this run.

Request a new luminosity block number from Level 1 (only for runs
using primary DAQ).

Send a stop_run message to all targets. Wait until all have responded.
Once all have responded, we take care of all the other actions taken at
end-run: writing the erun file, notifying the significant event system,
and so on.

57

10 Writing Trigger Configurations

Trigger configurations describe how to configure the trigger system and how
devices are to be downloaded. This section discusses the language used to
describe these configurations.

10.1 Finding Configurations

COOR locates trigger configurations using a configuration name. These con-
figurations can come from different places and be in different formats. COOR
maintains a list of “configuration loaders.” Given a configuration name,
COOR asks each loader in turn to load that configuration, until one succeeds.
The configuration loaders presently defined are listed below.

10.1.1 Python Script

Given configname, if a file configname.py exists in the directory given by
the configuration parameter trigger_config_path (normally the value of
the environment variable COOR_CONFIG_ROOT), it is read as a python script.
This file should define a function called configname, which takes the clientstat
object as an argument and returns the download list. Note that the details
of this are subject to change; for most trigger configurations, using the XML
format (described below) is recommended.

10.1.2 XML

Given configname, if a file configname .xml exists in the directory given by
the configuration parameter trigger_config_path (normally the value of
the environment variable COOR_CONFIG_ROOT), it is read as an XML format
trigger configuration. The details of this format are described in the remain-
der of this section.

Before reading a configuration file, COOR scans for files in the readouts
subdirectory of the configuration tree. Any files found there with a ‘.xml’
extension and names that are legal XML names are made available as XML
external entities. For example, if there is a file readouts/allcrates.xml,
you can include its contents in a trigger configuration with ‘¢allcrates;’

Note also that COOR will not search the readouts subdirectory for trigger
configurations.

58

Implementation note: The XML reader works by first transforming the
XML into a DOM tree; all COOR-specific processing is done using the DOM
tree. The XML/DOM library from the XML SIG is used. This implies that
the tool which extracts the trigger configuration files from the database might
best work by constructing a DOM tree and then converting that to XML. If,
in the future, it is desired to get rid of the intermediate file and have COOR
access the database directly, this would make pasting the two pieces together
easier.

10.1.3 Dumped States

Whenever a recorded run is started, COOR dumps out its state in a file called
runnnnnnnn .state, where nnnnnnn is the run number. These files can be
read back in to reproduce previous configurations.

Given configname, if a file configname . state exists in the directory given
by the configuration parameter trigger_config_path (normally the value of
the environment variable COOR_CONFIG_ROQT), it is read as a dumped state.
Note that configname should have the format runnnnnnnn.

10.1.4 Custom XML

A configuration can also be defined by sending an XML string directly to
COOR, instead of reading it out of a file. For this to happen, the “config-
uration name” should start with the string ‘custom:’; the remainder of the
string is the trigger configuration itself.

10.2 XML

The trigger configuration syntax is based on the extended markup language
(XML) from the WWW Consortium. XML is (almost) a subset of SGML,
and is thus also related to HTML. For a full description of XML and its
use from Python, follow links from http://www.python.org/topics/xml.
Here, we simply outline a few of its essential features.

An XML document can be viewed as a tree of elements. An element
can contain other element; it can also contain text. Each element has a
set of attribute-value pairs associated with it. Elements are classed into
named types; the set of allowed attributes for an element is determined by
its type. An element type may also have restrictions on the types or ordering

59

10

11

12

13

14

15

of the elements that it contains. This information about the element types
is contained in a “document type definition” (DTD).
The syntax for writing an element in an XML file looks like this:

<element-name attribute=value ... >
element-contents
</element-name >

Note that XML is case-sensitive. For the special case of an empty element
(no contents), this may be abbreviated:

<element-name attribute=value ... />

See Sec. 10.3 for examples.

10.3 Example

This section presents a couple annotated examples of trigger configurations.
For the full details on the element types used, see the following reference
sections. In addition, the DTDs used to read the trigger configurations are
reproduced in Appendix A.

Here is an example of a configuration using the primary DAQ readout:

<?xml version="1.0"?>
<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<!-- A configuration request for testing. -->
<configuration name="comics_testl" version="1.0">

<download>
<Cal_ADC_Crate name="ecnnw" blsmode="normal"/>
<Cal_ADC_Crate name="ecnsw" blsmode="normal" ownmode="exclusive"/>
</download>
<download name="muocrates">
<Muo_Crate name="fmsm"/>
<Muo_Crate name="fmnm"/>
</download>

<download name="1l2crates">

60

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

<L1_Crate name="11cal"/>

<L2_Crate name="12cal"/>
<L2_Crate name="12glb" />
</download>

<crate_list name="calcrates">

<crateref ref="ecnnw"/>
<crateref ref="ecnsw"/>
</crate_list>

<crate_list name="allcrates">
<crateref ref='"calcrates"/>
<crateref ref="muocrates"/>

<crateref ref="12crates"/>

</crate_list>

<level2> (6]
<l2calem pt="10"/>

<12emtool name="pt3" ieta="1" iphi="1" minet="3" requiretrack="-1"/>

<12emfilter name="pt1l0"

emfrac="0.15" minet="10" isofrac="0.25" tool="pt3"/> @

</level2> @

<lirefsets>

<lljet_refset name="jet10">

Value 10.0
</1l1ljet_refset>

</lirefsets>
<trigdef>

<expogroup name="egl" readout="allcrates'">

<lltermlist>

<lispecterm name="fastz"/>

</litermlist>

<llitrigger name="l1lbit1"
<litermlist>

<llspecterm name="fastz"/>
<lispecterm name='"pbar_halo" require="veto"/>

prescale="5">

61

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

<lljetcount jet_refset="jetl10" count="1"/>
<limuo name="mu2pt2cllo"/>
</litermlist>
<12trigger name="12bit1">
<12script>
<12filter name="pt10"/>
</12script>

<13trigger name="13bit1"/>
</12trigger>

</lltrigger>
</expogroup>
<triglist>

This is some trigger list text.
</triglist>

</trigdef>

<stream name="xstr" relrate="2.4"/>
</configuration>

Lines 1 and 2: These two lines are required at the start of every trigger
configuration file. They identify the file as using XML and give the

DTD to which the file conforms.

Line 4: This shows the syntax of an XML comment.

Line 5: This line is the start of the top-level element of the file, named
configuration. It identifies the name and version of this configura-
tion. Additional options may also be specified here; see the reference
section for details. Note that if the configuration is read from a file,
the file name must match the name and version specified here. For this

example, the file must be called “comics_test1-1.0.xml”.

Lines 7-14: This is the download element, in which the downloads to
EPICS devices are defined. The download element contains one element
for each device to be allocated and downloaded; the name attribute
gives the name of the device being requested. Each device also has a
device type, and the name of the element used to reference a device

62

must match its type. Devices can be allocated as either “shared” or
“exclusive” — if “shared,” then other configurations can also allocate
this device, provided that the requests are compatible. Shared is the
default, but may be overridden by explicitly specifying the ownmode
attribute, as in line 9. Note that if you are going to want to make
changes to the device after the initial download, it should be allocated
in exclusive mode. The additional parameters depend on the device
type, and are described in Sec. 10.6.

Note that multiple download elements are allowed.

Lines 20-28: The next section contains a set of crate_list elements.
These are a way of assigning a name to a set of readout crates, in
order to be able later to specify sets of crates to read out. FEach
crate_list element has a name attribute, which is the name of the
list being defined. It then contains a set of crateref elements, each of
which names either a readout crate defined in the download section or
another crate_list. All the referenced crates are merged together and
duplicates eliminated; the ordering doesn’t matter. Note that circular
crate_list references are not allowed. Empty lists are allowed (but
are probably not very useful).

Note that you can also define a crate list by using the name attribute
on the download element. Also, anywhere where you could specify a
crate list name, you can also just give a space-separated list of crate
(or crate list) names.

@ Lines 30-37: This element contains definitions for level 2 tools and
filters that may be used in this configuration.

Line 31: This element defines a level 2 preprocessor, saying that we
want to use the 12cal preprocessor. This requires that we have already
allocated the 12cal readout crate above.

Line 33: This element defines a level 2 tool. The tool is of type
“l2emtool” and is named “pt3”. This name is used only in order
to identify this tool from elsewhere within this configuration; it is not
sent to level 2. The remaining attributes are the tool attributes.

@ Line 36: This element defines a level 2 filter. Actually, as far as COOR
is concerned, there is no difference between filters and tools; they just

63

have different names. In the attributes for this filter, note the reference
to the tool defined earlier.

Lines 39-43: This element contains definitions for the level 1 calo-
rimeter trigger reference sets. A reference set associates a threshold
with each trigger tower in the calorimeter. The precise syntax for the
contents of a reference set is specified in the calorimeter trigger pro-
gramming document. Reference sets come in several flavors: electro-
magnetic, electromagnetic veto, jet (total energy), and large tile. Each
reference set also has a name, allowing it to be referenced from the
trigger term definitions below. The example shown here defines a jet
reference set named “jet10” with a uniform threshold of 10 GeV.

Line 45: This is the start of a trigdef element, which groups together
the trigger programming for a group of level 3 nodes. You may have
multiple trigdef elements if you have a configuration that uses more
than one level 3 node group. A trigdef element has optional attributes
to specify the size of the node group and the node type desired. A
trigdef element contains a set of expogroup elements, followed by a
triglist element, which contains the level 3 filter programming.

Line 46: Trigger definitions are organized as a tree, with the leaves
being the level 3 filters. Each level 3 filter is associated with a level 2
bit, and each level 2 bit is associated with a level 1 bit. Each level 1
bit, in turn, is associated with an exposure group.

The exposure groups are the basis for calculating luminosity. Level 1
bits with the same crate readout list and the same set of exposure-
sensitive trigger terms are grouped into exposure groups. (This is be-
cause the resources required to maintain a scalar for each bunch for
each trigger bit are prohibitive; but it is feasible to do it for the smaller
number of exposure groups.)

Each exposure group should have a name, for monitoring and logging
purposes. The readout attribute should name a crate_list; it gives
the crates which the level 1 bits in this exposure group will read out. An
expogroup element contains a 11termlist element, giving the trigger
terms for this group, followed by a set of 11trigger elements.

An expogroup element may also appear outside of a trigdef element,
if level 3 is not to be used for these triggers. In this case, the exposure

64

group should not contain any 12trigger definitions.

Lines 47-49 and 51-56: These are examples of level 1 term lists. Term
lists are associated both with exposure groups and with level 1 triggers.
A term list consists of a list of level 1 terms; the currently defined
elements for level 1 terms are described in Sec. 10.7.

Every level 1 term element supports the attribute require, which can
be set to either require (the default) or veto.

Line 50: The start of a level 1 trigger definition. Each such definition
must specify a name attribute. Additional, optional, attributes are
described in Sec. 10.5.

A 11trigger element contains a 11termlist element, giving the terms
required for this trigger bit. Note that this list must be a superset of
the term list for the level 1 bit’s exposure group. The litermlist
element is followed by the list of level 2 triggers associated with this
level 1 bit.

Line 52: This is a “specific” named and/or term — here named “fastz”.

Line 53: Another specific and/or term, but here we require that the

term not be asserted.

Line 54: This is an example of a calorimeter trigger term. It requires

one trigger tower with a total energy exceeding that required by the
“jet10” reference set.

Line 55: This is an example of a muon trigger term.

Line 57: The start of a level 2 trigger definition. Each 12trigger
element must have a name attribute specified, to supply a name for
the bit. At the start of the 12trigger element is a 12script element.
This contains the level 2 programming for this bit, specified as a list of
12filter elements. to see. If the 12script element is omitted, level 2
will always pass this bit. Following the 12script element is the list of
level 3 triggers associated with this level 2 bit.

If a 11trigger element contains no 12trigger elements, then that
level 1 bit is programmed to always generate level 2 rejects.

65

Line 62: A level 3 trigger definition. Each such element must contain
a name attribute, to name the bit. No other information is supplied at
this point; the actual filter definitions are contained in the trigger list
supplied in the triglist element.

Line 66: The triglist element contains the level 3 trigger list script.
This text is passed through to level 3 untouched by cooORr. Note that
if it contains characters which are special to XML, you might want to
put it inside a CDATA construction.

Line 71: Finally, a set of stream elements defines the recording streams.
Each takes a name attribute; the optional relrate attribute provides
information to the logging system for load balancing.

Line 72: This line is the end of the top-level element, and thus the end
of the trigger configuration.

For comparison, here is another example using the secondary DAQ sys-
tem:

<?xml version="1.0"7>
<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<configuration name="comics_test2" version="1.0">
<download>
<SMT_Crate name="smt0_0"/>
</download>
<sdaq type="sdaqtype" readout="smt0_0"/>
<stream name="xstr" relrate="2.4"/>
</configuration>

Line 8: This element identifies the configuration as using the secondary
DAQ system. The readout attribute gives the list of crates to be read
out. The type attribute is a string which is passed through to the
SDAQ supervisor.

66

10.4 Run modes

There are numerous ways in which the primary and secondary data acquisi-
tion systems may be combined in a given trigger configuration. The primary
DAQ may be used in one of three modes:

e None: Primary DAQ is not used.

e F'W-Only: The trigger framework generates level 1 accepts, but then al-
ways generates level 2 rejects. This is indicated by having a 11trigger
element that contains no 12trigger elements. Usually, the exposure
group containing this trigger should not be in a trigdef element.

e Full: Full use of primary DAQ. In this case, the level 1 framework
crate must be read out, and it is automatically added to readout lists.
In addition, trigger accepts are sent to the dummy geographic sector
“I3wakeup”.

(Note, however, that it is possible to program both “FW-Only” and “Full”
triggers in a single configuration.)
The secondary DAQ system may also be used in one of three modes:

e None: Secondary DAQ is not used.

e “Parasitic:” Secondary DAQ is being driven by the trigger framework.
This may have been programmed either in the same configuration or
in a different configuration.

e Full: The secondary DAQ system generates triggers itself.

There are seven legal combinations of these modes, enumerated below.
Examples of configurations for all these modes are given in Appendix B.

e External: Neither PDAQ nor SDAQ is used. This can be used for the
case where data are being fed into the collector /router from an external
source. One should probably specify an explicit (large) stream ID for
such configurations.

e FW-Only: PDAQ in FW-Only mode, no SDAQ. Here, we generate
L1 accepts but always force L2 rejects. This is set up by includ-
ing a 1ltrigger element that contains no 12trigger elements. The
expogroup containing this element should not be in a trigdef element.
This may be useful for tasks like standalone crate testing.

67

e PDAQ: Full PDAQ, no SDAQ. Normal primary DAQ running.

e Parasitic-SDAQ: No PDAQ), parasitic SDAQ. This type of configura-
tion contains a sdaq element, but no primary DAQ definitions. The
parasitic attribute of the sdaq element must be set to “yes”. This
can be useful for using SDAQ to parasitically read out monitoring in-
formation for another run.

e FW-SDAQ: FW-Only PDAQ), parasitic SDAQ. Here, readout is via
SDAQ, triggered by the trigger framework. These configurations should
include both a 11trigger definition as in the “F'W-Only” case and also
a sdaq element. This is used, for example, for tracking calibration runs.

e PDAQ-SDAQ: Full PDAQ), parasitic SDAQ. Normal primary DAQ run-
ning, but also reading out using SDAQ (for example, to read out mon-
itoring information).

e SDAQ: No PDAQ), full SDAQ. Reading out with SDAQ only (no trigger

framework involvement).

The other two combinations are not allowed.

10.5 Generic Element Reference

This section describes the “generic” elements used to describe the trigger
configuration — that is, the elements which do not depend on the available
resources. The other elements types (for device types and level 1 term types)
are described in the following sections.

10.5.1 Element calibration

ATTRIBUTES
Name Type Default
type CDATA #REQUIRED
reference CDATA '"None"
only_streams CDATA ""
readout CDATA #REQUIRED

68

PARENTS

configuration

CONTENTS

EMPTY

DESCRIPTION

Including this element signals that this configuration is to be
used for calibration and the calibration manager should therefore
be involved. The type attribute is a keyword which is passed
through to the calibration manager. The possible values of this
keyword remain to be defined. The reference attribute gives
the reference set name to pass to the calibration manager. The
readout attribute is the list of crates which are to participate in
the calibration; it should be a space-separated list of names, each
of which is either the name of a crate_list or else the name of
an individual crate defined in the download element. Note that
the crates may need to be separately programmed for calibration
mode.

If the only_streams attribute is given, it should be a space-
separated list of stream names. The calibration manager will be
told only about the streams given in this list.

10.5.2 Element client

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
run_number CDATA #REQUIRED

recording (yes|no) #REQUIRED

PARENTS

clients

69

CONTENTS

(configurationx)

DESCRIPTION

This element is not normally used for trigger configurations, but
it is used in the state output COOR produces at the start of a run.

This describes a single client, named name (usually the username
and hostname where the client is running). The number of the
run this client presently has in process is run_number; this is
0 if this client does not have a run in progress. The attribute
recording tells whether this client has recording turned on.

The contents of this element is the configuration which this client
has requested.

10.5.3 Element clients
ATTRIBUTES

Name Type Default
(None.)

PARENTS

None.

CONTENTS

(client*)

DESCRIPTION

This element is not normally used for trigger configurations, but
it is used in the state output COOR produces at the start of a run.

This is the top-level element in the state output; it contains a list
of the active clients.

70

10.5.4 Element configuration

ATTRIBUTES

Name

name

version
autopause
physics

type
comics_runtype
stream_scheme

PARENTS

client

CONTENTS

Type
CDATA
CDATA
(yes|no)
(yes|no)
CDATA
CDATA
CDATA

((download|crate_list)*,

lirefsets?,

(level2?,trigdef+)?,

expogroupk*,
sdaq?,
calibration?,
stream*)

DESCRIPTION

This is the top-level element for a trigger description. The at-
tributes name and version serve to identify this configuration;
the name by which cOOR knows the configuration is formed by
joining together the name and version, separated by a dash. If
the configuration is being read from a file, the name of the file

must match this name.

The type attribute gives the configuration type: global for nor-
mal physics running, special for special physics running, and
test for diagnostic (non-physics) running. The precise meaning

Default
#REQUIRED
lloll

llnoll

Ilnoll
Iltest "

lldatall
mnmn

71

of these types remains to be defined. The set may also be enlarged
later.

If autopause is yes, then the run will automatically be paused
if a fatal alarm occurs. (Once this is implemented in the alarm
systerm.

The physics attribute tags this configuration as being a pri-
mary physics configuration, for purposes of recording luminosity,
downtime, etc. Runs tagged as ‘physics’ get the following special
treatment:

e Pause/resume transitions are recorded in the loghook.

e A recorded physics run cannot be started unless a store is
in progress.

e Only one recorded physics run may be in progress at any
one time.

e TAKER will ask for confirmation before starting a physics
run with recording off.

e TAKER will ask for confirmation before starting a physics
run with no prescale set loaded.

e When a store ends, recorded physics runs will be automati-
cally stopped (as in force_stop).

The attribute comics_runtype gives a default to supply for the
runtype parameter for all coMmics devices that have that at-
tribute.

The attribute stream_scheme gives the stream scheme name, to
be passed through to the database.

The contents of this element start with download, in which the
crate downloads are given, followed by a set of crate_list ele-
ments, giving names to lists of crates for readout.

For a configuration using primary DAQ), the levell reference sets
and level 2 resources may be specified with the 1irefsets and
level2 elements, followed by a set of trigdef elements, one for
each level 3 node group being used.

72

For framework-only configurations, expogroup elements may ap-
pear at this level.

For configurations using secondary DAQ), a sdaq element should
be included. A lirefsets element may also be specified, but it
is ignored unless the trigger framework is being used.

If neither a trigdef nor a sdaq element is present the logger
will be told to receive data, but no one will be told to generate
it. This may be useful for recording data from sources outside of
COOR’s control, such as Sidet.

If a calibration element is present, the calibration manager will
be told to handle streams for this run.

Finally, a set of stream elements define the recording streams.

10.5.5 Element crate_list

ATTRIBUTES

Name Type Default
name CDATA #REQUIRED

PARENTS

configuration

CONTENTS

(craterefx)

DESCRIPTION

The crate_list element provides a way of associating a symbolic
name (name) with a set of readout crates. This name can then
be referenced from a readout attribute.

This element contains a set of crateref elements, each of which
can reference either another crate_list or an individual readout
crate. The final list is the union of all of the crateref elements.
Note that ordering does not matter, and duplicates are ignored.
Also, recursive crate_list elements are not allowed.

73

Duplicate crate_list elements are allowed, as long as their con-
tents are identical. A crate list may also be defined by supplying
the name attribute to a download element.

10.5.6 Element crateref
ATTRIBUTES

Name Type Default
ref CDATA #REQUIRED

PARENTS

crate_list

CONTENTS

EMPTY

DESCRIPTION

These elements are used inside of crate_list elements to refer
to readout crates or other crate lists. The name attribute should
match either the name of a crate defined inside the download
element or the name of a crate_list.

10.5.7 Element download

ATTRIBUTES

Name Type Default
name CDATA """

PARENTS

configuration

CONTENTS

(Device type elements)

74

DESCRIPTION

The download element contains a description of the EPICS set-
tings to be made for this configuration (excluding any made im-
plicitly as part of the trigger configuration). It contains an ele-
ment for each device to be downloaded. These element types are
drawn from the set of known device types. These are described
in Sec. 10.6.

If the name attribute is defined, then this element also defines a
crate list with the given name containing the contents (as would
be done with a crate_list element. In this case, all the elements
within this download should refer to crates.

10.5.8 Element expogroup

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED

number CDATA "
readout CDATA #REQUIRED
other_gs CDATA ""

PARENTS

trigdef,configuration

CONTENTS

(11termlist?,l1ltrigger*)

DESCRIPTION

This element defines a level 1 exposure group named name. The
readout attribute should be a space-separated list of names, each
of which is either the name of a crate_list or else the name of
an individual crate defined in the download element. This is the
set, of crates to be read out by all of the level 1 bits associated
with this exposure group. If the exposure group contains any

75

12trigger elements, then the trigger framework crate (“trgfr”)
is automatically added to the readout list.

If other_gs is specified, it should also refer to a crate list, in
the same manner as for readout. The trigger framework will
be told to send accepts to these crates, but Level 3 will not be
told about them. If the exposure group contains any 12trigger
elements, then the dummy internal sector “l3wakeup” is auto-
matically added to this list.

If the number attribute is specified, it gives the number of the
exposure group to allocate. Otherwise, COOR will choose one.

The element contents start with a 11termlist element, which
gives the level 1 trigger terms to which this exposure group is
sensitive. The term list is followed by a list of 11trigger ele-
ments, describing the level 1 bits associated with this exposure
group.

The name attribute may be the same as a previous exposure
group. In this case, no new exposure group is allocated (unless an
explicit number attribute was given). Instead, any new triggers
defined here are associated with existing exposure group. The
readout, other_gs, and contained l1termlist for the new ex-
posure group definition must be the same as for the previous one.
This can be useful if trigger bits in a single exposure group must
be assigned to different level 3 node groups (and must therefore
appear in separate trigdef elements).

10.5.9 Element llem refset

ATTRIBUTES
Name Type Default
ownmode (exclusive|shared) "shared"
name ID #REQUIRED

number CDATA ""

PARENTS

lirefsets

76

CONTENTS

(#PCDATA)

DESCRIPTION

This element defines an EM reference set to the level-1 calorimeter
trigger. The contents of this element are sent unmodified to the
trigger as the programming for the reference set (except that it
is flattened to a single line).

The name attribute is an identifier which is used to refer to this
reference set in the term definitions.

The ownmode attribute gives the ownership mode for this refer-
ence set. This can be either exclusive, meaning that only this
configuration can have this reference set allocated, or shared,
meaning that another configuration can also allocate this refer-
ence set, provided that the requests are compatible.

If the number attribute is provided, it specifies the specific refer-
ence set which should be allocated. Otherwise, COOR will assign
the numbers. (Note that if you specify the number explicitly, it
must match that of the corresponding 11hadveto_refset.)

10.5.10 Element lilhadveto_refset

ATTRIBUTES
Name Type Default
ownmode (exclusive|shared) "shared"
name ID #REQUIRED

number CDATA ""

PARENTS

lirefsets

CONTENTS

(#PCDATA)

77

DESCRIPTION

This element defines an hadronic veto reference set to the level-1
calorimeter trigger. The contents of this element are sent un-
modified to the trigger as the programming for the reference set
(except that it is flattened to a single line).

The name attribute is an identifier which is used to refer to this
reference set in the term definitions.

The ownmode attribute gives the ownership mode for this refer-
ence set. This can be either exclusive, meaning that only this
configuration can have this reference set allocated, or shared,
meaning that another configuration can also allocate this refer-
ence set, provided that the requests are compatible.

If the number attribute is provided, it specifies the specific refer-
ence set which should be allocated. Otherwise, COOR will assign
the numbers. (Note that if you specify the number explicitly, it
must match that of the corresponding 11em_refset.)

10.5.11 Element 11jet refset

ATTRIBUTES
Name Type Default
ownmode (exclusivel|shared) "shared"
name ID #REQUIRED

number CDATA ""

PARENTS

lirefsets

CONTENTS

(#PCDATA)

78

DESCRIPTION

This element defines a jet (total Ey) reference set to the level-1
calorimeter trigger. The contents of this element are sent un-
modified to the trigger as the programming for the reference set
(except that it is flattened to a single line).

The name attribute is an identifier which is used to refer to this
reference set in the term definitions.

The ownmode attribute gives the ownership mode for this refer-
ence set. This can be either exclusive, meaning that only this
configuration can have this reference set allocated, or shared,
meaning that another configuration can also allocate this refer-
ence set, provided that the requests are compatible.

If the number attribute is provided, it specifies the specific refer-
ence set which should be allocated. Otherwise, COOR will assign
the numbers.

10.5.12 Element 111t_refset

ATTRIBUTES
Name Type Default
ownmode (exclusive|shared) "shared"
name ID #REQUIRED

number CDATA ""

PARENTS

lirefsets

CONTENTS

(#PCDATA)

DESCRIPTION

This element defines a large tile reference set to the level-1 calo-
rimeter trigger. The contents of this element are sent unmodified

79

to the trigger as the programming for the reference set (except
that it is flattened to a single line).

The name attribute is an identifier which is used to refer to this
reference set in the term definitions.

The ownmode attribute gives the ownership mode for this refer-
ence set. This can be either exclusive, meaning that only this
configuration can have this reference set allocated, or shared,
meaning that another configuration can also allocate this refer-
ence set, provided that the requests are compatible.

If the number attribute is provided, it specifies the specific refer-
ence set which should be allocated. Otherwise, COOR will assign
the numbers.

10.5.13 Element lilrefsets

ATTRIBUTES

Name Type Default
(None.)

PARENTS

configuration

CONTENTS

((llem_refset|lihadveto_refset]|
lijet_refset|11lt_refset)x*)

DESCRIPTION

This element collects together definitions for level 1 reference sets.

10.5.14 Element 11termlist

ATTRIBUTES

Name Type Default
(None.)

80

PARENTS

expogroup, lltrigger, sdaq_l1ltrigger

CONTENTS

(Level 1 term elements)

DESCRIPTION

The 11termlist element contains a set of level 1 trigger term
elements. The element types are drawn from the set of known
level 1 term types; these are described in Sec. 10.7. Each of
these elements contains a require element, which can be either
require or veto. It is an error for a term to appear with both

require and veto.

Every term list will always require the “always_on” term, and

will always veto on the “skip_next_n_0" term.

10.5.15 Element litrigger

ATTRIBUTES
Name Type
name CDATA
number CDATA
prescale CDATA
12_unbiased_ratio CDATA
obey_feb (yes|no)
auto_disabled (yes|no)
11_qualifiers CDATA

PARENTS
expogroup

CONTENTS

(11termlist,l2triggerx)

81

Default
#REQUIRED
" 1ll
"16777216"
llyes "

llno "

llOll

DESCRIPTION

This element defines a level 1 trigger bit named name. The
prescale attribute gives the initial prescale value for this bit.
If the value of this attribute ends with a percent sign (‘%’), then
this is considered a percentage prescale; the value in front of the
percent sign should be an integer in the range 0-100. Otherwise,
the value should be a non-negative integer. If it is non-zero, then
it is interpreted as a ratio; i.e., pass pass 1-of-n events). Specify-
ing 0 for the prescale forces the trigger to always be disabled (until
the prescale is changed). If obey_feb is no, this bit will not be
disabled by a front-end busy assertion. If auto_disabled is yes,
this bit will be automatically disabled every time it fires, until
explicitly reset (one-shot mode). The 11_qualifiers attribute
is a space-separated list of level 1 qualifier names (as specified by
l1iqual elements in the resource file). Alternatively, it may be an
integer, in which case it is interpreted directly as the qualifier bit
mask.

The attribute 12_unbiased_ratio gives a value for the Level 2
unbiased sample ratio for this trigger bit. This feature controls
the assertion of the 1.2 unbiased sample L1 qualifier flag for some
fraction of the events. (There is only one such L1 qualifier flag
common to all 128 trigger bits.) This feature is implemented
with a 24-bit counter, giving an allowed value range of 1-2%* =
16,777,216. When a ratio of N is programmed, the counter is
initialized with a random number between 0 and N — 1. The
counter is decremented every time this trigger bit fires. The L2
unbiased sample L1 qualifier flag will be set for the one event
where this counter reaches the value zero. A ratio of 1 corresponds
to asserting the qualifier for every event for which this trigger bit
fires. This feature cannot be disabled; instead, set the ratio to its
maximum value.

If the number attribute is specified, it gives the number of the
trigger bit to allocate. Otherwise, COOR will choose one.

The first child of this element is a 11termlist element, giving
the level 1 term requirements for this bit. This list must be a
superset, of the term list given in this bit’s exposure group. This

82

is followed by a set of 12trigger elements to define the level
2 trigger bits associated with this level 1 bit. If no 12trigger
elements are included, then this trigger bit will be programmed
to always generate level 2 rejects.

10.5.16 Element 12filter

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
count CDATA 1’
PARENTS

12script

CONTENTS
EMPTY

DESCRIPTION

This element defines a single filter to be used in a level 2 script.
The name attribute is the name of a tool/filter defined in the
level2 section of the configuration. The count attribute is the
number of objects to require to pass that tool/filter.

10.5.17 Element 12global

ATTRIBUTES

Name Type Default
USEL1BITS CDATA "O"

PARENTS
level2

CONTENTS
EMPTY

83

DESCRIPTION

This element can be used to specify some global parameters for
the level 2 system.

Documentation pending hearing from 12 folks about exactly what
attributes this should have...

10.5.18 Element 12script
ATTRIBUTES
Name Type Default
(None.)

PARENTS

12bit

CONTENTS

(#PCDATA|12filter) *

DESCRIPTION

This element defines the filters for a single level 2 trigger. The
contents consist of a list of 12filter elements; these requirements
must all be satisfied for the trigger to fire. (A script with no filters
always passes.)

[Previous versions required writing the script text explicitly here.
In this version, that syntax is still accepted, but it is deprecated,
and will be removed in a future version.|

10.5.19 Element 12trigger

ATTRIBUTES

Name Type Default
name CDATA #REQUIRED
number CDATA ""

84

PARENTS

litrigger

CONTENTS

(12script?,13trigger*)

DESCRIPTION

This element defines a level 2 trigger bit named name. It con-
tains a set of 13trigger elements defining the level 3 triggers
associated with this level 2 bit.

If the number attribute is specified, it gives the number of the
trigger bit to allocate. Otherwise, COOR will choose one.
10.5.20 Element 13trigger

ATTRIBUTES

Name Type Default
name CDATA #REQUIRED
number CDATA ""

PARENTS

12trigger

CONTENTS
EMPTY

DESCRIPTION

This element defines a level 3 trigger bit named name. Note that
all this element does is tell COOR that there is a level 3 bit called
name. The actual programming for the bit is embedded in the
trigger list in the triglist element.

If the number attribute is specified, it gives the number of the
trigger bit to allocate. Otherwise, COOR will choose one.

85

10.5.21 Element level?2

ATTRIBUTES

Name Type Default
(None)

PARENTS

configuration

CONTENTS

(12global?,
(Level 2 preprocessor elements, Level 2 tool elements))

DESCRIPTION

This element contains level-2 information not associated with a
particular trigger bit, including tool and filter definitions.

The attributes of this element are deprecated, and should not be
specified in new trigger configurations. They will be removed in
a future version.

This element starts with an optional 12global element, which
specifies global parameters affecting the level 2 system. It then
contains a list of elements requesting level 2 preprocessors. These
elements are described in Sec. 10.8. Note that for each preproces-
sor referenced, the corresponding readout crate must have been
allocated.

Following the preprocessor definitions is a list of level 2 tool and
filter definitions. These elements are described in Sec. 10.9.

10.5.22 Element sdaq

ATTRIBUTES
Name Type Default
type CDATA #REQUIRED
only_streams CDATA ""
readout CDATA #REQUIRED

86

PARENTS

configuration

CONTENTS
((sdag_l1ltrigger)?)

DESCRIPTION

This element is used in configurations using the secondary DAQ
system. The readout attribute is the list of crates which should
be read out; it should be a space-separated list of names, each of
which is either the name of a crate_list or else the name of an
individual crate defined in the download element. Note that the
crates may need to be separately programmed in the download
section to expect SDAQ readout.

The type attribute is a string passed to the SDAQ supervisor.
The possible values of this remain to be defined.

If the only_streams attribute is given, it should be a space-
separated list of stream names. The SDAQ manager will be told
only about the streams given in this list.

The sdag_l1trigger element was previously used to specify the
trigger framework programming for a configuration where the
framework generates triggers for SDAQ. This usage is now dep-
recated; use a separate expogroup element instead.

10.5.23 Element sdaq_lltrigger

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
number CDATA n
prescale CDATA n
12_unbiased_ratio CDATA "16777216"
obey_feb (yes|no) '"yes"
auto_disabled (yes|no) '"no"
11_qualifiers CDATA "o"

expogroup_number CDATA o

87

PARENTS

sdaq

CONTENTS

(l1termlist?)

DESCRIPTION

The use of this element is now deprecated. A separate expogroup
element should be used instead.

This element defines a level 1 trigger bit named name, to be used
for trigging SDAQ runs. The prescale attribute gives the initial
prescale value for this bit. If the value of this attribute ends with
a percent sign (‘%’), then this is considered a percentage prescale;
the value in front of the percent sign should be an integer in the
range 1-100. If the value is 0, then this trigger will be disabled.
Otherwise, the value should be a positive integer. In this case, the
prescale is interpreted as a ratio; i.e., pass pass 1-of-n events). If
obey_feb is no, this bit will not be disabled by a front-end busy
assertion. If auto_disabled is yes, this bit will be automatically
disabled every time it fires, until explicitly reset (one-shot mode).
The 11_qualifiers attribute is a space-separated list of level 1
qualifier names (as specified by 11qual elements in the resource
file). Alternatively, it may be an integer, in which case it is
interpreted directly as the qualifier bit mask.

The attribute 12_unbiased_ratio gives a value for the Level 2
unbiased sample ratio for this trigger bit. This feature controls
the assertion of the L2 unbiased sample L1 qualifier flag for some
fraction of the events. (There is only one such L1 qualifier flag
common to all 128 trigger bits.) This feature is implemented
with a 24-bit counter, giving an allowed value range of 1-2?* =
16,777,216. When a ratio of N is programmed, the counter is
initialized with a random number between 0 and N — 1. The
counter is decremented every time this trigger bit fires. The L2
unbiased sample L1 qualifier flag will be set for the one event
where this counter reaches the value zero. A ratio of 1 corresponds

88

to asserting the qualifier for every event for which this trigger bit
fires. This feature cannot be disabled; instead, set the ratio to its
maximum value.

If the number attribute is specified, it gives the number of the
trigger bit to allocate. Otherwise, COOR will choose one.

The corresponding exposure group is allocated automatically. If
the expogroup_number attribute is specified, it gives the number
of the exposure group to allocate. Otherwise, COOR will choose
one.

The child of this element is a 11termlist element, giving the
level 1 term requirements for this bit.

10.5.24 Element stream

ATTRIBUTES

Name Type Default
name CDATA #REQUIRED
number CDATA ""

family CDATA ‘"default"
relrate CDATA "1.0"

PARENTS

configuration

CONTENTS

EMPTY

DESCRIPTION

This element defines a data logging stream named name, associ-
ated with file family family. The relrate attribute is a floating
point number giving the expected data rate to this stream, rela-
tive to an (at this point) arbitrary normalization. This informa-
tion may be used by the data logging system for load balancing.

89

Note that this element declares that stream name exists, but the
information about what gets sent to the stream is embedded in
the trigger list in the triglist element.

To specify that this stream should use a specific stream ID, use
the number attribute. This should not normally be used (COOR
assigns stream IDs automatically). One case where it may be
useful is to instruct the data logging system to receive data from
a source not under the control of COOR (Sidet, for example).

10.5.25 Element trigdef

ATTRIBUTES
Name Type Default
13type CDATA ’REGULAR’

num_nodes CDATA 0’

PARENTS

configuration

CONTENTS

(expogroup*,triglist?)

DESCRIPTION

This element is used in configurations using the primary DAQ
system. There should be one of these for every group of level 3
nodes being used.

The attribute 13type may be used to request a non-standard
level 3 node type; the default of REGULAR should be appropri-
ate for normal running. The attribute num_nodes can be used
to request that a group of level 3 nodes be exclusively allocated
to this configuration. The default of 0 means that all otherwise
unassigned nodes will be used (and shared with other configura-
tions).

These elements contain the lists of level 1 exposure groups (which
in turn contain the trigger definitions), and then the level 3 trigger

90

list. The levell reference set and level 2 definitions should precede
the trigdef elements.

10.5.26 Element triglist

ATTRIBUTES

Name Type Default
(None.)

PARENTS

trigdef

CONTENTS

(#PCDATA)

DESCRIPTION

This is the level 3 trigger list. The contents of this element are
passed through to level 3 uninterpreted. It is expected that this
will refer to objects such as level 2 and level 3 bits and streams by
name; level 3 should use the additional information it has from
coor about the name to number mappings of these objects to
complete the programming.

Level 3 should understand a blank trigger list as meaning “pass
everything.” If this element is omitted, it is equivalent to a blank
string.

Be careful about characters which are special to XML. It may be
useful to put this string inside a CDATA construction.

10.6 Device Type Reference

This section describes the device type elements. These are the elements that
can be used inside a download element.

All device type elements have three common attributes. The name at-
tribute is the name of the device requested. It is an error if the device
requested doesn’t exist, or if it’s actual type does not match the element

91

type used. The ownmode attribute gives the ownership mode for this device.
This can be either exclusive, meaning that only this configuration can have
this device allocated, or shared, meaning that another configuration can also
allocate this device, provided that the requests are compatible. Note, how-
ever, that you cannot modify a device if it has been allocated by more than
one configuration.

The third common attribute is inhibit. If this is set to on, then this
device will not actually be downloaded. This is intended for commissioning
purposes.

For crate devices, if an attribute value contains a ‘%’ character, then it
will be treated as a printf-style string and the geographic sector number will
be substituted.

10.6.1 Element Calpulser

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yes|no) "no"
pattern CDATA ’off’

PARENTS
download

CONTENTS
EMPTY

DESCRIPTION

A calorimeter pulser. The pattern to load into the pulser is given
by pattern (6 32-bit words). If pattern is the special string
‘off’, the pulser will be turned off.

Defined devices of this type:

92

Name

cal_cccp_pls00
cal_cccp_plsO1
cal_cccp_pls02
cal_cccp_pls03
cal_cccp_pls04
cal_cccp_pls05
cal_cccp_pls06
cal_cccp_pls07
cal_cccp_pls08
cal_cccp_pls09
cal_cccp_plsiO
cal_cccp_plsil
cal_cccp_plsil2

10.6.2 Element Cal_ADC_Crate

ATTRIBUTES

Name
name
ownmode
inhibit
runtype
vbdtype
blsmode
adcmode
cccatype
cccttype
pulsetype
cccptype
pedtype
adcctype
ccctmode
ccctdiag

PARENTS

download

Type Default
CDATA #REQUIRED
(exclusivelshared) '"shared"
(yes|no) "no"
CDATA "

CDATA "NONE"
CDATA "NONE"
CDATA "NONE"
CDATA "NONE"
CDATA "NONE"
CDATA "NONE"
CDATA "NONE"
CDATA "NONE"
CDATA "NONE"
CDATA "NONE"
CDATA "NONE"

93

CONTENTS

EMPTY

DESCRIPTION

A calorimeter ADC crate. The runtype attribute specifies the
run type string. If this attribute is not specified, it defaults to
the value of the comics_runtype attribute of the configuration
element.

Despite being asked, the calorimeter group has not bothered to
provide any documentation or explanation as to what the other
parameters mean.

Note: In the current version, inhibit defaults to on. This will
be changed once COMICS settles down.

Defined crates of this type:

Name ID (decimal) ID (hex) Location

ecnnw 64 40 M312-3
ecnsw 65 41 M312-2
ccnw 66 42 M312-1
ccsw 67 43 M306-1
ecsnw 68 44 M306-2
ecssw 69 45 M306-3
ecsse 70 46 M308-3
ecsne 71 47 M308-2
ccse 72 48 M308-1
ccne 73 49 M310-1
ecnse 74 4a M310-2
ecnne 75 4b M310-3

10.6.3 Element Cal_TC_Crate
ATTRIBUTES

94

Name Type Default

name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yesl|no) "no"

runtype CDATA o

PARENTS

download

CONTENTS

EMPTY

DESCRIPTION

The calorimeter timing and control crate. The runtype attribute
specifies the run type string. If this attribute is not specified,
it defaults to the value of the comics_runtype attribute of the
configuration element.

The calorimeter group added some other parameters. But, de-
spite being explicitly asked, they have not provided any docu-
mentation of explaination as to what they are or what they mean.

Note: In the current version, inhibit defaults to on. This will
be changed once COMICS settles down.

Defined crates of this type:

Name ID (decimal) ID (hex) Location
caltc 76 4c M310-0

10.6.4 Element CFT_Crate

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yes|no) "no"

runtype CDATA o

95

PARENTS

download

CONTENTS

EMPTY

DESCRIPTION

A fiber tracker readout crate. The runtype attribute specifies the
run type string. If this attribute is not specified, it defaults to
the value of the comics_runtype attribute of the configuration

element.

Note: In the current version, inhibit defaults to on. This will
be changed once COMICS settles down.

Defined crates of this type:

Name ID (decimal) ID (hex) Location
cftax 80 50 M212-0
cftst 81 51 M212-1
cps 82 52 M213-0
fps 83 53 M213-1
10.6.5 Element L1 _Crate
ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yes|no) "no"

PARENTS

download

CONTENTS
EMPTY

96

DESCRIPTION

For level 1. This is a placeholder until someone tells me what
needs to be downloaded here.

Defined crates of this type:

Name ID (decimal) ID (hex) Location

lical 16 10 M101-0
111lum 17 11 M115-0
11fpd 18 12 M115-1
lictt 19 13 M322-2
lictm 20 14 M321-2
limuc 22 16 M321-0
1imun 23 17 M321-1
limus 24 18 M321-1
limtm 25 19 M322-1

10.6.6 Element L2_Crate

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusivel|shared) "shared"
inhibit (yesl|no) "no"
PARENTS
download
CONTENTS
EMPTY
DESCRIPTION

For level 2. This is a placeholder until someone tells me what
needs to be downloaded here.

Defined crates of this type:

97

Name ID (decimal) ID (hex) Location
12g1b 32 20 M121-1
12muc 33 21 M324-0
12muf 34 22 M324-1
12cal 35 23 M121-2
12ps 36 24 M200-2
12ctt 37 25 M200-1
10.6.7 Element Muo_Crate
ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yes|no) "no"
runtype CDATA o
PARENTS
download
CONTENTS
EMPTY
DESCRIPTION

A muon readout crate. The runtype attribute specifies the run
type string. If this attribute is not specified, it defaults to the
value of the comics_runtype attribute of the configuration

element.

Note: In the current version, inhibit defaults to on.
be changed once COMICS settles down.

Defined crates of this type:

98

Name ID (decimal) ID (hex) Location
fmsm 48 30 M314-0
fmnm 49 31 M314-1

This will

Name ID (decimal) ID (hex) Location
fmss 50 32 M316-0
fmns 51 33 M316-1
cmwtp 52 34 M317-0
cmwsp 53 35 M317-1
cmwbp 54 36 M317-2
CmwWsCc 55 37 M319-0
cmetp 56 38 M318-0
cmesp 57 39 M318-1
cmebp 58 3a M318-2
cmesc 59 3b M319-1
10.6.8 Element Null_Device
ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yes|no) "no"

PARENTS

download

CONTENTS

EMPTY

DESCRIPTION

A device type which does not do any downloading. Mainly for

testing.

Defined crates of this type:

Name ID (decimal) ID (hex) Location
seq0 0 00 PC03-0
seql 1 01 PCO03-1
seq?2 2 02 PC04-0

Name ID (decimal) ID (hex) Location

seq3 3 03 PC04-1
seq4 4 04 PC19-0
seqb 5 05 PC19-1
seq6 6 06 PC20-0
seq7 7 07 PC20-1
seq8 8 08 777
calt 9 09 DABI1
12ta 10 Oa FCH2
12tb 11 Ob FCH2
12tc 12 Oc FCH2
12td 13 0d FCH2

Defined devices of this type:

Name
test
10.6.9 Element SMT_Crate
ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yesl|no) "no"

runtype CDATA o

PARENTS

download

CONTENTS

EMPTY

DESCRIPTION

100

A silicon tracker readout crate. The runtype attribute specifies
the run type string. If this attribute is not specified, it defaults to
the value of the comics_runtype attribute of the configuration

element.

Note: In the current version, inhibit defaults to on. This will
be changed once COMICS settles down.

Defined crates of this type:

Name ID (decimal) ID (hex) Location
smt0_0 96 60 M205-0
smt0_1 97 61 M205-1
smt1_0 98 62 M206-0
smt1_1 99 63 M206-1
smt2_0 100 64 M208-0
smt2_1 101 65 M208-1
smt3_0 102 66 M209-0
smt3_1 103 67 M209-1
smt4_0 104 68 M210-0
smt4_1 105 69 M210-1
smt5_0 106 6a M211-0
smt5_1 107 6b M211-2
10.6.10 Element STT_Crate
ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yes|no) "no"

PARENTS

download

CONTENTS

EMPTY

101

DESCRIPTION

For the silicon tracker trigger crates. This is a placeholder until
someone tells me what needs to be downloaded here.

Defined crates of this type:

Name ID (decimal) ID (hex) Location

stto 112 70 M202-0
sttl 113 71 M202-1
stt2 114 72 M203-0
stt3 115 73 M203-1
sttd 116 74 M204-0
stth 117 75 M204-1

10.6.11 Element Trig Crate

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
ownmode (exclusive|shared) "shared"
inhibit (yesl|no) "no"
PARENTS
download
CONTENTS
EMPTY
DESCRIPTION

For the trigger framework. This is a placeholder until someone
tells me what needs to be downloaded here.

Defined crates of this type:

Name ID (decimal) ID (hex) Location
trgfr 31 1f M124

102

10.7 Level 1 Trigger Term Reference

This section describes the level 1 trigger term elements. These are the ele-
ments which can be used inside a 11termlist element.

All term elements have two common attributes. The require attribute,
which can have a value of either require or veto, tells whether this term
is to be required or rejected. The ownmode attribute gives the ownership
mode for this term. This can be either exclusive, meaning that only this
configuration can have this term allocated, or shared, meaning that another
configuration can also allocate this term, provided that the requests are com-
patible.

This will be expanded later.

10.7.1 Element lictt

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"
ownmode (exclusivel|shared) "shared"
name CDATA #REQUIRED

number CDATA ""

PARENTS

litermlist

CONTENTS

EMPTY

DESCRIPTION

This element references a term from a central tracker trigger man-
ager card. The name attribute identifies the particular input term
to the manager card which is to be mapped to the output term.
The list of available input terms remains to be documented.

If the number attribute is specified, it gives the number of the
term to allocate. Otherwise, COOR will choose one.

103

10.7.2 Element llemcount

ATTRIBUTES
Name Type Default
require (require|veto) "require"
ownmode (exclusive|shared) '"shared"
number CDATA "
count CDATA #REQUIRED
em_refset IDREF #REQUIRED
hadveto_refset IDREF #REQUIRED
PARENTS
litermlist
CONTENTS
EMPTY
DESCRIPTION

This term is satisfied if there are at least count towers with EM
E above that specified in em_refset but with hadronic £ below
that specified in hadveto_refset.

The values of the reference set attributes should match names
given in earlier 11em_refset and 11hadveto_refset elements. If
those elements specified the number attribute, they must match;
otherwise, COOR will try to automatically allocate matching ref-
erence sets.

If the number attribute is specified, it gives the number of the
comparator to allocate. Otherwise, COOR will choose one.

10.7.3 Element llemcountr

ATTRIBUTES

104

Name Type Default

require (require|veto) "require"
ownmode (exclusive|shared) "shared"
number CDATA o
count CDATA #REQUIRED
region (clnls) #REQUIRED
em_refset IDREF #REQUIRED
hadveto_refset IDREF #REQUIRED
PARENTS
litermlist
CONTENTS
EMPTY
DESCRIPTION

This term is satisfied if there are at least count towers in a par-
ticular region of the calorimeter with EM E7 above that speci-
fied in em_refset but with hadronic F7 below that specified in
hadveto_refset.

The region parameter should be one of ‘c’ (central), ‘n’ (north),
or ‘s’ (south).

The values of the reference set attributes should match names
given in earlier 11em_refset and 11hadveto_refset elements. If
those elements specified the number attribute, they must match;
otherwise, COOR will try to automatically allocate matching ref-
erence sets.

A number attribute is present for consistency, but its value is
ignored.

10.7.4 Element llemquad
ATTRIBUTES

105

Name
require
ownmode
number
count
quadrant

PARENTS

litermlist

CONTENTS

EMPTY

DESCRIPTION

Type
(require|veto)

(exclusive|shared)

CDATA
CDATA
(1121314)

Default
"require"
"shared"
nmu
#REQUIRED
#REQUIRED

This term is satisfied if there are at least count towers in a par-
ticular quadrant of the calorimeter with EM E7 above hardwired

thresholds.

The quadrant parameter should be ‘1’) ‘27 ‘3’ or ‘4’.

A number attribute is present for consistency, but its value is

ignored.

10.7.5 Element 11jetcount

ATTRIBUTES

Name
require
ownmode
number
count
jet_refset

PARENTS

litermlist

Type

(require|veto)

(exclusive|shared)

CDATA
CDATA
IDREF

106

Default
"require"
"shared"
mu
#REQUIRED
#REQUIRED

CONTENTS

EMPTY

DESCRIPTION
This term is satisfied if there are at least count towers with total
E above that specified in refset.

The value of the reference set attribute should match the name
given in an earlier 11jet_refset element.

If the number attribute is specified, it gives the number of the
comparator to allocate. Otherwise, COOR will choose one.

10.7.6 Element 11jetcountr

ATTRIBUTES
Name Type Default
require (require|veto) "require"
ownmode (exclusive|shared) '"shared"
number CDATA o
count CDATA #REQUIRED
region (clnls) #REQUIRED
jet_refset IDREF #REQUIRED
PARENTS
litermlist
CONTENTS
EMPTY
DESCRIPTION

This term is satisfied if there are at least count towers in a partic-
ular region of the calorimeter with total Ep above that specified
in refset.

107

The region parameter should be one of ‘c’ (central), ‘n’ (north),
or ‘s’ (south).

The value of the reference set attribute should match the name
given in an earlier 11jet_refset element.

A number attribute is present for consistency, but its value is
ignored.

10.7.7 Element 11jetquad

ATTRIBUTES
Name Type Default
require (require|veto) "require"

ownmode (exclusive|shared) '"shared"
number CDATA ""

count CDATA #REQUIRED
quadrant (1]2]3]4) #REQUIRED

PARENTS

litermlist

CONTENTS

EMPTY

DESCRIPTION

This term is satisfied if there are at least count towers in a partic-
ular quadrant of the calorimeter with total £ above hardwired
thresholds.

The quadrant parameter should be ‘1’ ‘27 ‘3’ or ‘4’.

A number attribute is present for consistency, but its value is
ignored.

108

10.7.8 Element 111tcount

ATTRIBUTES
Name Type Default
require (require|veto) "require"
ownmode (exclusive|shared) ‘'"shared"
number CDATA R
count CDATA #REQUIRED
1lt_refset IDREF #REQUIRED
PARENTS
litermlist
CONTENTS
EMPTY
DESCRIPTION

This term is satisfied if there are at least count large tiles with
total Ep above that specified in refset.

The value of the reference set attribute should match the name
given in an earlier 111t_refset element.

A number attribute is present for consistency, but its value is
ignored.

10.7.9 Element llemetsum

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"

ownmode (exclusive|shared) "shared"
number CDATA mn
value CDATA #REQUIRED

PARENTS

litermlist

109

CONTENTS

EMPTY

DESCRIPTION

This term is satisfied if the scalar Ep sum over the electromag-
netic calorimeter is greater than value (a floating-point number).

If the number attribute is specified, it gives the number of the
term to allocate. Otherwise, COOR will choose one.

10.7.10 Element 11fpd

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"
ownmode (exclusivel|shared) ‘'shared"
name CDATA #REQUIRED

number CDATA "

PARENTS

litermlist

CONTENTS

EMPTY

DESCRIPTION

This element references a term from a forward proton detector
trigger manager card. The name attribute identifies the particular
input term to the manager card which is to be mapped to the
output term. The list of available input terms remains to be
documented.

If the number attribute is specified, it gives the number of the
term to allocate. Otherwise, COOR will choose one.

110

10.7.11 Element 11fps

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"
ownmode (exclusivel|shared) "shared"
name CDATA #REQUIRED

number CDATA ""

PARENTS

litermlist

CONTENTS

EMPTY

DESCRIPTION

This element references a term from a forward preshower trigger
manager card. The name attribute identifies the particular input
term to the manager card which is to be mapped to the output
term. The list of available input terms remains to be documented.

If the number attribute is specified, it gives the number of the
term to allocate. Otherwise, COOR will choose one.

10.7.12 Element 11hdetsum

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"

ownmode (exclusivel|shared) '"shared"
number CDATA ""
value CDATA #REQUIRED

PARENTS

litermlist

111

CONTENTS

EMPTY

DESCRIPTION

This term is satisfied if the scalar Ep sum over the hadronic
calorimeter is greater than value (a floating-point number).

If the number attribute is specified, it gives the number of the
term to allocate. Otherwise, COOR will choose one.

10.7.13 Element 111um

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"
ownmode (exclusivel|shared) ‘'shared"
name CDATA #REQUIRED

number CDATA "

PARENTS

litermlist

CONTENTS

EMPTY

DESCRIPTION

This element references a term from a luminosity trigger manager
card. The name attribute identifies the particular input term to
the manager card which is to be mapped to the output term. The
list of available input terms remains to be documented.

If the number attribute is specified, it gives the number of the
term to allocate. Otherwise, COOR will choose one.

112

10.7.14 Element 1imisspt

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"

ownmode (exclusivel|shared) '"shared"

number CDATA mn

value CDATA #REQUIRED
PARENTS

litermlist

CONTENTS
EMPTY

DESCRIPTION

This term is satisfied if the vector Er sum over the entire calo-
rimeter is greater than value (a floating-point number).

If the number attribute is specified, it gives the number of the
term to allocate. Otherwise, COOR will choose one.

10.7.15 Element 1imuo

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"
ownmode (exclusive|shared) "shared"
name CDATA #REQUIRED

number CDATA ""

PARENTS

litermlist

CONTENTS
EMPTY

113

DESCRIPTION

This element references a term from a muon trigger manager card.
The name attribute identifies the particular input term to the
manager card which is to be mapped to the output term. The
list of available input terms remains to be documented.

If the number attribute is specified, it gives the number of the

term to allocate. Otherwise, COOR will choose one.

10.7.16 Element 11specterm

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"
ownmode (exclusivel|shared) "shared"
name CDATA #REQUIRED
PARENTS
litermlist
CONTENTS
EMPTY
DESCRIPTION

This element references the fixed trigger term name.

available terms remains to be documented.

10.7.17 Element 11totetsum

ATTRIBUTES
Name Type Default
require (requirel|veto) "require"

ownmode (exclusive|shared) "shared"
number CDATA mn
value CDATA #REQUIRED

114

The list of

PARENTS

litermlist

CONTENTS

EMPTY

DESCRIPTION

This term is satisfied if the scalar Er sum over the entire calo-
rimeter is greater than value (a floating-point number).

If the number attribute is specified, it gives the number of the
term to allocate. Otherwise, COOR will choose one.

10.8 Level 2 Preprocessor Reference

10.8.1 Element 12calem

ATTRIBUTES

Name

ieta_min
ieta_max
box_size

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

Parameters:

Type

CDATA (int)
CDATA (int)
CDATA (int)

Default
IIOII
ll39ll
ll3ll

e ieta_min — Minimum value of ieta to search for clusters.
Allowable range: 0-160.

115

e ieta_max — Maximum value of ieta to search for clusters.
Allowable range: 0-160. Must be larger than ieta_min.

e box_size — Size of the box (for isolation). Must be at least
1.

No further documentation is available.

10.8.2 Element 12caljet

ATTRIBUTES
Name Type Default
ieta_min CDATA (int) "0"
ieta_max CDATA (int) "39"
jet_size CDATA (int) "3"
keep_corner CDATA (int) "1"
keep_row CDATA (int) "1"
dclear CDATA (int) "1"

PARENTS
level2

CONTENTS
EMPTY

DESCRIPTION
Parameters:

e ieta_min — Minimum value of ieta to search for clusters.
Allowable range: 0-160.

e ieta_max — Maximum value of ieta to search for clusters.
Allowable range: 0-160. Must be larger than ieta_min.

e jet_size — Size of the jet box to use. Must be at least 1.

e keep_corner — Keeps jets with overlapping corners. Must
be 0 or 1.

116

e keep_row — Keep jets with overlapping rows. Must be 0 or
1.

e dclear — Distance needed to ensure jets are separate. Must
be at least 1.

No further documentation is available.

10.8.3 Element 12calmet
ATTRIBUTES

Name Type Default
(None.)

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

To be documented.

10.8.4 Element 12cps
ATTRIBUTES

Name Type Default
(None.)

PARENTS

level2

CONTENTS

EMPTY

117

DESCRIPTION

To be documented.

10.8.5 Element 12ctt
ATTRIBUTES

Name Type Default
(None.)

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

To be documented.

10.8.6 Element 12fps
ATTRIBUTES

Name Type Default
(None.)

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

To be documented.

118

10.8.7 Element 12muc
ATTRIBUTES

Name Type Default
(None.)

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

To be documented.

10.8.8 Element 12muf
ATTRIBUTES

Name Type Default
(None.)

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

To be documented.

119

10.9 Level 2 Tool Reference
10.9.1 Element 12commissiontool

ATTRIBUTES

Name Type Default
major_version CDATA (int) "O"
minor_version CDATA (int) "O"

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

Makes one dummy object so that the commissioning filters can
have an input list of objects.

10.9.2 Element 12emfilter

ATTRIBUTES
Name Type Default
emfrac CDATA (float) "0."
minet CDATA (float) "0."
isofrac CDATA (float) "1.0"
tool CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY

120

DESCRIPTION

Filter which takes a list of electromagnetic objects created by
12emtool and applies cuts. These cuts are on the Er, electro-
magnetic fraction, and isolation of the objects.

10.9.3 Element 12emtool

ATTRIBUTES
Name Type Default
cpswindowieta CDATA (int) "3
cpswindowiphi CDATA (int) "3
trackwindowiphi CDATA (int) """
minet CDATA (float) "0."
requiretrack CDATA (int) "O"
requirecps CDATA (int) "O"
major_version CDATA (int) "O"
minor_version CDATA (int) "O"

PARENTS
level2

CONTENTS
EMPTY

DESCRIPTION

Creates a list of electromagnetic objects based on an input list
from the 12calem preprocessor, with optional matching to objects
from the central tracker or preshower. A cut on the Ep of the
object is applied.

10.9.4 Element 12etafilter

ATTRIBUTES

121

Name Type Default

nregions CDATA (int) "1"
ietamin CDATA (int) "o
ietamax CDATA (int) "160"
ietamin2 CDATA (int) "0"
ietamax2 CDATA (int) "160"
ietamingd CDATA (int) "o"
ietamax3 CDATA (int) "160"
ietamin4 CDATA (int) "0"
ietamax4 CDATA (int) "160"
filter CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes a list of objects and cuts on their 1 values. Passes objects
which are in the allowed 7 region.

10.9.5 Element 12etaphisepfilter

ATTRIBUTES

Name Type Default
nfilters CDATA (int) "
ietaminsep CDATA (int) "o"
iphiminsep CDATA (int) "o"
£ilter0 CDATA (tool) #REQUIRED
filterl CDATA(tOOD #REQUIRED
filter2 CDATA (tool) #REQUIRED
filter3 CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

Undocumented.

10.9.6 Element 12etasepfilter

ATTRIBUTES
Name Type Default
ietaminsep CDATA (int) "o
ietamaxsep CDATA (int) "0"
nfilters CDATA (int) "1"
filter0 CDATA (tool) #REQUIRED
filterl CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes two filter lists as input and calculates the n separation
between all combinations. It passes both objects of any pair that
falls in the allowed n separation window.

123

10.9.7 Element 12failallfilter
ATTRIBUTES

Name Type Default
(None.)

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

This filter always fails.

10.9.8 Element 12htfilter

ATTRIBUTES
Name Type
htmin CDATA (float)
nfilters CDATA (int)
filterO CDATA (tool)
filterl CDATA (tool)
filter?2 CDATA (tool)
major_version CDATA (int)
minor_version CDATA (int)
PARENTS
level2
CONTENTS
EMPTY

124

Default

IIO . 11

" 1ll
#REQUIRED
#REQUIRED
#REQUIRED
IIOII

IIOII

DESCRIPTION

Takes three filter lists as input and calculates the Hy of all the
objects. The Hy is the scalar sum of the Er’s of the objects.

10.9.9 Element 12invmassfilter

ATTRIBUTES
Name Type Default
mininvmass CDATA (float) "0."
maxinvmass CDATA (float) "0."
filter0 CDATA (tool) #REQUIRED
filterl CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes two lists of objects and calculates the invariant masses of
all pairs. It passes both objects of any pair that has an invariant
mass within the allowed window.

10.9.10 Element 12jetfilter

ATTRIBUTES
Name Type Default
minet CDATA (float) "0."
tool CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"

125

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

Takes a list of jet objects created by the 12jettool and applies
a cut on the Er of the objects.

10.9.11 Element 12jetfilter

ATTRIBUTES
Name Type Default
minet CDATA (float) "0."
tool CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes a list of jet objects created by the 12jettool and applies
a cut on the FEr of the objects.

126

10.9.12 Element 12metfilter

ATTRIBUTES
Name Type Default
minmet CDATA (float) "0."
tool CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes the one object created by the 12mettool and applies a
minimum F, cut.

10.9.13 Element 12mettool
ATTRIBUTES

Name Type Default
major_version CDATA (int) "O"
minor_version CDATA (int) "O"

PARENTS

level2

CONTENTS

EMPTY

127

DESCRIPTION

Makes an met object with the £, from the 12calmet preproces-
sor.

10.9.14 Element 12muonfilter

ATTRIBUTES
Name Type Default
minet CDATA (float) "0."
quality CDATA (int) "o"
prompt CDATA (int) "O"
sign CDATA (int) "O"
tool CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes a list of muon objects created by 12muontool and applies
cuts. These cuts are on the quality, sign, “promptness” (time of
flight), and E7 of the objects.

10.9.15 Element 12muontool

ATTRIBUTES
Name Type Default
liptthresh CDATA (int) "0"
trackwindowiphi CDATA (int) "5"
requiretrack CDATA (int) "0"
major_version CDATA (int) "O"
minor_version CDATA (int) "0"

128

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

Creates a list of muon objects based on an input list from the
12muc and 12muf preprocessors, with an optional match to the
central tracker. A cut on the Level 1 Ey of the object is applied.

10.9.16 Element 12phifilter

ATTRIBUTES
Name Type Default
iphimin CDATA (int) "o"
iphimax CDATA (int) "o"
filter CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes a list of objects and cuts on their ¢ values. Passes objects
which are in the allowed ¢ region.

129

10.9.17 Element 12phisepfilter

ATTRIBUTES
Name Type Default
iphiminsep CDATA (int) "o"
iphimaxsep CDATA (int) "o"
nfilters CDATA (int) "
£ilter0 CDATA (tool) #REQUIRED
filterl CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes a list of objects as input and calculates the ¢ separation
between all combinations. It passes both objects of any pair that
falls in the allowed ¢ separation window.

10.9.18 Element 12randompassfilter

ATTRIBUTES
Name Type Default
passpercent CDATA (float) "1"
tool CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2

130

CONTENTS
EMPTY

DESCRIPTION

This filter is intended mainly for commissioning. It passes a de-
sired percentage of events using a random number generator. It
takes the list of objects generated by 12commissiontool as input.
This is really just one dummy object.

10.9.19 Element 12trackfilter

ATTRIBUTES
Name Type Default
minet CDATA (float) "0."
tool CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes a list of track objects created by the 12tracktool and
applies applies a cut on the object Er.

10.9.20 Element 12tracktool

ATTRIBUTES
Name Type Default
minet CDATA (float) "0."
major_version CDATA (int) "O"
minor_version CDATA (int) "O"

131

PARENTS

level2

CONTENTS

EMPTY

DESCRIPTION

Creates a list of track objects based on an input list from the
12ctt preprocessor. A cut on the Ep of the objects is applied.

10.9.21 Element 12transmassfilter

ATTRIBUTES
Name Type Default
mintransmass CDATA (float) "0."
filter0 CDATA (tool) #REQUIRED
filterl CDATA (tool) #REQUIRED
major_version CDATA (int) "O"
minor_version CDATA (int) "O"
PARENTS
level2
CONTENTS
EMPTY
DESCRIPTION

Takes two lists of objects and calculates the transverse mass of
all pairs. It passes both objects of any pair that has a transverse
mass within the allowed window.

132

10.10 Prescale Sets

Each trigger configuration may have a collection of “prescale sets” associated
with it. A prescale set is a predefined specification of prescale values for a
set of Level 1 trigger bits that can be loaded by the user in a single request.
This can be used to construct canned prescale configurations to be used, for
example, for different luminosities.

The way in which prescale sets are found depends on the loader that was
used to load the trigger configuration. At present, only XML-based trigger
configurations may have associated prescale sets.

Given a configuration pathname of the form configname.xml, any as-
sociated prescale sets should be in files with names of the form config-
name-prescname . prescales, where prescname is the name of the prescale
set. Prescale files may also be put in a subdirectory of the directory where
the trigger configuration resides, named configname-prescales. The files in
this directory should have names of the form prescname.prescales.

In the prescale set files, a hash sign (#) introduces a comment; all text
from the hash sign to the end of the line is removed. Any lines that are
empty after comment removal are ignored. All remaining lines should consist
of two fields separated by whitespace: a Level 1 trigger name and a prescale.
Prescale values that end with a percent sign are interpreted as percentage
prescales. Otherwise, the values should be integers, and are interpreted as
ratios. But if the prescale value is 0, then the trigger is disabled.

133

10

11

12

13

14

15

16

17

18

19

20

21

22

11 Defining COOR Resources

When COOR starts up, it needs to find out the available detector resources.
This is done by reading a XML-based file that defines these resources.

11.1 Resource Definitions

Resource definitions are contained in the file given by the configuration pa-
rameter resource_file (normally coor_resources.xml), in the directory
given by the configuration parameter resource_dir (normally, the value of
the environment variable COOR_RESOURCES).
The syntax of the resource definitions is based on XML (see Sec. 10.2).
The element types which may be used are described below (Sec. 11.2).
Below is an example of a resource definition file.

<?xml version="1.0"7>
<!DOCTYPE resources SYSTEM '"resources.dtd">

<resources>

<devtype name="MUO_Crate" comics_prefix="MUO.">
<attribute name="runtype" xmltype="CDATA"/>

</devtype>

<devtype name="SMT_Crate" comics_prefix="SMT.">
<attribute name="runtype" xmltype="CDATA"/>
</devtype>

<devtype name="Pulser'">
<attribute name="mode" xmltype="(on|off)"

default="off" onfree="off"/>
<attribute name="pattern" xmltype="CDATA"/>

</devtype>

<devtype name="Null_Device"/>

<devices> @

134

23 <device name="pulserl" type="Pulser">

24 <subdevice comics_name="patternl" attribs="pattern"/>
»s </device>

% </devices> (6]

<crates>

20 <crate name="seq2" type="Null_Device"

30 geosect="0x02" novbd="yes"/> @

31

2 <crate name="smt0_0" type="SMT_Crate" geosect="0x60">
33 <tieto name="seq2"/>

34 </crate>

35

36 <crate name="12glb" type="Null_Device" geosect="0x20"/>
37 <crate name="12muc" type="Null_Device" geosect="0x21"/>

™
o

38

39 <crate name="cmwtp" type="Comics_Test_Dev'" geosect="0x34"/>
10 <crate name="cmwsp" type="Comics_Test_Dev" geosect="0x35"/>
a1 <crate name="cmwbp" type="Comics_Test_Dev" geosect="0x36"/>
.2 <crate name="cmwsc" type="Comics_Test_Dev" geosect="0x37"/>
43

aa <crate name='"cmesc" type="Comics_Test_Dev" geosect="0x3b"/>
45

w6 <crate name="trgfr" type="Trig_Crate" geosect="0x1f"/>
a7 <crate name="l3wakeup'" type='"Null_Device"

a8 geosect="0x7f" novbd="yes"/>

49

o </crates>

51

: <levell n_expogroups="3" n_bits="5">

53 <term name="term0" number="0"/>

54 <term name="terml" number="1"/>

55 <term name="term2" number="2"/>

s6 <term name="term3" number="3"/>

57

ss <trigmgr class="llmuo" first_term="48" device="muo_mgr2">
59 <term name="loose_muon" number="2"/>

60 <term name="tight_muon" number="3"/>

ot

<

135

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

©
=

95

97

98

</trigmgr>
<1lict_thresh class="llemetsum" first_term="128" n_terms="8"/>

<term name="always_on" number="255"/>

<liqual number="02" name='"qual02"/>
</levell>

<level2>

<12ppcrate crate="12muc">
<12input number="1" crates="cmwtp cmwsp cmwsc"/>
<12input number="2" crates="cmwbp cmwsc"/>

<12mbt>
L2MUC MUCWORKER PILOTMBT {
VMESLOT = 21, # VME slot number of the card
CHANO = %1, # Mapping for chan O
CHAN1 = %2, # Mapping for chan 1
CHAN2 = %3, # Mapping for chan 2
CHAN3 = %4, # Mapping for chan 3
CHAN4 = 75, # Mapping for chan 4
CHANS = 76, # Mapping for chan 5
CHANG = %4, # Mapping for chan 6
CHAN7 = O, # Mapping for the L1 SCL data
DISP_CHAN = 7, # Channel to display on the MBT front panel
TEST_SCL = 0, # Disable testing mode

CYCLE_BUFFERS = 1,# cycle the broadcast slot buffers
ENABLE_HIST = 1, # Turn on monitoring histograms
L1SCL_DATA_TYPE = 0 # Set L1 SCL datatype for the global

}
</12mbt>

</12ppcrate>
<12ppcrate crate="12glb" l2cratename="L2GBL">

<12input number="2" crates="12muc"/>
<12mbt>

136

99

100

101

102

103

104

105

106

107

108

110

111

112

113

114

1

—

5

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

L2GBL GBLWORKER PILOTMBT {
VMESLOT = 21, # VME slot number of the card

CHANO = %1, # Mapping for chan 0

CHAN1 = %2, # Mapping for chan 1

CHAN2 = %3, # Mapping for chan 2

CHAN3 = %4, # Mapping for chan 3

CHAN4 = 75, # Mapping for chan 4

CHANS = 76, # Mapping for chan 5

CHANG = %4, # Mapping for chan 6

CHAN7 = O, # Mapping for the L1 SCL data

DISP_CHAN = 7, # Channel to display on the MBT front panel
TEST_SCL = 0, # Disable testing mode

CYCLE_BUFFERS = 1,# cycle the broadcast slot buffers
ENABLE_HIST = 1, # Turn on monitoring histograms
L1SCL_DATA_TYPE = 0 # Set L1 SCL datatype for the global

}
</12mbt>
</12ppcrate>

<12global crate="12glb"
exe_name="GBLWORKER"
12_name="GLOBALWORKER"
fail_tooltype="12fail">
<12parm name="USEL1BITS" type="int" default="0"/>

</12global>

<12pp name="12muc"
crate="12muc" exe_name="MUCWORKER" 12_name="MUCWORKER"

liqual="qual02">
<12parm name="pt" type="float"/>

</12pp>

<12tool name="12muon" pp="1l2muc">
<12parm name="qual" type="int" default="0"/>
<12parm name="pt" type="float"/>

</12tool>

<12tool name="12mucut">

137

137

138

139

140

141

142

143

144

145

146

147

<12parm name="pt" type="float"/>
<12parm name="etamax" type="float"/>
<12parm name="tool" type="tool"/>

</12tool>

<12t00l name="12fail"/>

</level2>

</resources>

(6]

Lines 1 and 2: The boilerplate to identify the file as XML and identify
the DTD to use.

Line 4: The top-level element of the resource definition file.

Lines 6 and 8: The first thing we need to do is to define the device
types we're going to use, for the devices that get downloaded through
coMics. Each type has a name and a set of attributes, as specified
here. One can also associate some additional information with device
types; for example, the comics_prefix is a string that gets added to
the front of the names of devices of this type when the names get sent
to COMICS.

Lines 14 and 18: This shows a slightly more complicated device types
definition. For an attribute, you can specify how it should appear in
XML, as the ‘xmltype’ attribute. Useful values for this are ‘CDATA’
and enumerations, as shown in the example. You can specify a default
with ‘default’. If the default is missing (or is set to ‘#REQUIRED’),
then there is no default, and the attribute must always be specified. If
‘onfree’ is set to something nonblank, then when the last owner frees
this device, a download will be generated to set this attribute to the
specified value.

Line 20: And this is a trivial device type, with no attributes.
Lines 22 and 26: These define the devices which are downloadable

through comics (excluding readout crates). Each such device is iden-

138

tified by a name and a type; the type must have earlier been defined
by a devtype element.

Line 24 declares a subdevice for this device. This says that the attribute
pattern should be sent to the coMmIiCs device named patternl, rather
than to pulserl.

Lines 28 and 50: These define readout crates. Like other downloadable
devices, each crate has a name and a type. In addition, each crate has
an (integral) geographic sector number.

Line 30: This defines a sequencer crate. It has no attributes. Futher,
this crate does not get read out to Level 3; this is indicated by setting
the “novbd” attribute.

Lines 32 to 34: This is a definition of a readout crate. Further, this
declares a “tieto” for this crate — meaning that when we read out
smt0_0, we also need to include the sequencer crate seqO.

Lines 46 and 48: These two definitions are required. The first declares
the trigger framework crate; the second defines a special geographic
section that the framework uses for sending trigger notifications to
Level 3.

Line 52: This element contains the definitions for the level-1 resources.
The attributes of this element give the number of available exposure
groups (n_expogroups) and level-1 bits (n_bits).

The various and/or terms available are defined by the elements con-
tained within this one.

Lines 53 and 56: These show definitions of specific, named and/or
terms. FEach of these elements associates a name with a particular
and/or term number.

Lines 58 and 61: This is a definition for a level-1 trigger manager card;
the number of the card’s first output and/or term is 48. The class
attribute says that this manager card is part of the muon system, and
the device attribute gives the name to be used when downloading the
card.

139

The term elements contained within the trigmgr element assign names
to the manager’s input terms.

Line 63: This element defines a set of level-1 calorimeter trigger thresh-
old terms. These terms compute sums over the calorimeter and com-
pare the result with a specified threshold. This example declares a
group of eight 11emetsum terms, which means that up to eight distinct
thresholds may be set for this type of sum (scalar E; sum over the
electromagnetic calorimeter).

Line 65: This definition is required for proper operation. It defines a
trigger term that is guaranteed to be always asserted.

Line 67: This assigns a name to a Level 1 qualifier. The ‘number’ here

is the bit position.

Line 71: This element contains the definitions for the Level 2 resources.

Lines 73 to 94: This defines a Level 2 preprocessor crate. Level 2

can have several preprocessor objects in one preprocessor crate (for
example, the EM, missing Fr, and jet preprocessors all live in the
12cal crate), so we separate out the definitions that are common to all
preprocessors in a crate. The crate attribute names the preprocessor
crate we're defining; it should match the name of one of the readout
crates defined above. By default, the name sent to Level 2 will be
an upcased version of this name, but this may be changed using the
optional 12cratename attribute. A 12ppcrate element can contain
12input elements, describing the inputs to the preprocessor. Each
input has a number and a list of crates feeding it. To enable an input,
all of the listed crates must be active.

To enable or disable inputs, COOR sends to Level 2 the string contained
in the 12mbt element. Here, a construction like “%4N7?onstr: offstrl’
(where N is a string of decimal digits) will be replaced with onstr if
input N is enabled and with offstr otherwise. The notation “%4N” (with
no following ‘%’) is equivalent to “4UN?N :-1%".

Lines 118 and 123: This makes some global definitions for the Level 2
system. The attribute crate should name a crate given in an earlier
12ppcrate declaration, describing the Level 2 global crate. (The inputs

140

to this crate should be the preprocessors.) The attributes exe_name
and 12_name give the name of the executable, and also the name of
the object for global parameter settings. The Level 2 system may have
some global parameters that can be set in the trigger configuration;
those parameters are defined by the 12parm elements contained within
this element. Here, we define a single, integer, parameter, and give
it a default. Note that if we don’t provide a default here, then this
parameter must be specified in every trigger configuration that uses
Level 2. The attribute fail_tooltype must name a Level 2 tool type
that is guaranteed to always fail.

Lines 125 to 129: This defines a Level 2 preprocessor, with a name
given by the name attribute. The crate it lives in is given by the crate
attribute; this must match one of the earlier 12ppcrate definitions.
The exe_name and 12_name attributes give the executable and object
names to use to set parameters for this preprocessor. The 1liqual
attribute gives the name of the Level 1 qualifier to use to request that
this crate process the current event.

A preprocessor may have parameters that can be set from the trigger
configuration. These are described by the contained 12parm elements.

Lines 131 to 134: This defines a Level 2 tool type; it’s name is given
by name. The pp attribute gives the list of preprocessors that this
tool requires in order to run. A tool may have parameters; these are
described by the contained 12parm elements.

Lines 136 to 140: This defines a second tool. Note that this tool has a

parameter “tool” that refers to other tools.

11.2 Resource Element Reference

This section describes the elements used to describe the detector resources
to COOR. The DTD used is given in Sec. A.2.1.

11.2.1 Element attribute

ATTRIBUTES

141

Name Type Default

name CDATA #REQUIRED
xmltype CDATA "CDATA"
default CDATA "#REQUIRED"
onfree CDATA "

PARENTS

devtype

CONTENTS
EMPTY

DESCRIPTION

Define one attribute of a device type. The name of the attribute
is name. The XML type of this attribute is given by xmltype;
useful values for this are ‘CDATA’ and XML enumerations. The
default value for the attribute is given by default. If this is set
to ‘#REQUIRED’, then there is no default (and the attribute must
always be specified). If onfree is not empty, then when a device
of this type is freed by the last owner, then a download will be
generated to set this attribute to the given value.

11.2.2 Element calpulser

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED

comics_name CDATA #REQUIRED
downloader CDATA ""

PARENTS

devices

CONTENTS

(tietox)

142

DESCRIPTION

Define a calorimeter pulser called name. The name of the comIcs
device is comics_name; if this is omitted, it is taken to be the same
as name. If the downloader attribute is given, it names a specific
downloader to which downloads for this pulser must be sent.

11.2.3 Element crate

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
type CDATA #REQUIRED
downloader CDATA o
geosect CDATA #REQUIRED
novbd (yes|no) '"no"

PARENTS

crates
CONTENTS

((subdevice|tieto)*)

DESCRIPTION

Define a readout crate. The crate name is name, and the name
of its type is type. The attribute geosect (an integer) gives the
geographic sector of the crate. The crate name must be unique. If
the downloader attribute is given, it names a specific downloader
to which downloads for this device must be sent.

If the novbd attribute is set, then this element names a geographic
sector that is an SCL receiver but which does not have a VBD.
Therefore, requests for such a “crate” will be passed to the level-1
framework, but not to level-3.

143

11.2.4 Element crates

ATTRIBUTES

Name Type Default
(None.)

PARENTS

resources

CONTENTS

(cratex)

DESCRIPTION

This element contains the set of available readout crates.

11.2.5 Element device

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
type CDATA #REQUIRED

downloader CDATA ""

PARENTS

devices

CONTENTS

((subdevice|tieto)*)

DESCRIPTION

Define a downloadable device (which is not a readout crate). The
device name is name, and the name of its type is type. The device
name must be unique. If the downloader attribute is given, it
names a specific downloader to which downloads for this device
must be sent.

144

11.2.6 Element devices
ATTRIBUTES

Name Type Default
(None.)

PARENTS

resources

CONTENTS

((device|calpulser) *)

DESCRIPTION

This element contains the set of available downloadable devices
(excluding readout crates).

11.2.7 Element devtype

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED

comics_prefix CDATA
default_inhibit (yes|no) '"no"

PARENTS

resources

CONTENTS

(attributex)

145

DESCRIPTION

Define a device type name. The type’s attributes are defined
by the contained attribute elements. The comics_prefix at-
tribute gives a string to add to the front of names for devices of
this type when they get sent to comics. If default_inhibit is
‘yes’, then devices of this type will have their inhibit attribute
default to ‘yes’.

11.2.8 Element 11ct_emcount
ATTRIBUTES

Name Type Default

refsetno CDATA #REQUIRED
first_term CDATA #REQUIRED
n_terms CDATA #REQUIRED

PARENTS

levell

CONTENTS

EMPTY

DESCRIPTION

A set of level-1 calorimeter trigger electromagnetic count thresh-
old trigger terms. These terms count the number of trigger towers
which are above programmable thresholds set in associated ref-
erence sets; a term fires if this count is above a given threshold.

Actually, there are two reference sets for these terms. The term
fires if the electromagnetic energy in a tower is greater than the
threshold set by the first reference set and the hadronic energy
in the tower is less than the threshold set by the second reference
set.

The attribute refsetno gives the number of the associated ref-
erence sets (of classes 11lem_refset and lilhadveto_refset).

146

The attribute n_terms gives the number of available and/or terms
of this type (and thus the number of distinct values which may be
set). The number of the first and/or term of this type is given by
the attribute first_term. The attributes refsetl and refset2
give the full names (class plus number) of the associated reference
sets.

11.2.9 Element lict_emcountr

ATTRIBUTES
Name Type Default
refsetno CDATA #REQUIRED
count CDATA #REQUIRED

number CDATA #REQUIRED
region (clnls) #REQUIRED

PARENTS

levell

CONTENTS

EMPTY

DESCRIPTION

A set of level-1 calorimeter trigger electromagnetic count thresh-
old trigger terms, with a region restriction. These terms count the
number of trigger towers which are above programmable thresh-
olds set in associated reference sets within a given region of the
detector; a term fires if this count is above count.

Actually, there are two reference sets for these terms. The term
fires if the electromagnetic energy in a tower is greater than the
threshold set by the first reference set and the hadronic energy
in the tower is less than the threshold set by the second reference
set.

The attribute refsetno gives the number of the associated ref-
erence sets (of classes 11lem_refset and llhadveto_refset).

147

The attribute number gives the and/or term number.

The attribute region is the region of the detector to which this
term is sensitive: ‘c’ (central), ‘n’ (north), or ‘s’ (south).

11.2.10 Element 11ct_emquad

ATTRIBUTES
Name Type Default
count CDATA #REQUIRED
number CDATA #REQUIRED

quadrant (1/2/3]4) #REQUIRED

PARENTS

levell

CONTENTS
EMPTY

DESCRIPTION

A set of level-1 calorimeter trigger electromagnetic count thresh-
old trigger terms, with a quadrant restriction. These terms count
the number of trigger towers which are above a fixed threshold
(burned into PROMS) within a given quadrant of the detector; a
term fires if this count is above count.

The attribute number gives the and/or term number.

The attribute quadrant is the quadrant of the detector to which
this term is sensitive, 1-4.

11.2.11 Element 11ict_jetcount

ATTRIBUTES

Name Type Default

refsetno CDATA #REQUIRED
first_term CDATA #REQUIRED
n_terms CDATA #REQUIRED

148

PARENTS

levell

CONTENTS
EMPTY

DESCRIPTION

A set of level-1 calorimeter trigger total count threshold trigger
terms. These terms count the number of trigger towers which are
above programmable thresholds set in associated reference sets;
a term fires if this count is above a given threshold.

The attribute refsetno gives the number of the associated ref-
erence set (of class 11jet_refset).

The attribute n_terms gives the number of available and/or terms
of this type (and thus the number of distinct values which may be
set). The number of the first and/or term of this type is given by
the attribute first_term. The attributes refsetl and refset2
give the full names (class plus number) of the associated reference
sets.

11.2.12 Element 11ict_jetcountr

ATTRIBUTES
Name Type Default
refsetno CDATA #REQUIRED
count CDATA #REQUIRED

number CDATA #REQUIRED
region (clnls) #REQUIRED

PARENTS

levell

CONTENTS

EMPTY

149

DESCRIPTION

A set of level-1 calorimeter trigger total count threshold trigger
terms, with a region restriction. These terms count the number
of trigger towers which are above programmable thresholds set in
associated reference sets within a given region of the detector; a
term fires if this count is above count.

The attribute refsetno gives the number of the associated ref-
erence set (of class 11jet_refset).

The attribute number gives the and/or term number.

The attribute region is the region of the detector to which this
term is sensitive: ‘c’ (central), ‘n’ (north), or ‘s’ (south).

11.2.13 Element 1ict_jetquad

ATTRIBUTES
Name Type Default
count CDATA #REQUIRED
number CDATA #REQUIRED

quadrant (1(2(3/4) #REQUIRED

PARENTS
levell

CONTENTS
EMPTY

DESCRIPTION

A set of level-1 calorimeter trigger total count threshold trigger
terms, with a quadrant restriction. These terms count the number
of trigger towers which are above a fixed threshold (burned into
PROMS) within a given quadrant of the detector; a term fires if
this count is above count.

The attribute number gives the and/or term number.

The attribute quadrant is the quadrant of the detector to which
this term is sensitive, 1-4.

150

11.2.14 Element lict_ltcount
ATTRIBUTES

Name Type Default

refsetno CDATA #REQUIRED
count CDATA #REQUIRED
number CDATA #REQUIRED

PARENTS

levell

CONTENTS

EMPTY

DESCRIPTION

A level-1 calorimeter trigger large tile term. These terms count
the number of large tiles which are above programmable thresh-
olds set in associated reference sets; this term fires if the count is
above count.

The attribute refsetno gives the number of the associated ref-
erence sets (of class 111t_refset).

The attribute number gives the and/or term number.

11.2.15 Element lict_refset

ATTRIBUTES
Name Type Default
class (llem_refset|lihadveto_refset|
1l1jet_refset|11lt_refset) #REQUIRED
n_sets CDATA #REQUIRED
PARENTS
levell

151

CONTENTS

EMPTY

DESCRIPTION

This element defines a set of level-1 calorimeter trigger reference
sets.

The type of the reference set is specified by the class attribute:

llem_refset Used for EM E7 count thresholds.
lihadveto_refset Used for EM E7 count thresholds.
lijet_refset Used for total Ep count thresholds.
111t_refset Large tile reference sets.

The attribute n_sets gives the number of available reference sets
of this type.

11.2.16 Element 1ict_thresh

ATTRIBUTES
Name Type Default
class (11emetsum|lihdetsum|
litotetsum|limisspt) #REQUIRED
first_term CDATA #REQUIRED
n_terms CDATA #REQUIRED
PARENTS
levell
CONTENTS
EMPTY

152

DESCRIPTION

A set of level-1 calorimeter trigger value threshold trigger terms.
These terms sum over the entire calorimeter in various ways and
compare the result with a specified threshold.

The type of sum is specified by the class attribute:

llemetsum Scalar Ep sum over EM calorimeter.
lihdetsum Scalar E7 sum over hadronic calorimeter.
litotetsum Scalar E7 sum over entire calorimeter.
limisspt Vector Ep sum over entire calorimeter.

The attribute n_terms gives the number of available and /or terms
of this type (and thus the number of distinct values which may
be set). The number of the first and/or term of this type is given
by the attribute first_term.

11.2.17 Element 11qual
ATTRIBUTES

Name Type Default
name CDATA #REQUIRED
number CDATA #REQUIRED

PARENTS

levell

CONTENTS

EMPTY

DESCRIPTION

This element assigns a name to a level-1 qualifier. Here, number
is the qualifier bit number, starting from 0.

153

11.2.18 Element 12global

ATTRIBUTES
Name Type Default
crate CDATA #REQUIRED

exe_name CDATA #REQUIRED
12_name CDATA #REQUIRED
fail_tool CDATA #REQUIRED

PARENTS

level2

CONTENTS

(12parmx)

DESCRIPTION

This element provides some global information about the Level 2
system. The crate attribute gives the name of the Level 2 global
processor crate; it should match the name given in one of the
12ppcrate elements. Further, for that 12ppcrate element, all
the 12input crate lists must have exactly one crate, which must
be a Level 2 preprocessor crate (named in a 12ppcrate element).
The exe_name and 12_name attributes identify the executable and
object names to Level 2 (these names are upcased when they are
sent to Level 2). The attribute fail_tool should be the name of
a Level 2 tool that is guaranteed to always fail (regardless of any
mark/pass settings, etc). That tool must be defined below, and
must have no required parameters.

A 12global element may contain 12parm elements. These define
global parameters of the Level 2 system that must be set. When
a trigger configuration is read, requested values are set in the
trigger configuration’s 12global element.

154

11.2.19 Element 12input
ATTRIBUTES

Name Type Default
number CDATA #REQUIRED
crates CDATA #REQUIRED

PARENTS

12ppcrate

CONTENTS

EMPTY

DESCRIPTION

This element describes an input to a preprocessor. The number
attribute should be an integer, giving the number of the input.
The crates attribute should be a space-separated list of crate
names. All the crates in the list must have been allocated in
order to activate the input.

11.2.20 Element 12mbt
ATTRIBUTES

Name Type Default
(None.)

PARENTS

12ppcrate

CONTENTS

(#PCDATA)

155

DESCRIPTION

This element gives a template string for enabling and disabling
MBT inputs. Whenever the inputs are changed, this string will
be sent to Level 2, transformed in the following ways:

e A “12script ” will be added to the beginning.

e A construction like “4N?onstr: offstr),” (where N is a string
of decimal digits) will be replaced with onstr if input N is
enabled and with offstr otherwise. The notation “4N” (with
no following ‘%’) is equivalent to “4N?N :-1%".

11.2.21 Element 12parm

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
type CDATA #REQUIRED

default CDATA "#REQUIRED"

PARENTS

12global, 12pp, 12tool

CONTENTS

EMPTY

DESCRIPTION

This element describes a parameter to a Level 2 object (a prepro-
cessor or tool, or a global parameter). The name attribute gives
the parmeter name (this name is upcased before being send to
Level 2). The type attribute gives the type of the parameter.
This should be one of the following strings:

e "int" — An integer.

e "float" — A floating-point value.

156

e "string" — An uninterpreted string value.

e "tool" — A reference to a Level 2 tool. The value should
be the name of the tool.

The default attribute gives a default value for the parameter. If
it is omitted, then the parameter must always be provided.

11.2.22 Element 12pp

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
crate CDATA #REQUIRED

exe_name CDATA #REQUIRED
12_name CDATA #REQUIRED
liqual CDATA #REQUIRED

PARENTS

level2

CONTENTS

(12parmx)

DESCRIPTION

This element describes a Level 2 preprocessor, called name. The
crate attribute gives the name of the crate in which this pre-
processor is located; it should match the name given in one of
the 12ppcrate elements. The exe_name and 12_name attributes
identify the executable and object names to Level 2 (these names
are upcased when they are sent to Level 2). The 11qual attribute
gives the name of the Level 1 qualifier used to request that this
preprocessor run. It must have been defined earlier in a 11qual
element.

This element may contain 12parm elements, to define parameters
to be downloaded to the preprocessor.

157

11.2.23 Element 12ppcrate

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
crate CDATA #REQUIRED

12cratename CDATA ""

PARENTS

level2

CONTENTS

(12input*,12mbt?)

DESCRIPTION

This element defines information common to all preprocessors in
a crate. The crate attribute gives the name of the crate; it should
match the name of one of the readout crates defined earlier. The
12cratename gives the name by which this crate is known to
Level 2. If omitted, it defaults to an upcased version of the crate
name.

This element may contain 12input elements to define the inputs
to the preprocessor. A 12mbt element gives the template for
enabling the preprocessor inputs.

11.2.24 Element 12tool

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
12name CDATA ""
PP CDATA ""
maxinstances CDATA "-1"

158

PARENTS
level2

CONTENTS
(12parmx)

DESCRIPTION

This element defines a Level 2 tool type. The name attribute is
the name of the tool type. It is strongly suggested that this name
start with ‘12’. The 12name attribute is the by which this tool
is known to Level 2. If it is omitted, it will default to the value
of name. This can be used if the Level 2 name does not start
with ‘12’. (The Level 2 name is upcased before being sent to
Level 2). The attribute 12pp is a space-separated list of required
preprocessors. (These names must have been defined in an earlier
12pp element.) The maxinstances attribute specifies the maxi-
mum number of allowed instances of this tool. The default of -1
indicates that no limit checking is done.

This element may contain 12parm elements, to define the tool
parameters.

11.2.25 Element levell

ATTRIBUTES

Name Type Default
n_expogroups CDATA #REQUIRED
n_bits CDATA #REQUIRED

PARENTS

resources

CONTENTS

((term|trigmgr|lict_thresh|lict_refset|llct_emcount|
lict_jetcount|lict_ltcount|llict_emcountr|
lict_jetcountr|lict_emquad|lict_jetquad|liqual)*)

159

DESCRIPTION

This element defines the available level-1 resources. The attribute
n_expogroups gives the number of available exposure groups,
while the n_bits attribute give the number of available level-1
trigger bits.

Further level-1 resources are defined by the elements contained
in this one.

11.2.26 Element level?2

ATTRIBUTES

Name Type Default
(None.)

PARENTS

resources

CONTENTS

(12ppcratex,12global,12pp*,12toolx*)

DESCRIPTION

This element holds the definitions of the available level-2 re-
sources. It starts with a list of 12ppcrate elements, followed
by a (required) 12global element. It then contains 12pp and
12tool elements, in that order.

11.2.27 Element resources

ATTRIBUTES
Name Type Default
(None.)
PARENTS
None.

160

CONTENTS

(devtypex,devices?,crates?,levell?, level2?)

DESCRIPTION

This is the top-level element for resource definitions. It con-
tains sections to define downloadable devices, readout crates, and
level-1 resources.

11.2.28 Element subdevice

ATTRIBUTES
Name Type Default
comics_name CDATA #REQUIRED
attribs CDATA #REQUIRED
PARENTS

crate, device

CONTENTS

EMPTY

DESCRIPTION

Sometimes it is convenient to be able to refer to several EPICS
devices by a single name. That can be done using this element.
In essence, one defines a “logical” device to COOR that is the
union of several EPICS devices.

The “logical” device you define to COOR should contain the at-
tributes for all the EPICS devices associated with that logical de-
vice. (Note that it is a restriction that those EPICS devices must
have different attribute names.) Then, in the device or crate
element in the resource file, include a subdevice element for each
of the additional EPICS devices, giving the attributes that that
device handles. Note that one can also use this mechanism to be

161

able to use a name on COOR different from the EPICS name, sim-
ply by having all the device’s attributes handled by subdevices.

The comics_name attribute is the name of the subdevice as it
should be sent to comics. The attribs attribute is a space-
separated list of attribute names handled by this subdevice.

11.2.29 Element term

ATTRIBUTES
Name Type Default
name CDATA #REQUIRED
number CDATA #REQUIRED
PARENTS

levell, trigmgr

CONTENTS
EMPTY

DESCRIPTION

This element can occur in two contexts. In a levell element, it
defines a fixed and/or term to the level-1 framework. These are
terms which don’t require any downloading. The term name is
name, and term (an integer) is the term number. In a trigmgr
element, it assigns a name to one of the trigger manager’s input
terms.

11.2.30 Element tieto

ATTRIBUTES

Name Type Default
name CDATA #REQUIRED

PARENTS

crate, device, calpulser

162

CONTENTS

EMPTY

DESCRIPTION

Sometimes, devices interact in such a way that if you allocate
one of them, you should allocate the other as well. This is called
“tying.” For example, the calorimeter pulsers should be tied to
the crates that they affect. That way, if someone loads a config-
uration that uses those crates but not the pulsers, others will be
prevented from controlled the pulsers affecting those crates.

Ties may be defined for crates, devices, and calorimeter pulsers.
They are specified by a group of tieto elements, where the name
attribute names either a device or a crate.

After processing the trigger configuration, COOR looks for objects
with ties. If the targets of the ties are not allocated by this
client, COOR attempts to allocate them. (The ownership mode
as the original object is used. The inhibit attribute is also
propagated.) For targets that are already owned, their ownership
mode must be at least as restrictive as that of the original object.

If a crate is tied to another crate, then when the first crate is
used in the readout list of an exposure group, the second crate
is automatically added as well. This is useful for modeling, for
example, the dependence of tracking crates on sequencers.

Note that the devices named in a tieto must have defaults spec-
ified for all their attributes.

11.2.31 Element trigmgr
ATTRIBUTES

163

Name Type Default

class (lictt|lifpd|lifps]|
111um|1limuo) #REQUIRED
first_term CDATA #REQUIRED
n_terms CDATA 16"
n_terms CDATA 16"
terml6 CDATA "
device CDATA #REQUIRED
PARENTS
levell
CONTENTS
(termx)
DESCRIPTION

This element defines a trigger manager card, which has n_terms
and/or terms as output. The and/or terms are assumed to be in
two blocks. The first 16 terms are in contiguous block starting at
number first_term, and the remaining terms are also in a con-
tiguous block starting at number term16. (If term16 is left blank,
it defaults to first_term+16). The device attribute gives the
coMICs device name of the card, to be used for downloading. If
this is blank, then no downloading will be done. The class at-
tribute identifies the subsystem of which this trigger manager is
a part.

The term elements contained in this element assign names to the
manager’s input terms.

164

12 TAKER

12.1 Run Transition Dialogs

Before a run transition (start, end, pause, resume), TAKER can prompt the
user for information about the transition, such as a comment. This takes
the form of a set of keyword-value pairs. This information then ends up in
several places:

e In the brun and erun files, to be inserted in the database. (See Sec. 7.)
e In the logbook entries generated by COOR.

e In the run transition messages sent by COOR to the significant event
system. (See Sec. 8.4.)

The set of questions that TAKER asks is specified by the configuration
parameter ‘brun_dialog_descs’. This variables should be a list of tuples,
each of which has one of the following forms:

(pred, ’entry’, label, kwd|, validate])
or
(pred, ’radio’, label, kwd, butlist], ncol])

Each field is either an entry or a radio button. In the above, pred is a
predicate which determines when this field will be requested (see below),
label is the string that gets displayed to the user, and kwd is the tag used in
output. For entry fields, validate is an optional entry validator function; see
Pmw.EntryField for details. For button fields, ncol is the number of columns
to use for the button layout. If it is omitted, they will be put in a single
horizontal row.

The predicate pred should be a function. It takes a dictionary as an
argument, and should return true if this particular field is to be displayed.
The entries in the dictionary consist of the configuration information returned
by COOR in response to the ‘load’ command (see Sec. 8.1). In addition,
TAKER adds the key ‘transition’, with its value being one of ‘begin’, ‘end’,
‘pause’, or ‘resume’.

A simple example:

165

def begin_p (x): return x.get (’transition’) == ’begin’

def end_p (x): return x.get (’transition’) == ’end’

def always (x): return 1

brun_dialog_descs = [(begin_p, ’entry’, ’Shifter’, ’Shifter’),

(end_p, ’radio’,
’Evaluation’, ’Evaluation’,
[’Good’, ’Uncertain’, ’Useless’]),
(always, ‘’entry’, ’Comment’, ’Comment’),
(lambda x:
begin_p(x) and x.get(’physics’):
’entry’,
’Initial luminosity’,
’Initlum’)]

If a run is stopped by a force_stop (or paused via force_pause), then
the user will not have a chance to answer the end-run dialogs. In that case,
COOR will look in the configuration variable ‘brun_fallbacks’ to determine
what to output. This variable should be a dictionary. The keys that are
currently examined are ‘end_run’ and ‘pause_run’. The value of each key
should be a list of strings in the form ‘key: wvalue’ (as it would be output to
the brun file). Note that COOR will automatically add a ‘Comment’ line.

12.2 TAKER plugins

For some applications, one would like to extend the user interface provided
by TAKER. This can be done without changing the TAKER code itself by
using plugins. A TAKER plugin is a module of Python code, obeying certain
conventions. All known plugins are gathered into a TAKER menu. When one
of these menu items is chosen, the corresponding plugin module is imported
and activated by calling a special entry point in the module. TAKER presents
an interface to the plugin, through which it may send commands to COOR.

12.2.1 Finding plugins

TAKER has a directory search path in which to look for plugins. This is
normally set through the TAKER_PLUGINS environment variable (implemented

166

through the taker_plugins variable in coor.params). TAKER searches this
path for files with names ending in ‘_plugin.py’. This is the set of available
plugins. They are made available in the ‘Plugins’ menu.

12.2.2 Activating plugins

Plugins may be activated only after a trigger configuration has been loaded.

When the user selects a plugin from the menu, TAKER imports its source,
then calls the function ‘init_plugin (parent, t_proxy)’ in the plugin
module. In this call parent is the main Tk window for the application,
and t_proxy is an object through which the plugin can request services of
TAKER.

12.2.3 Taker proxy methods

The proxy object t_proxy passed to the plugin’s init_plugin method sup-
plies the following methods:

e display_message (self, message)

Display message in the TAKER text window.

e info_command (self, cmd, done, filter = None)

Send an information request to COOR (A_INFO TAKER transition). cmd
is the text of the command to send. It will have ‘info ’ automatically
prepended.

done is a function object to call when the request completes. It is
called with two arguments: the return status from COOR, and filter.
Note: The COOR return status tells only whether the requested state
transition actually occurred, not whether the request itself succeeded.
For most cases, this will always be true. This may change in the future.

By default, any TEXT messages sent back from COOR are displayed in
the text window. This can be changed by supplying an object instance
for the filter argument. In that case, for each TEXT message sent by
COOR during processing of this request, the ‘filter’ method of the
filter object will be called with the COOR message as an argument
(and the message will not be displayed).

167

info_command () returns true if the request was successfully sent to
COOR, false otherwise (because TAKER was in a state that did not
allow A_INFO transitions).

e change_command (self, cmd, done, filter = None)

’

This is like info_command (), except that ‘info ’ is not prepended to
cmd, and an A_MODIFY transition is made instead of A_INFO.

e add_free_cb (self, cb)
Request that cb be called when the current trigger configuration is
freed. cb is called with no arguments.

e del_free_cb (self, cb)

Remove cb from the list of configuration free callbacks. cb must be
exactly the same object that was passed to add_free_cb().

12.2.4 Plugin interactions

For plugins that have user interfaces, there are two ways they can be designed.

e As a modal dialog. In this case, the function that starts the dialog
does not return until it has been dismissed. The rest of the TAKER
application is nonresponsive during this time.

See coor/src/py/plugins/modal_plugin.py for an example of this
style.

e As a non-modal dialog. In this case, the function that starts the dialog
returns, leaving the dialog posted. Both the plugin user interface and
the TAKER user interface are available.

If this style is used, the plugin should be set up to delete itself if the
trigger configuration is freed. The add_free_cb() method should be
used for this purpose.

See coor/src/py/plugins/nonmodal_plugin.py for an example of
this style.

168

13 The Name/Value Service

13.1 Introduction

COOR also provides a simple name/value service, mapping arbitrary names
to string values. Names are hierarchical, using a period as a separator. Some
examples of names are ‘.coor.store_number’ or ‘.cal.ccne.calibdate’.
(These are examples only; these particular names may not actually exist.)
Any given name can either have a simple string value, or it can be a directory
of other names. A name may also have a collection of named properties
associated with it.

Names starting with ‘. coor’ are reserved to COOR.

Names that have the ‘brun’ property set to something (other than ‘0’ or
the null string) will be written to the brun file (see Sec. 7). Names that have
the ‘erun’ property set will be written to the erun file.

The name database is persistent. It is saved in the file pointed to by the
environment variable COOR_NAME_SERVER_DB.

The protocol used for communicating with the name server is described
in section Sec. 8.5.

4

13.2 The Python Name Service API

A simple Python class is provided to access the name service. Create an
instance of the NV_Service class like this:

from coor.NV_Service import NV_Service
nv = NV_Service()

The NV_Service constructor takes a few optional arguments:

e addr = None: The address to which to connect. This should be a string
in the from ‘HOST:PORT". If it is defaulted, the class first checks the
environment variable COOR_NAME_SERVER_ADDR. If that is not set, then
the address is taken from dOonline_names.

e timeout = 5: The timeout for name service transactions.

e cn_class = itc.SOCK_Auto_Connector: The class to use for the un-
derlying connection. This may be replaced with a different class that
provides the same interface as itc’s SOCK_Auto_Connector.

169

Errors are reported by raising NV_Service.Error. The first element of
the argument tuple is an error code, the second element is the message sent
to the server, and the third element is what was received from the server.
The error code can be any of the itc error codes, or one of these symbols
defined in the NV_Service class:

e BAD_TYPE: The message returned by the server was of an incorrect itc
type.

e BAD_MSGSEQ: The message received by the server had an incorrect itc
message sequence number.

e BAD_REPLY: The server did not reply ‘ok’.
Methods available in the NV_Service class include:

e checkpoint — Request that the name database be written to disk
immediately.

e get name — Get the value of name from the server. If name is an
ordinary variable, the result is returned as a string. If name is a di-
rectory, the result is a list of the directory contents. Each element of
the list is a name, ending in a trailing period if that name is itself a
directory.

e getall name — Get the value of name and (if it’s a directory) every-
thing underneath it. Returns a dictionary. The key ‘_value’ in that
dictionary gives the value of the name (this will itself be a dictionary
if this name is a directory). Each property of the name is also present
as a key in the dictionary. Returns None if there was a problem.

e getprop name property — Get the value of the property property of
name.

e set name wvalue — Set the value of name to value.

e setprop name property value — Set the value of the property prop-
erty of name to value.

170

13.3 The C++ Name Service API

A simple C++ class is also provided to access the name service. The header
is in coor/NV_Service.hpp; the code is in -1coor.

This defines the class coor::NV_Service. Create an instance of the
coor: :NV_Service class like this:

#include "coor/NV_Service.hpp"

<;<;(;r: :NV_Service nv;

The coor: :NV_Service constructor takes a few optional arguments:
e host = "": The host to which to connect.

e port = 0: The port to which to connect. If either the host or the port
are defaulted, they are filled in by looking in the following places:

— The COOR_NAME_SERVER_ADDR environment variable.

— The dOonline_names.py file.
— Compiled-in defaults.

e timeout = 5: The timeout for name service transactions.

There is also an alternate constructor that can be used to replace the
default itc connection class with a different class. See the header.

Errors are reported by raising the exception coor::NV_Service_Error,
which is a ZMexception.

Methods available in the NV_Service class include:

e checkpoint — Request that the name database be written to disk
immediately.

e get_var name — Get the value of name from the server. It is an error
if name is not an ordinary variable.

e get_dir name — Get the contents of directory name from the server.
It is an error if name is not a directory. The result is a vector of strings.
Each element of the vector is a name, ending in a trailing period if that
name is itself a directory.

171

e getprop name property — Get the value of the property property of
name.

e set name value — Set the value of name to value.

e setprop name property value — Set the value of the property prop-
erty of name to value.

13.4 The Name Service Editor

A simple editor program is available for manually making changes to the
database. Start it with the command ‘nv_editor’. Here’s what it looks like:

Fife

- |, Mew:

b |abedef

+ | .coor. Mew: |

- | x New: |

X.000 |

+ | xy New: |

z |asda

Names which are ordinary variables have a blank button in front of them.
To change the value of a name, move to the entry after that name, type the
new value, and press enter. Once you start making changes to an entry, the
text will turn red until the changes have been sent to the server.

Names which are directories have a button in front of them with a ‘+’ if
the contents of the directory are not being shown, or ‘=’ if they are. Click

172

on the button or use the ‘Insert’ key to toggle between these states. To
create a new name in a directory, type the name of the new variable in the
‘New:” entry following the directory’s name and press Enter. You may create
multiple directory levels by giving a name containing a period.

You can delete a name by selecting its entry (so that the entry has the
input focus) and selecting ‘Delete’ from the menu (or use ‘Alt-d’). You will be
asked to confirm a deletion. Deleting a directory deletes that entire subtree.

To resynchronize the display with the current contents of the name server,
choose ‘Update’ from the menu (or use ‘Alt-u’).

You can edit the properties of a name by choosing ‘Properties’ from the
menu (or use ‘Alt-p’). You can do this only for an ordinary name, not a
directory. In the property editor, you can change the value of an existing
property, or create a new, empty, property by typing its name in the ‘New
property’ entry. (Note: the property isn’t actually sent to the server until
you assign a non-null string to it.)

To quit the editor, choose ‘Quit’ from the menu, or use ‘Alt-q’.

173

A Document Type Definitions

This section lists the DTDs for the input files which COOR reads.

A.1 Trigger Configuration
A.1.1 trigger config.dtd

<I--
- $Id: trigger_config.dtd,v 1.45 2002/10/04 03:21:35 snyder Exp $

File: dtd/trigger_config.dtd
Purpose: DTD for coor trigger configuration.
Created: Dec, 1999, sss

This file is part of the DTD for coor’s trigger configurations.
- The top-level element is ‘configuration’.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Read in the internal scraps.

-->

<!ENTITY % readout_entity_definitions
SYSTEM "internal:readout_entity_definitions'">

Jreadout_entity_definitions;

Define some abbreviations for attribute definitions.

-=>

<!-- A name.

<!ENTITY 7% name.att "name CDATA #REQUIRED">

-->

<!-- A name that is also an ID. -->

<!ENTITY % nameid.att '"name ID #REQUIRED">

174

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

<!-- A name for a crate, or crate list. —-->
<IENTITY % cratename.att '"%name.att;">

<!-- A reference to a previously defined name, used to specify
crates to read out. -->
<IENTITY % readout.att "readout CDATA #REQUIRED">

<!-- Ownership mode: either exclusive or shared. —-—>
<I1ENTITY % ownmode.att "ownmode (exclusivel|shared) ’shared’">

<!-- Levell term require state : either require or veto. —-—>
<IENTITY 7% require.att "require (require|veto) ’require’">

<!-- The enumeration part of a boolean attribute. -—>
<!ENTITY 7% bool.att_enum "(yes|no)'">

<!-- A boolean, defaulting to ‘yes’. -->
<!ENTITY 7% bool_yes.att ")bool.att_enum; ’yes’'">

<!-- A boolean, defaulting to ‘no’. -->
<!ENTITY % bool_no.att "Y%bool.att_enum; ’no’">

<!-- Used to specify which one of a set of generic objects to allocate.
If defaulted, coor will pick one. -->
<!ENTITY % number.att "number CDATA ’’">

<!-- The inhibit-download attribute for devices and crates. —-->

<!ENTITY % inhibit.att "inhibit J)bool_no.att;">
<!ENTITY 7% inhibit.att_yes "inhibit ’%bool_yes.att;">

Includes.
-—>

<!-- Load device type elements. -->

<IENTITY 7% devtype.attribs "Jcratename.att; J%ownmode.att; %inhibit.att;">

175

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

<!ENTITY 7% devtype.attribs_inhibited "Jcratename.att; J%ownmode.att;

<!ENTITY 7% devtypes SYSTEM "internal:devtypes_dtd">
hdevtypes;

<!-- Load lilterm elements. -->

<!ENTITY % lilterm.attribs "Yrequire.att; %ownmode.att;">
<IENTITY % literms SYSTEM "lilterms.dtd">

%literms;

Top—level elements for the state dumps written by coor.

-—>
<!ELEMENT clients (clientx*)>

<!ELEMENT client (configuration)>
<IATTLIST client %name.att;
run_number CDATA #REQUIRED
recording %bool.att_enum; #REQUIRED>

Top-level element for normal trigger configurations.
-—>

<!ELEMENT configuration ((download|crate_list)*,
lirefsets?,
(level2?,trigdef+)?,
expogroupx,
sdaq?,
calibration?,
streamx)>
<!ATTLIST configuration %name.att;
version CDATA "O"
autopause %bool_no.att;
physics %bool_no.att;

176

%inhibit.att

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134

135

136

137

138

139

140

141

142

143

144

type CDATA "test"
comics_runtype CDATA "data"
stream_scheme CDATA "">

EPICS download section.
-—>

<!ELEMENT download ((%download_content;|Calpulser)x*)>
<!'ATTLIST download name CDATA "'">
<!-- download_content defined in devtypes.dtd. -->

<!ELEMENT Calpulser EMPTY>

<!ATTLIST Calpulser %name.att;
Y%ownmode .att;
%inhibit.att;
pattern CDATA ’off’>

Crate list definition section.
-—>

<!ELEMENT crate_list (craterefx*)>
<!ATTLIST crate_list Jcratename.att;>

<!ELEMENT crateref EMPTY>
<VATTLIST crateref ref CDATA #REQUIRED>

Primary DAQ section.
-—>

<!-- List of reference sets. —-->

<IENTITY % lirefsets "llem_refset|llhadveto_refset|lljet_refset|1l1lt_refset">

177

145

146

147

148

149

150

151

152

153

154

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

<!ELEMENT trigdef (expogroup*,triglist?)>
<IATTLIST trigdef 13type CDATA "REGULAR"

<!ELEMENT

num_nodes CDATA "0'">

lirefsets ((%llrefsets;)*)>

<!-- Reference sets. ——>

<IENTITY % 1llct_refset.attribs '"Y,ownmode.att; %nameid.att; %number.att;">

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!-- Level-2 preprocessor/tool/filter declarations. -->

llem_refset (#PCDATA)>
llem_refset %lict_refset.attribs;>

lihadveto_refset (#PCDATA)>
lihadveto_refset %llct_refset.attribs;>

1l1jet_refset (#PCDATA)>
1l1jet_refset %llict_refset.attribs;>

111t_refset (#PCDATA)>
111t_refset %lict_refset.attribs;>

<IENTITY % 12pp.attribs "Jownmode.att;">
<!ENTITY % 12pps SYSTEM "internal:12pp_dtd">

%12pps;

<IENTITY % 12tool.attribs "Yname.att;">

<IENTITY 7% 12tool_types SYSTEM "internal:12tool_dtd">

%hl2tool_types;

<IENTITY % 12global_defs SYSTEM "internal:12global_dtd">

%12global_defs;

<!ELEMENT
<!ELEMENT

<!ELEMENT

level2 (12global?, (%12pp_content;%l2tool_content;1l2notused?))>
12notused EMPTY> <!-- Clean this up sometime -->

12script (#PCDATA|12filter)*>

178

183

184

185

186

187

188

189

190

191

192

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

210

211

212

213

214

215

216

217

218

219

220

<!ELEMENT 12filter EMPTY>
<VATTLIST 12filter %name.att;

count CDATA

)1)>

<!ELEMENT expogroup (lltermlist?,litrigger*)>

<IATTLIST

expogroup

%name.att;
J%number.att;
%readout.att;
other_gs CDATA "'">

<!ELEMENT litermlist ((%l1lterm_content;)*)>

<!-- 1llterm_content defined in llterms.dtd.

<!-- Attributes for lltrigger.

-=>

Also used by sdaq_lltrigger. -->

<IENTITY % lltrigger.attribs "Yname.att;

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT

litrigger
litrigger

12trigger

12trigger

13trigger
13trigger

Y%number.att;

prescale CDATA ’1°
12_unbiased_ratio CDATA
obey_feb %bool_yes.att;
auto_disabled %bool_no.att;
11_qualifiers CDATA ’0’">

’16777216°

(l11termlist,l2trigger*)>
hlitrigger.attribs;>

(12script?,13trigger*)>
%name.att;
Y%number.att ;>

EMPTY>
%name.att;
Y%number.att;>

triglist (#PCDATA)>

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

SDAQ section.

-->

<!ELEMENT sdaq ((sdaq_lltrigger)?)>
<IATTLIST sdaq type CDATA #REQUIRED
Y%readout.att;
parasitic %bool_no.att;
only_streams CDATA "'">

<!ELEMENT sdaq_litrigger (lltermlist?)>
<!ATTLIST sdaq_litrigger %lltrigger.attribs;

Calibration.

-->

expogroup_number CDATA "'">

<!ELEMENT calibration EMPTY>
<IATTLIST calibration type CDATA #REQUIRED

Data logger

reference CDATA ’None’
only_streams CDATA ""
Y%readout.att;>

section.

<!'ELEMENT stream EMPTY>
<IATTLIST stream %name.att;

%number.att;
family CDATA "default"
relrate CDATA "1.0">

180

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

A.1.2 1ilterms.dtd

<1--
- $Id: literms.dtd,v 1.11 2001/04/05 23:49:52 snyder Exp $

- File: dtd/l1iterms.dtd
— Purpose: DTD for 11 trigger terms.
- Created: Dec, 1999, sss

- This file is part of the DTD used when reading a trigger configuration.
- It should define an element for each type of levell trigger term,

- specifying as attributes the attributes that that term takes.

- Each attribute list should include the PE ‘Jliterm.attribs;’; this
- defines the common attributes ‘require’ and ‘ownmode’.

- This file should also define the PE ‘literm_content’, which is a
- content pattern listing all of the allowed levell terms.

<!ENTITY %termname.att "name CDATA #REQUIRED">

<!-- A named direct-in term. -->
<!ELEMENT l1lspecterm EMPTY>
<!ATTLIST lispecterm %llterm.attribs; %termname.att; >

<!-- Trigger manager terms. -->
<IENTITY % trigmgr.attribs "Yllterm.attribs; %termname.att; ’%number.att;">

<!ELEMENT 1l1lctt EMPTY>
<IATTLIST 1lictt %trigmgr.attribs;>

<!ELEMENT 11fpd EMPTY>
<!ATTLIST 11fpd %trigmgr.attribs;>

181

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

1lifps EMPTY>
11fps Ytrigmgr.attribs;>

111lum EMPTY>
11lum %trigmgr.attribs;>

limuo EMPTY>
limuo %trigmgr.attribs;>

<IENTITY 7% trigmgr_terms "llctt|lifpd|l1ifps|l1lum|limuo">

<!-—— ================== (Calorimeter resources. ======================== —->
<!-—— Definitions —->

<!ENTITY % value.att "value CDATA #REQUIRED">

<!ENTITY % count.att "count CDATA #REQUIRED">

<IENTITY % lict_thresh.attribs "%llterm.attribs; %value.att; %number.att;">
<IENTITY % 1lict_count.attribs "Yllterm.attribs; Y%count.att; %number.att;'">
<IENTITY 7% region.att ‘"region (c|nl|s) #REQUIRED">

<!ENTITY 7% quadrant.att "quadrant (1/2]3[4) #REQUIRED">

<!-- Thresholds. --—>

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

llemetsum EMPTY>
llemetsum %llct_thresh.attribs;>

lihdetsum EMPTY>
lihdetsum %lict_thresh.attribs;>

litotetsum EMPTY>
litotetsum %llct_thresh.attribs;>

limisspt EMPTY>
limisspt %llct_thresh.attribs;>

<!-- Counts. -->

182

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

106

107

108

109

110

111

<!'ELEMENT llemcount EMPTY>

<!ATTLIST llemcount %llct_count.attribs;
em_refset IDREF #REQUIRED
hadveto_refset IDREF #REQUIRED>

<!ELEMENT 11jetcount EMPTY>

<!ATTLIST 1l1jetcount %llct_count.attribs;
jet_refset IDREF #REQUIRED>

<!'ELEMENT 11ltcount EMPTY>

<!ATTLIST 1i1ltcount %llct_count.attribs;
1t_refset IDREF #REQUIRED>

<!'ELEMENT llemcountr EMPTY>

<IATTLIST llemcountr %llct_count.attribs;
hregion.att;
em_refset IDREF #REQUIRED
hadveto_refset IDREF #REQUIRED>

<!ELEMENT 11jetcountr EMPTY>

<!ATTLIST 1l1jetcountr %llct_count.attribs;
hregion.att;
jet_refset IDREF #REQUIRED>

<!ELEMENT llemquad EMPTY>

<IATTLIST llemquad %llct_count.attribs;
Jquadrant .att;>

<!ELEMENT 11jetquad EMPTY>

<!ATTLIST 1l1jetquad %llct_count.attribs;
Jhquadrant.att;>

<!-- All caltrig elements. ——>

<IENTITY % caltrig_terms "llemetsum|llhdetsum|lltotetsum|limisspt]|
llemcount|1l1ljetcount|1l1ltcount |

183

112

113

114

115

116

117

liemcountr|lljetcountr|lliemquad|lljetquad">

<!-- List all allowed levell terms. —--—>

<!ENTITY % llterm_content "llspecterml|itrigmgr_terms;|%caltrig_terms;">

A.2 Resources

A.2.1 resources.dtd

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

<l--
- $Id: resources.dtd,v 1.32 2002/08/21 03:09:12 snyder Exp $
- File: dtd/resources.dtd
- Purpose: DTD for coor resource definitions.
- Created: Jan, 2000, sss
— This file is the DTD for coor’s resource definitions.
- The top-level element is ‘resources’.
-—>
< ! — 4+ + -+ttt
Define some abbreviations for attribute definitions.
-—>
<!-- The enumeration part of a boolean attribute. -—>

<!ENTITY 7% bool.att_enum "(yes|no)'">

<!-- A boolean, defaulting to ‘no’. -->

<!ENTITY % bool_no.att

<!-- A name.

-->

"Ybool.att_enum;

7nOJII>

<!ENTITY 7% name.att "name CDATA #REQUIRED">

184

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

<!-- A device type. -->
<!ENTITY % type.att "type CDATA #REQUIRED">

<!-- Common device attributes. -->
<VENTITY % device.attribs "Yname.att;
htype.att;

downloader CDATA °’°">

<!-- For specifying a range of trigger terms. -->
<IENTITY % first_term.attrib "first_term CDATA #REQUIRED">
<!ENTITY % n_terms.attribi '"n_terms CDATA">

<!ENTITY 7% termrange.attribs "Jfirst_term.attrib;
%n_terms.attribi; #REQUIRED">
<IENTITY 7% termrangel6.attribs "/first_term.attrib;
%n_terms.attribi; ’16°">

Top-level element.
-—>

<!ELEMENT resources (devtype*,devices?,crates?,levell?,level2?)>

The devices and crates sectiomns.
-—>

<!ELEMENT devtype (attributex)>

<!ATTLIST devtype %name.att;
comics_prefix CDATA ""
default_inhibit %bool_no.att;>

<!ELEMENT attribute EMPTY>
<VATTLIST attribute %name.att;

185

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

<!ELEMENT
<IATTLIST

<!ELEMENT

<IATTLIST

<!ELEMENT

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT

<!ELEMENT
<IATTLIST

xmltype CDATA "CDATA"
default CDATA "#REQUIRED"
onfree CDATA "">

subdevice EMPTY>
subdevice comics_name CDATA #REQUIRED
attribs CDATA #REQUIRED>

tieto EMPTY>
tieto %name.att;>

devices ((device|calpulser)*)>

device ((subdevicel|tieto)*)>
device %device.attribs;>

calpulser (tieto*)>

calpulser %name.att;
comics_name CDATA ’°
downloader CDATA °’°>

crates (cratex*)>

crate ((subdevicel|tieto)*)>

crate Y%device.attribs;
geosect CDATA #REQUIRED
novbd %bool_no.att;>

The levell section.

-=>

<!ELEMENT

levell ((term|trigmgr|lict_thresh|llict_refset|llct_emcount]
lict_jetcount|lict_ltcount|liquall

lict_emcountr|lict_jetcountr|
lict_emquad|lict_jetquad)*)>

186

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

136

137

138

139

140

<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT

<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT

<IATTLIST

<!ELEMENT

<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT

levell n_expogroups CDATA #REQUIRED
CDATA #REQUIRED>

n_bits

trigmgr (termx)
trigmgr class

terml6
device

term EMPTY>
term %name.att;

number CDATA #REQUIRED>

lict_thresh
lict_thresh

lict_refset
lict_refset

>

(11ctt|11fpd|11ifps|1lilum|limuo) #REQUIRED
Jtermrangel6.attribs;

CDATA "

CDATA #REQUIRED>

EMPTY>
class (llemetsum|llhdetsum|litotetsum|limisspt) #REQUIRED
Jitermrange.attribs;>

EMPTY>
n_sets CDATA #REQUIRED

class (llem_refset|llhadveto_refset|
1l1jet_refset|111t_refset)

#REQUIRED>

lict_emcount EMPTY>

lict_emcount refsetno CDATA #REQUIRED
Jtermrange.attribs;>

lict_jetcount EMPTY>

lict_jetcount refsetno CDATA #REQUIRED
Jitermrange.attribs;>

lict_ltcount EMPTY>

lict_ltcount refsetno CDATA #REQUIRED
CDATA #REQUIRED
CDATA #REQUIRED>

count
number

lict_emcountr EMPTY>

187

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

169

170

171

172

173

174

175

176

177

178

<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

lict_emcountr refsetno CDATA #REQUIRED
count CDATA #REQUIRED
number CDATA #REQUIRED
region (nlcls) #REQUIRED>

lict_jetcountr EMPTY>

lict_jetcountr refsetno CDATA #REQUIRED
count CDATA #REQUIRED
number CDATA #REQUIRED
region (nlcl|s) #REQUIRED>

lict_emquad EMPTY>

lict_emquad count CDATA #REQUIRED
number CDATA #REQUIRED
quadrant (1/2/3[4) #REQUIRED>

lict_jetquad EMPTY>

lict_jetquad count CDATA #REQUIRED
number CDATA #REQUIRED
quadrant (1/2]314) #REQUIRED>

liqual EMPTY>
liqual %name.att;
number CDATA #REQUIRED>

The level2 section.

-=>

<!ELEMENT

<!ELEMENT
<IATTLIST

level2 (12ppcrate*,12global,l2pp*,12tool*)>

12global (12parmx)>
12global crate CDATA #REQUIRED
exe_name CDATA #REQUIRED
12_name CDATA #REQUIRED

fail_tooltype CDATA #REQUIRED>

188

179

180

181

182

183

184

185

186

187

188

191

192

193

194

195

196

197

198

199

200

201

202

203

204

<!ELEMENT

<IATTLIST

<!ELEMENT

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

12ppcrate (12input*,12mbt?)>
12ppcrate crate CDATA #REQUIRED
l2cratename CDATA ’’>

12mbt (#PCDATA)>

12pp (12parmx)>
12pp %name.att;

crate CDATA #REQUIRED
exe_name CDATA #REQUIRED
12_name CDATA #REQUIRED
liqual CDATA #REQUIRED>

12parm EMPTY>

12parm %name.att;
type CDATA #REQUIRED
default CDATA "#REQUIRED">

12input EMPTY>
12input number CDATA #REQUIRED
crates CDATA #REQUIRED>

12tool (12parmx)>

12tool %name.att;
12name CDATA ""
pp CDATA ""
maxinstances CDATA "-1">

189

10

11

12

13

14

15

16

17

18

19

20

21

B Run Mode Examples

This section gives example trigger configurations for the run modes enumer-
ated in Sec. 10.4.

B.1 External

<?xml version="1.0"7>
<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<!-- Test the various running modes.
‘external’: no readout from the detector; data fed into the C/R
from an external source, with a hardwired stream ID.

PDAQ: None
SDAQ: None
Calib: None

-—>
<configuration name="mode-external" version="1.0" autopause="no'">
<download name="allcrates">
<Cal_ADC_Crate name="ecnse"/>

</download>

<stream name='"daq_test" relrate="1.0" number="9999"/>
</configuration>

B.2 FW-Only

<?7xml version="1.0"7>
<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<!-- Test the various running modes.
‘fw-only’: Generate L1 accepts, but force L2 rejects.

190

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Crate testing, etc.

PDAQ: L1 only
SDAQ: None
Calib: None

-—>
<configuration name="mode-fw-only" version="1.0">
<download>
<Cal_ADC_Crate name="ecnse"/>

</download>

<expogroup name="eg" readout="ecnse'">
<litrigger name="11lbit1l">

<lltermlist>
<lispecterm name="fastz"/>
</lltermlist>
</litrigger>
</expogroup>
<!-- No stream, since this configuration sends no data to the host.
</configuration>
B.3 PDAQ

<?xml version="1.0"7>
<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<!-- Test the various running modes.
‘pdaq’: Use L1, L2, L3.
Normal running with primary DAQ system.
PDAQ: Full
SDAQ: None

191

-->

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Calib: None
-—>
<configuration name="mode-pdaq" version="1.0">

<download>
<Cal_ADC_Crate name="ecnse"/>
</download>

<trigdef>
<expogroup name='"eg" readout="ecnse'">
<lltrigger name="11bit1">
<litermlist>
<llspecterm name="fastz"/>
</lltermlist>
<l2trigger name="12bit1">
<13trigger name="13bitl"/>
</12trigger>
</litrigger>
</expogroup>
<triglist>
Triglist text.
</triglist>
</trigdef>

<stream name='"daq_test"/>
</configuration>

B.4 Parasitic-SDAQ

<?xml version="1.0"7>
<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<!-- Test the various running modes.
‘parasitic-sdaq’: Read out using sdaq, but with triggers provided

192

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

10

11

12

13

14

by another run.
E.g., read out monitoring data from another run.

PDAQ: None
SDAQ: Parasitic
Calib: None

-—>
<configuration name="mode-parasitic-sdaq" version="1.0">
<download>
<Cal_ADC_Crate name="ecnse"/>
</download>

<sdaq type="sdaqtype" readout="ecnse" parasitic="yes"/>

<stream name='"daq_test"/>
</configuration>

B.5 FW-SDAQ

<?xml version="1.0"7>
<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<!-- Test the various running modes.
‘fw-sdaq’: Read out sdaq, triggered by the TFW.
E.g., tracking calibration.
PDAQ: L1 only
SDAQ: Parasitic
Calib: None

-->

<configuration name="mode-fw-sdaq" version="1.0">

193

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

<download>

<Cal_ADC_Crate name="ecnse"/>

</download>

<expogroup name="eg" readout="ecnse'">

<litrigger name="11lbit1">
<litermlist>

<llspecterm name="fastz"/>

</litermlist>
</1lltrigger>
</expogroup>

<sdaq type="sdaqtype" readout="ecnse'"/>

<stream name='"daq_test"/>
</configuration>

B.6 PDAQ-SDAQ

<?xml version="1.0"7>

<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<!-- Test the various running modes.
‘pdag-sdaq’: Run both pdaq and sdaq.
E.g., normal running, reading out monitoring info via sdaq.

10

11

12

13

14

15

16

PDAQ: Full.
SDAQR: Parasitic
Calib: None

-->

<configuration name="mode-pdaq-sdaq" version="1.0">

<download>

194

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

<Cal_ADC_Crate name="ecnse"/>

</download>

<trigdef>

<expogroup name='"eg" readout="ecnse'">
>

<litrigger name="11bit1l"
<litermlist>

<llspecterm name="fastz"/>

</lltermlist>

<l2trigger name="12bitl">

<13trigger name="13bitl"/>

</12trigger>
</litrigger>
</expogroup>
<triglist>
Triglist text.
</triglist>
</trigdef>

<sdaq type="sdaqtype" readout="ecnse" only_streams="sdaq_stream"/>

<stream name='"daq_test"/>
<stream name='"sdaq_stream"/>
</configuration>

B.7 SDAQ

<?xml version="1.0"7>

<!DOCTYPE configuration SYSTEM "trigger_config.dtd">

<!-- Test the various running modes.
‘sdaq’: Trigger and read out using sdaq.

PDAQ: None
SDAR: Full
Calib: None

195

10

11

12

13

14

15

16

17

18

19

20

21

22

-—>
<configuration name="mode-sdaq" version="1.0">
<download>
<SMT_Crate name="smt0_0"/>
</download>

<sdaq type="sdaqtype" readout="smt0_0"/>

<stream name='"daq_test"/>
</configuration>

196

C State Diagrams

197

disco
>(e)

config

start / revalidate

done / stoprun

done / getlbn

done / startrun

stop / disablell

pause / disablell

done, fail / dnlfin,free

disco
modify / config

done, fail / dnlfin disco

config / config

force_pause,
force_stop,
force_free

8]l / dnlfin,free,retstat

done, fail / dnlfin,relese

donk, fail / dnlfin,setaborted,release

abort / abort

disco / abort

done,fail / dnlfin

disco

abort / abort

tone,fail / dnlfin,retabort

orbe_free / setcmndfree,release

free / setdone,release

disco / release

disco | abort disco /[abor

abort / §bort

modify / config

fail / dnlfin,retfail

done, fail / dnlfin

start / revalidate revalidate / revalidate

fon(e_pau)se,
force~stdp

199

done / dnlfin,getlbn done,fail / dnlfin,runended,releasg

done, fail / dnlfin,stoprun \

done / drlfin,startrun

t

done, fail / dnlfin,runended,retst

fail / dnlfin,setfail,stoprun

disco done, fail / dnlfin,stopfrun

done / dnlfirI,enabledata

done,fail / d

done, fail / dnlfin,gg¢tlum

fail / dnlfin,setfail disabledata /

done / dnlfin,runstarted,retrunnumber,

disco

7fail / dnlfin,disabledata

200

di

digco

co / abort

disco

disco / abort

abort / Abort disco / disabledata

done,fail / dnlfin,réta

stop / setdone,disabledata

done,fail / dnlfin

modify / config force_stop / setcmndstop,disable

latg

force_pause / setcmndpause,pauserup

pause / sgtdone,pauserun

done / dnlfiy,runresumed
disco

fail / dnlfin,setfail,pauserun

done, fail / dnlfifNrunpaused,retstat

esumerun

. . stop / setdone,disabledata
modify / config

force_stop / setcmndstop,disabledata

done, fail / dnlfin disco / disabledata

O

alport / abort force_pause

done, fail / dnlfin,retabort

201

fail

force_pause,
force_stop,

force_free

4

quit

info / info

done / clear_config

clear_newconfig,reply

done / reply_config

ear_newconfig,reply

done, fail / reply

config /iconfig

force_freeMclear_config,freemsg

fail | clear_config,reply

done\ clear_config,reply

config / free_for_config

fail Aclear_newconfig,reply

abort / abort

reply

invalidate / invalidate

info / info

revalidate / revalidate

done, fail / reply

modify / modify

done, fail / reply

202

start / start

fail / reply done / 8lear_runnumber,reply

force_stop / flear_runnumber,stopmsg

donestart_reply

done / clear_runnumber,reply ktop / stop

info / info done, fail / reply

done, fail / reply modify / modify

pause / pause

done / reply

fail / reply

force_pause / pausemsg

resume / resume

done / reply

stop / stop

fail / reply

/ force_stop / clear_runnumber,stopmsg

modify / modify

Qforce_pause

203

info / info

done, fail / reply done, fail / reply

