
L2STT Unpacking

Harrison B. Prosper
STT Group

Abstract
Here are some details of the proposed design of code to unpack data from
L2STT.

1 INTRODUCTION

The Silicon Track Trigger produces data at Level 2, which are forwarded to Level 3 where they are
packed into the RawDataChunk. The purpose of the STT unpacker is to unpack these data from the
RawDataChunk. By unpacking I mean transforming the un-structured (but ordered) data in the RawDat-
aChunk into structured data represented as objects. The unpacking of data from the RawDataChunk is
sometimes referred to as Level 3 unpacking.

1.1 Crate Identifiers and Modules

In a RawDataChunk data are structured into blocks called modules. Each module consists of an array
of 32-bit words preceded by a 32-bit word containing the word count. A module, which corresponds to
the data associated with a given VME address in a given crate, is identified by its crate identifier and its
module number. The module number is the ordinal value of the module within the data block pertaining
to a crate, that is, it is the order in which cards are read out. For the STT the crate identifiers range from
0x70 to 0x75, while the module numbers range from 0 to 11.

1.2 Goals

The goal of the unpacker is to create objects that expose useful structure in the data within modules.
For some applications, such as Examine, it is useful, indeed necessary, to expose all relevant fields. It
is also convenient, and good practice, to shift the burden of doing so from the user to the objects. The
STC group, however, requires great flexibility and needs objects that leave the data uninterpreted. The
interpretation is to be handled by code external to the objects.

2 DESIGN

The STT system is moderately complicated in that it contains more than two dozen distinct bit-patterns.
Therefore, to expose all relevant fields requires several dozen methods in addition to those that leave the
fields unexposed. These methods are divided amongst classes that model blocks of data within modules.
Below is a tentative list of classes that have been identified to model these blocks. Each class is a standard
C++ class with methods for setting and getting attributes. Complicated classes are built by containment,
that is, they have components that are objects. The symbol [] indicates “an array of” and the indentation
indicates containment. For the STC, the objects that leave the data uninterpreted are the same as those
that expose the fields except that the arrays of objects are replaced by arrays of unsigned integers.

2.1 Classes

Fiber Road Card
---------------

STTFRCCard Exposes all fields
STTFRCL3Header



STTFRCHeader
STTCTT[] Either 1 or 0 block depending on

L2Header whether we have a full event or not
STTCTTTrack[]
L2Trailer
pad[]

STTFRCTrailer
STTFRCL3Trailer

Silicon Trigger Card
--------------------

STTSTCCard We interpret the header
STTSTCL3Header and status words only, which
STTSTCStatus[8] are used to decode the remaining

blocks, either fully or not at all.
STTSTCL3Trailer

STTRoadBuf
STTRoadHeader
STTFRCHeader
L2Header
STTCTTTrack[] Since this is stable, we expose all
L2Trailer fields
STTRoadTrailer

STTHitBuf
STTHitHeader
STTHit[] Expose fields + simple array
STTHitTrailer

STTZCentroidBuf
STTZCentroidHeader
STTZCentroid[] Expose fields + simple array
STTZCentroidTrailer

STTACentroidBuf
STTACentroidHeader
STTACentroid[] Expose fields + simple array
STTACentroidTrailer

STTClusterBuf
STTClusterHeader
STTCluster[] Expose fields + simple array

STTStrip[]
STTClusterTrailer

STTRawBuf
STTRawHeader
STTRaw[]

STTRawSeqHdi



STTRawChipId
STTRawOther

STTRawTrailer

STTBadBuf
STTBadHeader
STTBad[]
STTBadTrailer

Track Trigger Card
------------------

STTTFCCard Number of blocks can vary.
STTTFCL3Header

Optionally an FRC block
Optionally an STC block

STTTFCTrackBuf Same object as sent to L2Global
L2Header
L2STTTrack[]
L2Trailer

STTTFCL3Trailer

2.2 Unpacking algorithm

The algorithm is straightforward. It assumes that the data are self-describing and that the unpacker is
given the identifier of the crate to be unpacked. Here is the proposed algorithm as pseudo-code.

With crate-id

For each module number in (0 ... 11)
If module exists Then

Extract module from RawDataChunk
Unpack module header and determine its identity

If source is FRC Then
Unpack module into STTFRCard (A)

ElseIf source is STC Then

Unpack module into STTSTCCard (B)
For each STTSTCStatus word

If blockType is ROAD
Unpack STTRoadBuf

ElseIf blockType is HIT
Unpack STTHitBuf

ElseIf blockType is ZCENTROID
Unpack STTZCentroidBuf

ElseIf blockType is ACENTROID



Unpack STTACentroidBuf
ElseIf blockType is CLUSTER

Unpack STTClusterBuf
ElseIf blockType is RAW

Unpack STTRawBuf
ElseIf blockType is BAD

Unpack STTBadBuf
EndIf

EndFor
Unpack STTSTCL3Trailer

ElseIf source is TFC Then
Unpack module into STTTFCCard (C)

EndIf
EndIf

EndFor

The pseudo-code contains 3 unpacking blocks (A), (B) and (C). If the I/Ogen mechanism is used for
unpacking, all objects and their associated interpretation code is generated automatically from a data
definition file, l2stt.iogen that resides in the l2io package. The unpacking of each block type, FRC, STC
and TFC, would be effected by a call to the retrieve method of a DataBroadcast object, which models
a module. A DataBroadcast object is a smart buffer that understands how to unpack blocks of data into
I/Ogen objects. This works because I/Ogen objects follow a uniform unpacking protocol.

If the desired object has a fully-specified structure, a single call to the retrieve method of the
DataBroadcast object is sufficient to recursively unpack the relevant block of data. This is what would
happen in code block (A). Moreover, if the order of blocks is fixed but there is a possibility that blocks
may be missing, the retrieve method is able to handle this situation provided that the data are self-
describing. This is the case for the FRC and, I presume, for the TFC data blocks, which are unpacked
using code blocks (A) and (C), respectively. If the order of blocks is not fixed, as is the case for STC
data blocks, the retrieve method cannot be used to fully, and recursively, unpack its associated module.
Instead it is necessary to use the retrieve2 method of the DataBroadcast object to unpack block by block,
where the identity of the object into which a block is to be unpacked, at each stage, is made by the
unpacker as in code block (B).

3 WHY I/OGEN?

I/Ogen is based on the following observation: Unpacking is a routine algorithmic mechanism, which
entails imposing structure on un-structured data. Therefore, given a data definition file that describes the
structure to be imposed, unpacking can in principle be automated. I/Ogen is a useful step in that direction
and follows an important trend in computer science in which data definition languages (such as XML)
are used to describe data, in as much detail as desired, so that they can be acted upon by automated
systems. Obviously this approach is powerful. However, mere opinion is an insufficient basis to use
I/Ogen. I have more prosaic reasons:

� It is mandated by the trigger simulator group for the trigger simulator.

� It avoids the need to write an STT-specific scheme to inject objects into the framework’s dataflow
system.

� It avoids the need to write an STT-specific RawDataChunk packer.



� It allows the extraction of vectors of (pointers to) objects of a given type from the RawDataChunk
using a simple interface: A call to the template function extract().

� It hides all interpretation code inside objects where good practice suggests it should be.

� It avoids the need to hand-code routine unpacking classes, such as those listed above.

� It imposes no restriction on the desired level of interpretation of the un-structured data. More-
over, the data definition language, which is DØ-specific—it could have been XML, is simple to
understand. Any change in the data definition of an object triggers automatic re-generation of the
affected code.

Presumably, to be useful in a computer program, such as Examine, data have to be interpreted by some
code. Therefore, almost any change in interpretation of data, usually because of hardware or firmware
changes, entails recompilation and relinking of the interpretation code whether that code is written by
hand or by a code generator. Even though I have chosen, for the reasons given above, to use generated
code this choice does not preclude the provision of generated code that leaves the interpretion of data to
hand-written code.


