The DØ Silicon Track Trigger

Georg Steinbrück
Columbia University, New York
Collaboration Meeting 10/11/2002

- Introduction
- Design
- Status
- Schedule
Physics Motivation

- Increase inclusive bb production yield six-fold with low enough threshold to see $Z \rightarrow bb$ signal
 - Control sample for b-jet energy calibration, bb mass resolution, b trigger and tagging efficiencies
- Top quark physics
 - Factor of 2 improvement in top mass resolution due to improved jet energy scale calibration
- Heavy bb resonances for Higgs searches
 - Double trigger efficiency for $ZH \rightarrow (\nu\nu)(bb)$ by rejecting QCD gluons and light-quark jets
- b-quark physics
 - Lower p_T threshold on single lepton and dilepton triggers ($B^0 \rightarrow \mu\mu$, B_s mixing, etc.)
 - Increase $B_d^0 \rightarrow J/\Psi K_S$ yield by 50% (CP violation)
STT Overview

CFT H layer

±1-mm road

CFT A layer

SMT barrels

Detector 7 MHz

L1 Trigger 5 kHz

L2 Trigger 1000 Hz

L1CAL

L1 CTT

L1 Muon

L1 FPD

L2 Cal

L2 PS

L2 CFT

L2 STT

L2 Global

L2 FW: Combined objects (e, μ, j)

L1 FW: towers, tracks, correlations

G. Steinbrück 11-October-2002
• Boston University
 - U. Heintz, M. Narain, E. Popkov (PD), L. Sonnenschein (PD), J. Wittlin (PD), K. Black (GS), S. Fatakia (GS), A. Zabi (GS), Amitabha Das (GS), W. Earle (Eng), E. Hazen (Eng), S. Wu (Eng)
• Columbia University
 - H. Evans, G. Steinbrück (PD), T. Bose (GS), A. Qi (Eng)
• Florida State University
 - H. Wahl, H. Prosper, S. Linn, T. Adams, B. Lee (PD), S. Tentindo Repond (PD), S. Singupta (GS), J. Lazoflores (GS)
• SUNY Stony Brook
 - J. Hobbs, W. Taylor (PD), H. Dong (GS), C. Pancake (Eng), B. Smart (Eng), J. Wu (Eng)
• Manchester University
 - Michiel Sanders (PD)
6 Identical Crates with 1 Fiber Road Card
9 Silicon Trigger Cards
2 Track Fit Cards

Partially filled crates in racks 202-204 in MCH2
Motherboard and Communication Links

- Boston University
- 9Ux400 mm VME64x-compatible
- 3 33-MHz PCI busses for on-board communications
- Data communicated between cards via point-to-point links (LVDS) (LTB and LRB cards)
- Control signals sent over backplane using dedicated lines
- VME bus used for Level 3 readout and initialization/monitoring
Fiber Road Card (FRC) Design

- Columbia University
- Receives tracks from L1CTT
- Communicates with trigger framework via SCL receiver card
- Transmits tracks and trigger info to other cards
- Manages L3 buffering and readout via Buffer Controller (BC) daughter cards on each motherboard
Silicon Trigger Card (STC) Design

- Boston University
- Performs SMT clustering and cluster-road matching
 - Clusters Neighbouring SMT hits (axial and stereo)
 - Each STC processes 8 HDI inputs simultaneously
 - Axial clusters are matched to ±1mm-wide roads around each CFT track via precomputed LUT
 - Mask bad strips and apply pedestal/gain corrections (via LUTs)
• SUNY Stony Brook
• Performs final SMT cluster filtering and track fitting
 - Receives 2 CFT hits and axial SMT clusters in CFT road
 - Lookup table used to convert hardware to physical coordinates
 - Selects clusters closest to road center and performs linearized track fit using precomputed matrix elements stored in on-board LUT
 - Require only 3 hits out of 4
• Output to L2CTT via Hotlink cards
Hardware Status

<table>
<thead>
<tr>
<th></th>
<th>Need</th>
<th>Have</th>
<th>Spares</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRC</td>
<td>6</td>
<td>➡️</td>
<td>3</td>
</tr>
<tr>
<td>STC</td>
<td>54</td>
<td>➡️</td>
<td>6</td>
</tr>
<tr>
<td>TFC</td>
<td>12</td>
<td>➡️</td>
<td>3</td>
</tr>
<tr>
<td>BC</td>
<td>72</td>
<td>➡️</td>
<td>19</td>
</tr>
<tr>
<td>MB</td>
<td>72</td>
<td>➡️</td>
<td></td>
</tr>
<tr>
<td>LRB/LTB</td>
<td>168</td>
<td>➡️</td>
<td></td>
</tr>
<tr>
<td>Hotlink X</td>
<td>12</td>
<td>➡️</td>
<td></td>
</tr>
<tr>
<td>VTM</td>
<td>60</td>
<td>➡️</td>
<td>5, 7 lost to D0!</td>
</tr>
</tbody>
</table>

All Boards at hand
Downloading and Monitoring

- Florida State University and Boston University

- **STT Crate Initialization**
 - Controlled via Power PC at power-up
 - Downloads lookup tables and DSP code to STT cards
 - Existing test-mode uses Python; conversion to C for final system done for STC and TFC, in progress for FRC

- **EPICS STT board support package**
 - Downloads via COMICS trigger initialization parameters
 - Gathers information from cards for monitoring purposes
 - First pass exists
 - Needs to be extended
 - Need to implement Interrupt Service Routine to react to monitoring request via SCL→FRC→CPU
L2STTCTTWorker

- Boston University
- **Online package (on alpha/ beta) that receives L2 STT output**
 - Formats and orders it appropriately
 * combines the inputs from the 12 tfcs into 1 ordered list of ctt or stt+ctt tracks (depending on if there's a stt fit)
 * sorts by pt, does a few conversions (phi bins, pt bins, etc)
 - Transmits it to L2 Global for final L2 decision

- has been successfully tested with both 1 and 2 tfc's in standalone mode
- has been tested with full card chain for mult. Events
- Integrated into trigger simulator in p13
STT Trigger Simulator

- Florida State, Stony Brook and Boston University
- Exact DSP fitting code used in tsim_l2stt
- Some ongoing development to improve the emulation of the hardware/firmware
- Has been instrumental in developing the fitting algorithm
- Produces test vectors for all cards
- Stand-alone package tsim_l2stt
- Very recently Integrated into d0trigsim ➔ Can be used by the general (DØ) public for physics studies!
- Can be used with worker for physics studies.
STT Performance

\(\sigma = 20 \, \mu \text{m} \)

50 GeV muons

No beam spot

Impact Parameter Resolution vs. pT

Filled: b-decay particles, good tracks

Open: All good tracks

G. Steinbrück
Beamspot Monitoring

• Manchester University
• Use vertex examine to determine beam spot and vertices online
• Use gtr_l3 and Offline vertexing: Beam position from dca vs phi
• Write beam position to text file: ➤

• Beam Monitor: (to do)
 – connected to Vertex examine, SES for alarms, Lumi system to get info → lumi db and acnet for feedback of beam spot to MCR
 – MCR could implement automatic beam adjustment
 – Writes beamspot to pickle file (updated every ~5 min)

• TFC picks up beamspot from pickle file
• Picked up on start of new run (not yet)
• If beam moves too much → Alarm, stop run, start new run (new beam spot)
• Beam spot in beg of store: TBD
 – ~10 min to get measurement
 – Or: Special run with all L3 dedicated to tracking

• thanks to Lorenzo and Suyong (beam_tilt / examine)
Beamspot Monitoring

Critical for the STT!

G. Steinbrück

11-October-2002
Integration Tests

- Used fake data sender (tracks to FRC and hits to STC) to verify transfers between all 3 types of boards
- Fake data sender triggered by L1 accepts: Have started to test integration of FRC with SCL signals
- Next step: tick and turn number in fake CTT data
- Loaded FRC and STC with test vectors and sent multiple events through FRC->STC->TFC->L2 alpha chain
- Ongoing: Rate tests using fake data sender
- L3 readout involving FRC → BC communication in progress
- Real CTT tracks and Silicon hits will be used as soon as L1CTT tracks available!
• Instrumenting a 30° sector:
 – One FRC, 6 STC’s, one TFC
• Full track reconstruction
• parasitic operation
• Output to L3 and private DAQ for L2

• Status: All hardware at hand at FNAL
• Transition from Integration tests to sector test ongoing
• Work on L3 readout ongoing
Schedule

- Production

- Installation 1 week (beg of November) No access needed.

- Now-November: complete 30° sector
 - parasitic operation
 - full track reconstruction
 - output to L3 and private DAQ for L2

 - Without L1CTT: Need to rely on test vectors/ fake data sender
 - Limitations: Less realistic, hard to exercise the whole system (track fits with real SMT hits), timing, data volume, L2 and L3 readout
 - With L1CTT: Easier, Faster

- Full commissioning of the STT will start after installation is complete and all L1CTT inputs are available
• Run 2B STT can process hit information from 5 of the 6 Run 2B SMT layers
• Achieved by adding 1 STC 2 Track Fit Cards per crate
Conclusions

• Great progress in board production since Oklahoma
• All boards for Run 2a at hand!
• Lots of progress in integrating the various pieces
• Sector test in progress
• All of this made possible by a dedicated STT group

• Final System Commissioning coupled to L1CTT schedule.

• Run 2b upgrades involve additional STC and TFC boards.