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Search for Diphoton Events with Large Missing Transverse Energy inpp Collisions
at./s = 1.8 TeV
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A search for new physics has been carried out in the chappel vy + Fr, as expected in
various supersymmetric models. We require two photons with transverse efigrgy12 GeV and
pseudorapidity|n?| < 1.1. The distribution of missing transverse energ;) is consistent with
background and no events halie > 25 GeV. We set limits on production cross sections for selectron,
sneutrino, and neutralino pairs, decaying into photons, which range from about 400 fb to 1 pb depending
on the sparticle masses. A general limit of 185 fb (95% C.L.) is setropp — yy¥r + X), where
E} > 12 GeV, |n”| < 1.1, andfr > 25 GeV. [S0031-9007(97)02738-5]

PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm
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We have searched for new physics in the chapgel—=  azimuthal separatior20° <A¢ < 160° from the Main
vyEr + X (whereEr denotes missing transverse energy).Ring. To eliminate events where thgr was due to
This was motivated by recent suggestions that low-energgnismeasured jet energy, it was also required to have
supersymmetry (SUSY) may result in signatures involv-an azimuthal separatiomjg < 160° from either of the

ing one or more photons together with missing trans{eading two jets (prov|dea‘ET > 12 GeV).
verse energy Such signatures could arise from the decay These selections yielded 842 events, whéisedistri-
X = xy |n models with a light neutralino [1,2], from pution is plotted in Fig. 1. No events are observed with
the decayyi — G in supergravity models with a light g, > 25 GeV. The resolution of the detector iy is
gravitino [3], or in models of gauge-mediated supersym-about 4 GeV for diphoton final states passing these kine-
metry breaking [4-7]. It is suggested that the cross seamatic selections.
tions might be sufficient to lead to several tens of events The dominant background to diphotons with latg
in present data, making signals easily detectable. Recegtises from QCD events where jet or vertex mismeasure-
theoretical interest stems from a desire to explain a singltnent leads to excesgr. Therefore, starting with the
eeyy + Er event observed by the CDF collaboration [8]. same trigger and dataset, a background sample was se-
For this analysis, data corresponding to an integrated luected which was expected to suffer from the same mis-
minosity 0f93.3 + 11.2 pb™!, recorded during 1992-1995 measurements. Two EM clusters, satisfying the same
with the DO detector [9], were used. Photons were idenkinematic and fiducial cuts as the signal, were required.
tified using the uranium-liquid argon sampling calorime-Both were required to have more than 90% of their en-
ter, which covers the region of pseudorapidity =| —  ergy in the EM section of the calorimeter. At least one
In tan—l =< 4. The electromagnetic (EM) energy resolution of the two EM clusters was required to fail the strict pho-
is o /E =15%/\JE(GeV) ® 0.3%. The EM calorimeter ton isolation criterion £1° < 2 GeV) but both were re-
is segmented into four longitudinal sections, and transeuired to haveER® < 5 GeV; at least one of the clusters
versely into towers in pseudorapidity and azimuthal anwas required to have a bad shower shape, and both were
gle, of sizeAn X A¢ =0.1 X 0.1 (0.05 X 0.05 at shower required to have either no track in the road, or a track
maximum). Drift chambers in front of the calorimeter with a bad match to the cluster. Electron backgrounds are
were used to distinguish photons from electrons and phaevaluated separately. The resulting sample was expected
ton conversions. A three-level triggering system was emto contain both QCD multijet events where two jets fluc-
ployed. The first level used scintillation counters nearuated into highly EM clusters, and thg, was due to
the beam pipe to detect an inelastic interaction; the seanismeasurement; and QCD photenjets events, where
ond level summed the EM energy in calorimeter towers obne photon was real and the other a fluctuated jet, and
sizeAn X A¢ =0.2X0.2. The third level was a software the F; was again due to mismeasurement. This selection
trigger which formed clusters of calorimeter cells and ap-yielded 1678 events. The distribution was normalized to
plied loose cuts on the shower shape. the yy sample over the rangl; < 20 GeV to estimate
Events were selected WhICh had two photon candidateshe background at highefy. The resulting number of

each with transverse energy; >12 GeV and|7?| <  events expected with; > 25 GeV is1.0 * 0.7.
1.1. Each cluster was required to pass photon-selection

requirements [10], namely, to have a shape consistent with
that of a single EM shower, to have more than 96% of

its energy in the EM section of the calorimeter, and to be 3>
isolated. The latter was based on the transverse energy g Do .
E7* in the annular region betweeR = /An? + Ap2 = 2 — ndata(93.3 pbr)
150 o) ® expected background
0.2 and R =0.4 around the cluster, requiringy" < 5 <A
2 GeV. Candidates were rejected if the cluster was near an 102} , A1 o
nw

azimuthal module boundary, if there was a track (or a
significant number of drift-chamber hits) in a tracking road
AO X A¢p =0.2 X 0.2 between the cluster and the vertex,
if the invariant mass of the photon pair was between 80 and
100 GeV/c? (to reject misidentifiedZ — ee events), or if

the azimuthal angle between the two photons was less than
90° (to reduce the background frof¥y production and
radiativeW — ev+y decays, with the electron misidentified
as a photon). The beam pipe of the Main Ring accelerator
passes through the outermost layer of the calorimeter.
Losses of accelerated particles from the Main Ring can
lead to energy deposits in the calorimeter and thus to

spurious missing transverse energy. To eliminate thig|g. 1.
source of background th&€; was required to have an and for the total expected background (black circles).
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Processes such &8 — ev, 7— ¢X, and eveni—eX  being observed fof; > 25 GeV. (This range offr is
contain genuingZr and an electron whose track may be found to maximize the significance of the Monte Carlo
lost. If these are combined with a real or fake photonsupersymmetry signals, given the observed background
as apparenyyFr + X signal can result. Again, starting distribution.) Herex =&, 7, 15, with subsequent decays
with the same trigger and dataset, a sampleof+ X &, 5 — Y andy?— y + . No background contribution
events was selected, having two EM clusters satisfying th@/as subtracted. The results are shown in Table | and
same kinematic and fiducial cuts as the signal; both of th&ig. 2. The 95% C.L. upper limits range from about
clusters were required to pass the strict photon selectiof00 fb to 1 pb for the cases withye — m;0 =20 GeV/c?.
(isolation, shower shape, EM fraction); one of the two The results quoted above are somewhat model depen-
clusters had to have exactly one drift chamber track irdent. They are also difficult to relate to the light gravitino
the road, with a good match to the cluster, and the othegcenario of [4] and [6]. A general limit on final states with
cluster had to have no associated drift chamber hits ogimilar topologies has therefore been derived. It is found
track. These selections yielded 32% + X events. To that, providedn;o — myo = 20 GeV/c?, the acceptance
estimate the contribution of such events to $heflr + X for events with two photons havingy > 12 GeV and
signal, it is first necessary to remove the QCD backgrounany| < 1.1, and with measured; > 25 GeV, is inde-
component from they + X candidate sample. This was pendent of the production proce@s, 77, s v5) and the
done by normalizing these two distributions in the regior‘sparticle masses (see Fig. 2). The acceptaneficiency
of low missing transverse energy/ (<20 GeV), then s 183 + 0.016. (This includes a diphoton acceptance
subtracting the QCD distribution from that of tag + X and topological cut efficiency of 0.55, an identification ef-
candidates. The resulting distribution was then multlplleqticiency per photon of 0.75, an azimuthal acceptance of
by the ratio of probabilities for a genuine electron tog 78 for the#;, and an efficiency of 0.79 for th#; not to

be reconstructed as a photon or as an electron, whighe too close to a jet direction). The resulting limits are
is estimated (fromZ — ee events) to bed.14 = 0.01 for

the selection criteria used here. The resulting+ X o(pp — yylr +X) <185t (95% C.L)
contribution to theyyEr + X sample is estimated to be < 140 fb (90% C.L.),
1.1 £0.1 events. )

The total expected background is shown in Fig. 1, andgvhere Er > 12 GeV, [5?| < 1.1, and £r > 25 GeV.
agrees well with the observed data. There is no evidencEhese limits are stricter than those placed on the
for nonstandard sources ¢fy events. The expected num-
ber of background events witfy, > 25 GeVis2.0 = 0.9
and none is observed. If we extend the pseudorapidityABLE I. Upper limits on pair production cross section (95%
coverage for photons te?| < 2.5, we observe only one C.L.) obtained for each of the Monte Carlo samples generated

. . for this analysis, based on zero observed events.- - (4n the
event with £ > 30 GeV, with an expected background limits column indicates that there were insufficient acceptance

of 4;6 + 038. _for a limit to be set on this combination of masses.)
Simulated supersymmetry events were generated usiifg

theisaseTMonte Carlo, version 7.20[11]. The events were , Masses (Geyc) o7 (950/; CL)
then processed through the detector simulation, triggelrrocess ¢ v X2 X (Pb)
simulation, and the reconstruction software. One thousand ¢ 100 90 50 0.715
events were generated for each of the processes and massv 70 50 30 0.995
combinations listed in Table I. For the sneutrino-pair 70 60 30 0.805
events, parameters were selected to keep the chargino 70 60 50
mass large enough so that the deéay~ ¥i ¢ remained 80 65 55 21.6
kinematically forbidden. In all cases the deggy— )y gg ;8 gg 208
was forced. The meali; and the mean photaf; in these 90 80 65 213
events is typically~myo — mg0, SO we will primarily be 90 80 70 547
sensitive to cases where this mass difference exceeds about 100 90 70 0.765
20 GeV/c?. Both photons are usually produced centrally, 100 920 80 4.65
motivating our requirement than”| < 1.1 N PIg%) 60 30 0.715
The product of signal acceptance and efficiency, as 60 40 0.935
estimated from these Monte Carlo samples, is typically 70 30 0.555
0.05-0.10 formye — myp = 20 GeV/c?. In addition to 70 40 0.68
the Monte Carlo statistical error, a systematic uncertainty 70 50 1.03
of 8% has been included (based on the level of agreement 80 30 0.471
between Monte Carlo and data-based estimates of the 80 40 0.610
photon selection efficiencies). Sg 28 8-‘7122
Upper limits on the allowed cross sections for the % 50 0478

processpp — X% were evaluated, based on no events
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proposed models.
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