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Abstract

We present the measurement of R = B(t — Wb)/B(t — Wq) in pp collisions at /s = 1.96 TeV, using 230 pb_l of data collected by the D@
experiment at the Fermilab Tevatron Collider. We fit simultaneously R and the number (N,;) of selected top quark pairs (¢7), to the number of
identified b-quark jets in events with one electron or one muon, three or more jets, and high transverse energy imbalance. To improve sensitivity,

kinematical properties of events with no identified b-quark jets are included in the fit. We measure R = 1.0.

31‘8}2 (stat 4-syst), in good agreement

with the standard model. We set lower limits of R > 0.61 and |V} | > 0.78 at 95% confidence level.

© 2006 Elsevier B.V. All rights reserved.

PACS: 12.15.Hh; 14.65.Ha

Within the standard model (SM), the top quark decays 99.8%
of the time to a W boson and a b quark, with the ratio R =
Bt — Wb)/B(t — Wq) (here q refers to d, s, or b quarks) ex-

pressible in terms of the Cabbibo—Kobayashi—Maskawa (CKM)
[Vipl?

) |Vip P+ Vis P+ Va1 )

the CKM matrix and experimental constraints on its elements

[2] yield the SM prediction 0.9980 < R < 0.9984 at the 90%

C.L. Nevertheless, a fourth generation of quarks or non-SM

matrix elements [1] R = The unitarity of

* Corresponding author.
E-mail address: cclement@cern.ch (C. Clément).
1 On leave from IEP SAS Kosice, Slovakia.
2 Visitor from Purdue University Calumet, Hammond, IN, USA.
3 Visitor from Helsinki Institute of Physics, Helsinki, Finland.

processes in the production or decay of the top quark could lead
to significant deviations from the SM. So far, measurements of
R by the CDF Collaboration [3,4] have not established a devia-
tion of R from unity.

In the present analysis, we assume that the top quark decays
into a W boson, but that the associated quark can be d, s, or b.
Lepton + jets final states arise in /7 when one W boson decays
leptonically and the other into a ¢g’ pair. About 6% of the signal
arises from 7 events in which both W bosons decay leptoni-
cally, but one charged lepton is not reconstructed, while addi-
tional jets are produced by initial or final state radiation. In this
Letter, we report the measurement of R in the lepton (electron
or muon) + jets channel (£ + jets). The lepton can come either
from a direct W decay or from W — t — e¢/u. We use b-jet
identification (b-tagging) techniques, exploiting the long life-
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time of B hadrons, to separate 77 events from the background
processes. The data were collected by the D@ experiment from
August 2002 through March 2004, and correspond to an inte-
grated luminosity of 230 pb~!.

The D@ detector incorporates a tracking system, calorime-
ters, and a muon spectrometer [5]. The tracking system is made
up of a silicon micro-strip tracker (SMT) and a central fiber
tracker (CFT), located inside a 2 T superconducting solenoid.
The tracking system provides efficient charged particle detec-
tion in the pseudorapidity region || < 3.* The SMT strip pitch
of 50-80 um allows a precise determination of the primary
interaction vertex (PV) and an accurate measurement of the
impact parameter of a track relative to the PV.> These are key
components of the lifetime-based b-tagging algorithms. The PV
is required to be within the fiducial region of the SMT and to
contain at least three tracks. The calorimeter consists of a bar-
rel section covering || < 1.1, and two end-caps extending the
coverage to |n| ~ 4.2. The muon spectrometer surrounds the
calorimeter and consists of three layers of drift chambers and
several layers of scintillators [6]. A 1.8 T iron toroidal mag-
net is located outside the innermost layer of the muon system.
The luminosity is calculated from the rate of p p inelastic colli-
sions, detected by two arrays of scintillation counters mounted
close to the beam-pipe on the front surfaces of the calorimeter
end-caps.

We select data in the electron and muon decay channels by
requiring an isolated electron with pr > 20 GeV and || < 1.1,
or an isolated muon with pr > 20 GeV and |n| < 2.0. The
lepton isolation criteria are based on calorimeter and tracking
information. More details on lepton identification and trigger
requirements are available in Ref. [7]. In both channels, we re-
quire the missing transverse energy (£ 1) to exceed 20 GeV and
not be collinear with the direction of the lepton projected on the
transverse plane. The candidate events must be accompanied by
jets with pr > 15 GeV and rapidity |y| < 2.5 (footnote 4). Jets
are defined using a cone algorithm with radius AR = 0.5 [8].

We use a secondary vertex tagging (SVT) algorithm to
reconstruct displaced vertices produced by the decay of B
hadrons inside jets. Secondary vertices are reconstructed from
two or more tracks satisfying: pr > 1 GeV, > 1 hits in the
SMT detector, and impact parameter significance dc,/34,, > 3.5
(footnote 5). Tracks identified as arising from K(S) or A de-
cays or from y conversions are not used. If the secondary
vertex reconstructed within a jet has a decay-length signifi-
cance Ly, /0L, > 7.% the jet is defined as b-tagged. Events with
exactly 1 (> 2) b-tagged jets are referred to as 1-tag (2-tag)

4 Rapidity y and pseudorapidity » are defined as functions of the pa-
rameter § and polar angle 6 w.r.t. the proton beam line, as y(0, ) =
%ln[(l + BcosO)/(1 — Bcosh)] and n(@) = y(@, 1), where B is the ratio of
a particle’s momentum to its energy.

5 Impact parameter is defined as the distance of closest approach (dca) of
the track to the primary vertex in the plane transverse to the beam line. Impact
parameter significance is defined as dca /8., , Where 84, is the error on dca.

6 Decay length Lyy is defined as the distance from the primary to the sec-
ondary vertex in the plane transverse to the beam line. Decay length significance
is defined as Lyy /BLX), , where Sny is the uncertainty on Lyy.

events. Events with no b-tagged jets are referred to as O-tag
events. A prediction for the number of background events and
the fractions of ¢7 events in the 0, 1, and 2-tag samples require
the probabilities for different types of jets (b-, c-, and light-
quark jets) to be b-tagged. The calculation of these probabilities
is presented in Ref. [13]. We fit simultaneously R and the total
number of 7 events in the 0, 1, and 2-tag samples (N,;) to the
number of observed 1-tag and 2-tag events, and, in 0-tag events,
to the shape of a discriminant variable D that exploits kinematic
differences between the backgrounds and the ¢7 signal.

The main background in this analysis is from the produc-
tion of leptonically decaying W bosons produced in association
with jets (W 4+ jets). Most of the jets accompanying the W bo-
son originate from u, d, and s quarks and gluons (W + light
jets). Between 2% and 14% of W 4 jets events contain heavy-
flavor jets, arising from gluon splitting into bb or c¢ (Wbhb
or Wcc, respectively). About 5% of the W + jets events con-
tain a single ¢ quark that originates from W-boson radiation
from an s quark in the proton or anti-proton sea (s — Wc).
A sizable background arises from strong production of two or
more jets (“multijets”), with one of the jets misidentified as an
isolated lepton, and accompanied by large [ 7 resulting from
mismeasurement of jet energies. Significantly smaller contribu-
tions to the selected sample arise from Z +jets, WW,WZ, ZZ,
and single top quark production. Together, these five smaller
backgrounds are expected to contribute from 1% to 7% of the
selected sample, depending on the number of b-tagged jets, and
are referred to below as “other” backgrounds.

Normalization of the backgrounds begins with the determi-
nation of the number of multijet events in the selected sample.
The multijet background is determined using control data sam-
ples and probabilities for jets to mimic isolated lepton signa-
tures, also derived from data [7]. Subtracting this background
also provides the fraction of events with a truly isolated high-
pr lepton (i.e., tf and all backgrounds, except multijets). The
contributions from single top quark, Z + jets, and diboson pro-
duction are determined from Monte Carlo simulation (MC).
The remainder corresponds either to ¢ or W + jet production.
The W 4 jets background normalization is constrained by the
untagged data, as a function of jet multiplicity, while its fla-
vor composition is taken from MC. The signal and background
processes are generated using ALPGEN [9] with m; = 175 GeV.
PYTHIA [10] is used for fragmentation and decay. B hadron de-
cays are modeled via EVTGEN [11]. A full detector simulation
is performed using GEANT [12].

In an analysis based on the SM, with R ~ 1, the 7 event
tagging probabilities are computed assuming that each of the
signal events contains two b-jets [13]. In the present analysis,
the top quark can also decay into a light quark (d or s) anda W
boson. The ratio R determines the fraction of ¢7 events with 0, 1,
and 2 b-jets and therefore how t7 events are distributed among
the 0, 1, and 2-tag samples. In order to derive the 7 event tag-
ging probability as a function of R, we determine the tagging
probability for the three following scenarios (i) t7 — WbW b
(to be referred to as tt — bb), (ii) tt — WTbW g or its charge
conjugate (referred to as tt — bq;), and (iii) tf — Wrg W™ g,
(referred to as tt — qq;), where ¢; denotes either a d or s
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Table 1

Observed number of events, predicted backgrounds and fitted N,;

€43 jets 0-tag 1-tag > 2-tag
W+ jets 1032 £38 34+£5 2.4+0.4
Multi-jet 192423 83£15 01793
Other bkg 184+1.3 43403 0.740.1
Fitted ¢7 324£1.6 32.3%1.6 8.240.5
Total 1275 £ 44 79+5 11.4£0.8
Observed 1277 79 9

£+ >4 jets 0-tag 1-tag > 2-tag
W + jets 193+ 17 8.8£1.2 0.7£0.1
Multi-jet 65+9 4.1%£1.1 0.0+£0.4
Other bkg 29+0.4 1.2£0.2 0.2£0.1
Fitted ¢7 35.6+2.8 41.5+3.3 13.5+14
Total 297419 56+4 14.4+1.4
Observed 291 62 14

quark. The probabilities P”lag to observe nyg = 0,1, or > 2
b-tagged jets are computed separately for the three types of
tt events, using the probabilities for each type of jet (b, c,
or light-quark jet) to be b-tagged. The probabilities P, in
the three scenarios are then combined to obtain the 7¢ tag-
ging probability as a function of R, Py, (1) = RZP,,[ag (tt —
bb) + 2R(1 — R) Py, (it — bq)) + (1 — R)* P, (tt — qiq),
where the subscript Niag Tuns over 0, 1, and > 2 tags. Table 1
compares the observed number of events in the 0, 1, and 2-tag
samples with the sum of the predicted backgrounds and the fit-
ted number of ¢7 events.

The fraction of ¢7 events in the £+ > 4 jets (£ + 3 jets) O-
tag sample changes from 10% (2%) for R =1 to 22% (4%)
for R = 0. The size of this contribution is of the order of
the Poisson uncertainty on the number of events in the O-tag
sample. Therefore the number of observed 0O-tag events is a
poor constraint on R and N,;;. We achieve a tighter constraint
on the number of #7 events in the 0-tag sample by construct-
ing a discriminant function D for 0-tag events in the £+ > 4
jets sample, that combines kinematical event properties to dis-
criminate between 7 signal and W + jets background. The
signal to background ratio in the £ 4 3 jets, O-tag sample is
five times smaller than in the corresponding > 4 jets sample.
Therefore we do not consider such a discriminant for ¢ + 3
jets, O-tag events. We select four variables that provide good
discrimination between signal and background and that are
well modeled by the MC. The discriminant function is built
from: (i) the event sphericity S, constructed from the four-
momenta of the jets, (ii) the event centrality C, defined as
the ratio of the scalar sum of the pr of the jets to the scalar
sum of the energies of the jets, (iii) K ’T min = AR;‘T}i“ p?i“ /E W,
where AR’;}in is the minimum separation in n — ¢ space be-
tween pairs of jets, pr;}in is the pr of the lower-pr jet of that
pair, and E‘TV is the scalar sum of the lepton transverse mo-
mentum and 7, and (iv) Hy, = Hry/H-, where Hr is the
scalar sum of the Er for all jets excluding the leading jet
and H; is the scalar sum of the absolute value of the mo-
menta of all the jets, the lepton and the neutrino along the

z-direction.” Sphericity and centrality characterize the event
shape and are described in Ref. [14]. In order to reduce the
dependence on modeling of soft radiation and the underlying
event, only the four highest-pr jets are used to determine these
variables.

The discriminant function is constructed using the method
described in Ref. [15]. Neglecting correlations among the input
variables xp, x3, ..., the discriminant function can be approxi-
mated by the expression
Do [1; si(xi)/bi(xi) ’ O

[TisiGxi)/bi(xi) +1
where s; (x;) and b; (x;) are the normalized distributions of vari-
able x; for signal and background, respectively. As constructed,
the discriminant peaks near zero for background, and near one
for signal. The shapes of the discriminant for ¢ and W + jets
events are derived from MC.

The shape of the discriminant for the multijet background
is obtained from a control data sample, selected by requiring
that the lepton candidates fail the isolation criteria. The other
backgrounds (Z + jets, diboson, and single top quark) have dis-
criminant distributions close to those of the W + jet events, and
contribute to 1% of the 0-tag sample. In the final fit, we assume
that these processes have the same discriminants as the W + jets
events. The background normalization in the £+ > 4 jets, O-tag
sample is extracted from the discriminant fit rather than from
MC. We verify that the kinematic variables used in the discrim-
inant are well modeled by the simulation by comparing data and
MC distributions in two control samples with little #7 content:
£+ 2 jets and £ + 3 jets before tagging. In £ + 2 jets events, the
fraction of ¢f events is negligible, whereas it makes up about
5% of the £ 4 3 jets events.

In order to measure R and N,;, we perform a binned maxi-
mum likelihood fit. The data are binned in thirty bins: (i) twenty
bins of the discriminant D in the e+ > 4 jets and u+ > 4 jets,
0-tag samples, (ii) two bins for the two 0-tag samples in e + 3
jets and p + 3 jets, (iii) four bins for the four 1-tag samples
(electron or muon and 3 or 4 jets), and (iv) four bins for the
four 2-tag samples (electron or muon and 3 or 4 jets). In each
bin, we predict the number of events that corresponds to the sum
of the expected background and signal. The signal contribution
is a function of R and N,;. To predict the number of events
in each bin of the discriminant D, we use its expected distri-
bution for W + jets background and ¢7 signal. As described
earlier, the normalization of the multijet background is esti-
mated by counting events in orthogonal control samples. Statis-
tical fluctuations in the number of events in the control samples
are taken into account. We incorporate systematic uncertainties
into the likelihood by using nuisance parameters [16]. All pre-
selection efficiencies, tagging probabilities, and shapes of the
discriminant D are functions of the nuisance parameters. The
likelihood contains one Gaussian term for each nuisance pa-
rameter. The value of R that maximizes the total likelihood is

7 The neutrino momentum along the z direction (p}) is determined by assum-
ing that each event contains one W boson. The W mass is used as an additional
constraint to derive p . The solution with the smallest | p}| is chosen.
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Fig. 1. (a) The 68% and 95% statistical confidence contours in the (R, N,;) plane. The point indicates the best fit to data. Observed number of events and fitted sample
composition in the 0, 1, and 2-tag samples (b) in the £ + 3 jets sample and (c) in the £+ > 4 jets sample. (d) Observed and fitted distribution of the discriminant D.

Table 2
Summary of statistical and systematic uncertainties on R

Uncertainties on R

Statistical +0.17 —0.15
b-tagging efficiency +0.06 —0.05
Background modeling +0.05 —0.04
Jet identification and energy calibration +0.04 —0.03
Multijet background +0.02

Total error +0.19 —0.17

R = 1.03f8:ig (stat + syst), in good agreement with the SM
expectation. A summary of statistical and systematic uncertain-
ties is given in Table 2. The fit also yields the total number of
tf events in the 0, 1, and 2-tag samples, N;; = 16332 (stat).
The result of the two-dimensional fit is shown in the (R, N;;)
plane in Fig. 1(a), with the 68% and 95% contours of statistical
confidence. In Fig. 1(b) and (c), we compare the observed num-
ber of events to the sum of the predicted backgrounds and the
fitted ¢7 contribution, in the 0, 1 and 2-tag samples for events
with 3 jets and > 4 jets. In Fig. 1(d), we compare the observed
distribution of the discriminant D with the corresponding dis-
tribution for the sum of the predicted backgrounds and the fitted
tf contribution.

We extract lower limits on R and the CKM matrix element
|Vip| assuming | V| = VR. Using a Bayesian approach with
the prior 7(R) =1 for 0 < R < 1 and 7 (R) = 0 otherwise, we
obtain R > 0.78 at the 68% C.L. and R > 0.61 at the 95% C.L.
For the CKM matrix element |V;;|, we obtain |V;;| > 0.88 at
68% C.L., and |V;p| > 0.78 at the 95% C.L.

In summary, we performed the most accurate measurement
of R to date, R = 1.031‘8:}2 (stat + syst), in good agreement
with the SM.
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