
The math for the ADS hexapod systemGaston Gutierreza and Andrew StefanikaaFermilab, PO Box 500, Batavia, IL 60510September 25, 2008ABSTRACTIn this note we will 
al
ulate the for
es and motions for the 
urrent ADS design of the DECam hexapod system.We will show that the maximum for
e in any hexapod a
tuator is about 2/3 of the total DECam weight andthat an a
tuator resolution of 12xxx mi
rometers is enough to meet the 
urrent DES positioning requirements.The study of the e�e
t of loads on the a
tuators will show that a position measurement feedba
k system 
loseto the fo
al plane will be needed. The vibratonal modes will also be 
al
ulated.1. INTRODUCTIONThis note is an extension of a previous general note titled \The math of the hexapod system". Currently ADSis designing and bulding the hexapods for DECam, so we feel that it will be useful to update the general notementioned above with the design parameters provided to us by ADS.In Se
tion 2 we will spe
ify the ADS hexapod 
on�gurations and dis
uss the transformations that will beused to study the motion and for
es in the hexapod system. In Se
tion 3 we will 
al
ulate the for
es on thea
tuators and study how these for
es 
hange as the 
amera and the 
age are moved as a unit through spa
e(keeping the a
tuator motors o�). In Se
tion 4 we will 
al
ulate how ea
h a
tuator length has to be 
hanged tomove the motion plate relative to the �xed plate. The e�e
t of moving one a
tuator at a time and the errorsintrodu
ed by the fa
t that this 
an only be done in �nite steps will also be studied in Se
tion 4. In Se
tion 5we will 
al
ulate the e�e
t of elasti
 deformations due to loads on the hexapod a
tuators. And �nally in Se
tion6 we will study the hexapod vibrations.2. THE ADS HEXAPOD SYSTEMThe hexapod system 
onsists of six a
tuators and two plates whi
h are referred to as the motion and �xed plates.The motion plate is rigidly atta
hed to the 
amera while the �xed plate is rigidly atta
hed to the 
age. One endof the a
tuators inserts in the �xed plate, the other end inserts in the motion plate.For the ADS Con�guration, one end of the a
tuators insert in the motion plate as is shown in Figure 1 left,the other a
tuator end inserts in the �xed plate as is shown in the 
enter �gure. If ea
h a
tuator is atta
hedin ea
h of the six plate insertion points using a ball joint then at ea
h joint the a
tuator is allowed to freelyrotate in all three dimensions. The 
amera 
an be held in spa
e by applying the right set of for
es at ea
h of thesix motion plate insertion points. At ea
h of these points the a
tuators 
an independently push or pull by anyamount. This means an arbitrary for
e 
omponents at ea
h insertion point, for a total of six independent for
eswhi
h is enough to satisfy the six stati
 equations that 
ome from the sum of all for
es and all moments.The six insertion points in the motion plate 
an be arbitrarily positioned with respe
t to the six insertionpoints in the �xed plate. On
e this relative position is �xed the distan
es between the points 
an be 
al
ulated.This set of distan
es is unique, that is di�erent positions of the motion plate relative to the �xed one will 
reatea di�erent set of six distan
es. This one-to-one 
orresponden
e means that the relation 
an be inverted, or thatspe
ifying a set of six distan
es will 
reate a unique position of the motion plate relative to the �xed one. If onewishes to do so, only one of the six distan
es 
an be 
hanged at a given time whi
h guarantees that the hexapodFor further information 
onta
t: G. Gutierrez: E-mail: gaston�fnal.gov, Telephone: 630-840-4107. A. Stefanik:E-mail: stefanik�fnal.gov, Telephone: 630-840-4131 1



Figure 1. Motion plate (left), �xed plate (
enter), hexapod system (right).system is not over-
onstrained. We will mathemati
ally prove in Se
tion 4 that this is the 
ase, but before doingthat we have to de�ne the ve
tors for ea
h of the plate insertion points and their rotations and translations.The insertion points will be labeled as �!r 0i for the motion plate and �!R 0i for the �xed plate. They are
al
ulated as �!r 0i = [r 
os(�i + Æ0); r sin(�i + Æ0); 0:5(A+A0)℄ (1)�!R 0i = [R 
os(�i + Æ0); R sin(�i + Æ0); 0:5(A�A0)℄ (2)The angles �i and �i are given in Table 1. The motion plate radius r and the �xed plate radius R and thedistan
es A and A0 are given in Table 2. The angle Æ0 is arbitrary and allows us to rotate the insertion pointsaround the z-axis. When the 
amera is pointing up the plane of the �xed plate forms the x-y plane of the
oordinate system, the z-axis points up and the origin of the 
oordinate system is 
entered on the �xed plate.Table 1. Angles, in degrees, 
orresponding to the points where the a
tuators insert into the motion and �xed plates.i 1 2 3 4 5 6ADS 
on�guration motion plate �i 13 107 133 227 253 347�xed plate �i 47 73 167 193 287 313Table 2. Motion and �xed plate insertion points radius r and R. The distan
es A, A', B and C are des
ribed in the textand shown in Figure 2. All numbers are in millimeters.r R A A' B CADS 
on�guration 660 680 850 553 100 578Two planes will be sele
ted to de�ne rotations and translations. One will be the plane of the motion plate,and the other will be the fo
al plane. The translations on these planes will be de�ned as (�x;�y;�z). Therotations 
an be de�ned by the Euler angles (��;��;�
) or by the rotations around the x, y and z axis(tip,tilt,twist)=(��x;��y;��z). The mathemati
s to perform these rotations is des
ribed in Appendix A.Figure 2 shows distan
es between di�erent parts of the DECam 
amera. The distan
e between the �xed andmotion plates is labeled A. The distan
e between the motion plate and the 
amera's Center of Mass (CM) is B,and the distan
e between the CM and the fo
al plane is labeled C. Figure 2 also shows the planes where thea
tuators insert into the �xed and motion plates. The distan
e between these planes is labeled A'. The valuesof the previous distan
es are given in Table 2. 2



Figure 2. Side view of hexapod system and fo
al plane. Also shown is the 
amera Center of Mass (CM). The di�erentdistan
es are listed in Table 2 and des
ribed in the text.To avoid 
oupling rotations with translations the rotation of either the motion or fo
al planes has to be doneat the 
oordinate system origin. After the rotation is performed the plane 
an be translated to its designedposition. This rotation a�e
ts the motion plate insertion points, so the �nal position of these insertion points isobtained as follows:� Translate �!r 0i until the motion plate or fo
al plane is at the 
oordinate systems origin. This translationwill be given by the ve
tor �!d .� Perform rotation Rot.� Translate insertion points so the motion plate or fo
al plane is ba
k at their design position. This translationis again given by �!d .� Performed translations �!r 0 = (�x;�y;�z)Then the �nal position of the motion plate insertion points will be�!r i = Rot (�!r 0i ��!d ) +�!d +�!r 0 (3)When de�ning the 
amera rotations and translations relative to the motion plate we have �!d = (0; 0; A). Whenthe fo
al plane is used to de�ne rotations and translations we have �!d = (0; 0; A+B +C). For motions relativeto the Center of Mass �!d = (0; 0; A+B). For small angle rotations one 
an use tip, tilt and twist and Rot willbe the matrix given in Appendix A Eq. 59. In the general 
ase we 
an use the matrix given in Appendix A Eq.51. The �xed plate insertion points don't move, therefore�!R i = �!R 0i (4)The a
tuators lie in the line that 
onne
ts points �!r i and �!R i. The ve
tor di�eren
e between the points is�!L i = �!r i ��!R i (5)Therefore the a
tuator's length is given by Li = j�!L ij, and the unit ve
tors in the dire
tion of the a
tuators aref̂i = �!L iLi (6)3



The Center of Mass position �!r 0CM = (0; 0; A + B) is also rotated and translated a

ording to Eq. 3 to give�!r CM = Rot (�!r 0CM ��!d ) +�!d +�!r 0.When the 
amera is rotated away from the verti
al position we need to rotate all ve
tors asso
iated with the
amera or the 
age (ex
ept gravity of 
ourse). This rotation is performed using the Eq. 51 matrix in AppendixA. That is �!V 0 = R(�; �; 
)�!V (7)where �!V is any of the ve
tors 
al
ulated in this se
tion.3. FORCES ON THE HEXAPOD ACTUATORSIn this se
tion we will study the for
es exerted by the hexapod a
tuators. We de�ne a for
e as positive whenthe a
tuator pushes on the motion plate whi
h means that the a
tuator is under 
ompression. When the for
eis negative the a
tuator is pulling on the motion plate and it is under tension.To study the a
tuator for
es both the �xed and motion plates (or 
age and 
amera) will be rotated as a unitbetween 0 and 90 degrees around the y-axis and between 0 and 360 degrees around the 
amera axis. In terms ofEuler angles (see Appendix A) this means � = 0Æ, 0Æ � � � 90Æ and 0Æ � 
 � 360Æ, whi
h 
overs the full rangeof a
tuator for
es.The motion plate will be assumed to be parallel to the �xed plate and sharing the same axis. In the notationof the previous se
tion this means �x = �y = �z = 0 and �� = �� = �
 = 0 (or ��x = ��y = ��z = 0).The 
ases where the motion plate is rotated or translated relative to the �xed plate 
an be easily studied too, butsin
e these displa
ements are small and the motion plate will be oriented in every possible position, for simpli
itywe de
ided to just run the parallel and 
oaxial 
ase.As explained in the previous se
tion on
e the positions of the �xed and motion plates (and the a
tuatorinsertion points) are given, the unit ve
tors f̂i 
an be easily 
al
ulated (see Eqs 1 to 6). With the ve
tors f̂i, therelations given in Appendix B (Eqs 60 to 67) 
an be used to 
al
ulate the for
e per unit 
amera weight (F=w)exerted by the a
tuators.When the 
amera is verti
al all a
tuator for
es will be equal and independent of 
. As the teles
ope rotatesthe for
e on the a
tuators will 
hange. Perhaps the most interesting 
ase to start the dis
ussion with is the 
asein whi
h the 
amera is horizontal (� = 90Æ) and rotates around its axis (0Æ � 
 � 360Æ). Figure 3 shows F=w for� = 90Æ as a fun
tion of 
 for all six a
tuators. The a
tuators are paired a

ording to the way they insert in themotion plate. When looking from the fo
al plane towards the hexapod, 
 = 0 
orrespond to the 
ase in whi
ha
tuators 1 and 6 insert on both sides of 6 o'
lo
k, with a
tuator 6 
oming from the left and 1 from the right.A
tuators 2 and 3 insert on both sides of 2 o'
lo
k with a
tuator 2 going up and 3 
oming down. A
tuators 4and 5 insert on both sides of 10 o'
lo
k with a
tuator 4 
oming down and 5 going up.
Figure 3. A
tuators for
es per unit 
amera weight (F=w) for � = 90Æ as a fun
tion of 
. The a
tuators are paired a

ordingto the way they insert in the motion plate: 6 and 1 (left), 2 and 3 (
enter), 4 and 5 (right). A
tuators 2, 4 and 6 are inred, 1, 3 and 5 in bla
k.As we 
an see from the left plot in Figure 3 the a
tuators on both sides of the 6 o'
lo
k (
 = 0) insertionpoint experien
e an almost negligible for
e. The main purpose of these small for
es is to 
an
el out the residual4



moments left from the push-pull of the for
es around the 2 and 10 o'
lo
k insertion points. At 6 o'
lo
k there isalso a small up or down 
omponent, but this for
e is small be
ause in this position a
tuators 1 and 6 are almosthorizontal, so the weight of the 
amera is being supported by the for
es at the 2 and 10 o'
lo
k insertion points.The a
tuator for
es for the 2 and 10 o'
lo
k insertion points 
an be red out from the 
 = 0 point at the 
enterand right plots in Figure 3. We 
an see that the going up a
tuators (2 and 5) are pushing while the downwardones (3 and 4) are pulling. The pushing and pulling for
es are almost equal. This produ
es a total for
e whosemain 
omponent is on the verti
al plane and a small horizontal 
omponent whose sign depends on the exa
t CMposition. This is needed to support the 
amera weight and to 
an
el (together with the small horizontal for
esat 6 o'
lo
k) the moment produ
e by the fa
t that the CM is displa
ed from the motion plate.As the angle 
 in
rease the 
amera rotates 
ounter
lo
kwise. At 
 = 60Æ the 2 o'
lo
k point has moved to12 o'
lo
k. At this point a
tuators 2 and 3 are almost horizontal (see 
enter plot in Figure 3). This produ
esa for
e that only serves to 
an
el moments and the weight of the 
amera is supported by the now at 8 and 4o'
lo
k points. The maximum for
es are 
lose to the 3 (or 9) o'
lo
k point be
ause here there is one insertionpoint between 12 and 6 o'
lo
k but 2 between 6 and 12 o'
lo
k.Figure 4 shows F=w for � = 60Æ as a fun
tion of 
 for all six a
tuators.
Figure 4. A
tuators for
es per unit 
amera weight (F=w) for � = 60Æ as a fun
tion of 
. The a
tuators are paired a

ordingto the way they insert in the motion plate: 6 and 1 (left), 2 and 3 (
enter), 4 and 5 (right). A
tuators 2, 4 and 6 are inred, 1, 3 and 5 in bla
k.So we 
an study all the a
tuator for
es by just following one insertion point around the 
lo
k or if we onlywant the maximum for
e by following just one a
tuator. Figure 5 shows the for
es on a
tuators 1 and 6 fordi�erent values of �. The light blue, blue, green, red and bla
k 
urves 
orrespond to � equals to 0, 30, 45, 60 and90 degrees. We 
an see that the maximum for
e exerted by an a
tuator is about 2/3 of the total 
amera weight.

Figure 5. F=w as a fun
tion of 
 for a
tuator 1 (plot 1), and a
tuator 6 (plot 2). The light blue, blue, green, red andbla
k 
urves 
orrespond to � equals to 0, 30, 45, 60 and 90 degrees.5



4. MOTION AND ACCURACY STUDIESNow we will turn our attention to the study of how the hexapod system moves. Sin
e we are trying to understandthe a

ura
y with whi
h the hexapod system 
an position the 
amera we will restri
t ourselves to small motions(of the order of a millimeter at the fo
al plane) whi
h, as explained in Appendix A.1, have the advantage thatrotations 
ommute and movements 
an be treated in a linear way.The restri
tion to small motions will not 
hange the generality of our 
on
lusions for two reasons: 1) almostinevitably after large movements there will be small adjustments to rea
h the �nal 
amera position, so the �nala

ura
y of the hexapod system relies on the ability to make small movements, and 2) given a 
hange in lineartranslations and in angles the 
hange in a
tuators length 
an be easily 
al
ulated in a very general way (seeSe
tion 2), so ex
ept for the inversion to go from a
tuator lengths to motion, every thing else 
al
ulated in thisse
tion 
an be easily generalized.For small motions the relation between translations and rotations with respe
t to the three 
oordinate axisand the a
tuators length will be given by a 6x6 matrix M . Equation 59 in Appendix A.1 shows that for smallrotations we 
an 
al
ulate ea
h rotation independently and then add the e�e
t of ea
h one to obtain the �nalrotation. For translations this is also the 
ase, so the 
olumns of M 
an be 
al
ulated by performing onemotion at a time. For example a translation along the x-axis by an amount �x will indu
e a 
hange in thelength of the six a
tuators (�Lx1 ;�Lx2 ;�Lx3 ;�Lx4 ;�Lx5 ;�Lx6) and this will 
onstitute the �rst 
olumn of ourmatrix. A translation along the y-axis by an amount �y will indu
e a 
hange in the length of the six a
tuators(�Ly1 ;�Ly2;�Ly3 ;�Ly4;�Ly5 ;�Ly6). And the e�e
t of both translations will be (�Lx1 +�Ly1 ;�Lx2 +�Ly2 ;�Lx3 +�Ly3 ;�Lx4 + �Ly4;�Lx5 +�Ly5 ;�Lx6 +�Ly6). So we 
al
ulate the 6x6 matrix M by performing small motionsusing the general equations given in Se
tion 2. We de�ne translations and rotations in two di�erent pla
es: 1)the motion plate, and 2) the fo
al plane. For the ADS hexapod 
on�guration and translations and rotationsde�ned at the motion plate we obtain0BBBBBB� �L1�L2�L3�L4�L5�L6
1CCCCCCA = 0BBBBBB� 0:265 �0:514 0:816 0:217 �2:733 �1:795�0:578 �0:028 0:816 2:476 1:179 1:7950:314 0:486 0:816 2:259 1:554 �1:7950:314 �0:486 0:816 �2:259 1:554 1:795�0:578 0:028 0:816 �2:475 1:179 �1:7950:265 0:515 0:816 �0:217 �2:733 1:795

1CCCCCCA0BBBBBB� �x�y�z��x��y��z
1CCCCCCA (8)where �x, �y and �z are translations along the x, y and z axis in mi
rometers, ��x, ��y and ��z are rotationsaround the x, y and z axis in ar
se
onds and �L1, �L2, �L3, �L4, �L5 and �L6 are a
tuators length 
hangesin mi
rometers.Equation 8 
an be inverted to give a relation between the 
hange in a
tuators length and the 
amera trans-lations and rotations:0BBBBBB� �x�y�z��x��y��z

1CCCCCCA = 0BBBBBB� 0:049 �0:564 0:514 0:514 �0:564 0:049�0:622 �0:269 0:354 �0:354 0:269 0:6220:204 0:204 0:204 0:204 0:204 0:2040:060 0:132 0:071 �0:071 �0:132 �0:060�0:117 0:006 0:111 0:111 0:006 �0:117�0:093 0:093 �0:093 0:093 �0:093 0:093
1CCCCCCA0BBBBBB� �L1�L2�L3�L4�L5�L6

1CCCCCCA (9)The fa
t that Eq. 8 inverts without a problem proves that the hexapod system is not over-
onstraint. In otherwords we 
an move one a
tuator at a time and the entire system will move without problems. For example ifthe length of a
tuator 1 
hanges by �L1 = 10 �m then the 
amera will move in x, y and z by 0.5, -6.2 and 2.0mi
rometers and it will rotate around x, y and z by 0.6, -1.2 and -0.9 ar
se
onds. As expe
ted there is a lot ofsymmetry in Eq. 9. For example a
tuators 1 and 6 insert in the motion plate at two points on oposite sides ofthe x-axis, so they will both push in x and z in the same dire
tion but they will push in opposite dire
tions in y,so the translation in z and rotations around the y-axis will have the same sign and translations in y and rotationaround the x and z-axis will have opposite signs. And this is what we see in Eq. 9.6



Equations 8 and 9 are essential to 
al
ulate motion but no parti
ular number in the two matri
es is veryimportant, spe
ially be
ause these numbers depend on how we de�ne the 
oordinate system with respe
t tothe insertion points. So we need other numbers to understand how pre
isely the hexapod system 
an move the
amera. We see for example from Eq. 8 that if we want to move by �x = 10 �m then the a
tuators lengths�L1 to �L6 will have to 
hange by 2.65, -5.78, 3.14, 3.14, -5.78 and 2.65 mi
rometers respe
tively. If theminimum a
tuator step size is 1 mi
rometer then the 
hanges will be 3, -6, 3, 3, -6 and 3 steps, so there willbe errors due to the �nite size of the a
tuators steps. Over many motions these errors will a
t randomly andgenerate a distribution of errors in all three translations and rotations. The rms of these distributions 
an be
al
ulated by adding the numbers in Eq. 9 in quadratures. If we write Eq. 8 as �!�L = M �!�x and Eq. 9 as�!�x =M�1�!�L and assume that the step size SL is the same in all a
tuators then the rms of the distributions willbe �i =qPj(M�1i;j )2 �L, with �L = SL=p12 � 0:29SL (the fa
tor 1=p12 is just the rms of a square distributionof width 1). For Eq. 9 these number are:(�x; �y; �z; ��x ; ��y ; ��z) = (1:08; 1:08; 0:50; 0:23; 0:23; 0:23) �L (10)As with every distribution we may wonder how far the tails of the above mentioned distributions go. So anotheruseful number is the maximum error that 
an be introdu
ed due to the �nite a
tuator step size. If h is theminimum interval that 
ontains all errors, and if we assume that all step size errors 
onspire to give the largestpossible deviation then hi = (Pj jM�1i;j j)SL. For Eq. 9 these gives(hx; hy; hz; h�x ; h�y ; h�z) = (2:25; 2:25; 1:23; 0:53; 0:47; 0:56) SL (11)We 
an now 
al
ulate the equivalent of Eqs 8 to 11 when translations and rotations are de�ned in the fo
alplane. They are0BBBBBB� �L1�L2�L3�L4�L5�L6
1CCCCCCA = 0BBBBBB� 0:265 �0:514 0:816 �1:474 �3:603 �1:795�0:578 �0:028 0:816 2:383 3:079 1:7950:314 0:486 0:816 3:858 0:525 �1:7950:314 �0:486 0:816 �3:857 0:525 1:795�0:578 0:028 0:816 �2:382 3:079 �1:7950:265 0:515 0:816 1:475 �3:603 1:795

1CCCCCCA0BBBBBB� �x�y�z��x��y��z
1CCCCCCA (12)0BBBBBB� �x�y�z��x��y��z

1CCCCCCA = 0BBBBBB� �0:336 �0:543 0:878 0:878 �0:543 �0:336�0:820 �0:701 0:119 �0:119 0:701 0:8200:205 0:204 0:204 0:204 0:204 0:2040:060 0:132 0:071 �0:071 �0:132 �0:060�0:117 0:006 0:111 0:111 0:006 �0:117�0:093 0:093 �0:093 0:093 �0:093 0:093
1CCCCCCA0BBBBBB� �L1�L2�L3�L4�L5�L6

1CCCCCCA (13)(�x; �y; �z; ��x ; ��y ; ��z) = (1:53; 1:53; 0:50; 0:23; 0:23; 0:23) �L (14)(hx; hy; hz; h�x ; h�y ; h�z) = (3:51; 3:28; 1:23; 0:53; 0:47; 0:56) SL (15)We 
an see that the only di�eren
es between Eqs 8 and 12 are in the 
olumns 
orresponding to ��x and ��y.These are the only expe
ted di�eren
es and they are due to the fa
t that rotations around the x and y axis atthe motion plate produ
e translations at the fo
al plane.Eq. 12 inverts without any problem, whi
h again proves that the hexapod system is not over-
onstraint overa large range of parameters. As brie
y dis
ussed in Se
tion 2 this is a general property and it goes as follows.In general we have six a
tuator insertion points in the motion plate and six in the �xed plate. The six insertionpoints in the motion plate 
an be arbitrarily positioned with respe
t to the six insertion points in the �xed plate.On
e this relative position is �xed the distan
es between the insertion points 
an be 
al
ulated. This set ofdistan
es is unique, that is di�erent positions of the motion plate relative to the �xed one will 
reate a di�erentset of six distan
es. This is true as long as we don't line up two points in the motion plate with two points7



in the �xed plate identi
ally. This will 
reate degenera
ies but also will make the 
amera unable to stand inspa
e, be
ause six non-degenerate parameters are needed to position a body in three dimensional spa
e. So ifthe 
amera is to stand in spa
e, for a given position of the motion and �xed plates the distan
es between thea
tuator insertion points is unique. This one-to-one 
orresponden
e means that the relation 
an be inverted, orthat spe
ifying a set of six distan
es will 
reate a unique position of the motion plate relative to the �xed one.Therefore only one of the six distan
es 
an be 
hanged at a given time whi
h guarantees that the hexapod systemis not over-
onstrained. Therefore as long as the a
tuators 
an rotate freely in three dimensions at the insertionpoints the hexapod system is not 
onstrained at all. The only 
onstraining will 
ome from the binding at thea
tuator insertion points, so these insertions will have to be designed 
arefully to make sure that the binding issmall enough so that the system will move when any of the a
tuators is moved by one step.Table 3 summarizes the rms errors �i and the minimum intervals 
ontaining all possible errors hi. As expe
tedfrom the e�e
t of x and y rotations just mentioned, the numbers for x and y translations in
rease when going fromthe motion plate to the fo
al plane. Other than that the numbers don't 
hange mu
h between 
on�gurations.Table 3. Summary of rms errors �i and the minimum intervals 
ontaining all possible errors hi.�x=�L �y=�L �z=�L ��x=�L ��y=�L ��z=�LADS 
on�guration motion plate 1.08 1.08 0.50 0.23 0.23 0.23fo
al plane 1.53 1.53 0.50 0.23 0.23 0.23hx=SL hy=SL hz=SL h�x=SL h�y=SL h�z=SLADS 
on�guration motion plate 2.25 2.25 1.23 0.53 0.47 0.56fo
al plane 3.51 3.28 1.23 0.53 0.47 0.56The only point that remains to be studied is the stability with respe
t to the sele
tion of the 
oordinatesystem. The angle Æ0 in Eqs 1 and 2 rotates the insertion points around the z-axis. We studied the dependen
eof the numbers in Table 3 as a fun
tion of Æ0. All six rms's �i are 
ompletely independent of Æ0, and the valuesof hi only 
hange slightly. Figure 6 shows the values of hx=SL to h�z=SL as a fun
tion of Æ0. We 
an see thatthe numbers are very stable.

Figure 6. This �gure shows (hx; hy; hz; h�x ; h�y ; h�z )=SL (bla
k, red, green, blue, magenta and light blue) as a fun
tion ofÆ0 with displa
ements and rotations de�ned at the fo
al plane. The angle Æ0 is de�ned in Eqs 1-2.The toleran
es spe
i�ed in the hexapod RFP � are: �x = �y = � 25 �m, �z = � 7.50 �m and ��x = ��y= � 3 ar
se
onds (1 ar
se
 = 4.8 �rad). Using Table 3 and the fo
al plane as a referen
e for rotations andtranslations the previous spe
i�
ations translate into the following step sizes SL: 14 �m (50/3.5) for lateral�See \Request for proposals (RFP). DECam Hexapod Position Adjustment System Spe
i�
ation". R. Fren
h Leger,Dave M
Ginnis, Andy Stefanik, Darren DePoy, Gaston Gutierrez, Brenna Flaugher. February 4, 2008 - Revision 3.8



motion, 12 �m (15/1.23) for fo
using and 12 �m (6/0.5) for tip and tilt. So we see that an a
tuator resolutionof 12 �m is enough to satisfy our spe
i�
ations.5. EFFECT OF LOADS ON THE ACTUATORSThe design sti�nes of the hexapod a
tuators is 240 N/�m. Then a displa
ement �L produ
es a for
e F givenby F [N ℄ = 240 �L[�m℄ (16)with �L in mi
rometers and F in Newtons. For a 
amera weight of 35000 Newtons the maximum a
tuatorload will be 23000 Newtons, whi
h will produ
e an a
tuator deformation of 96 mi
rons. The e�e
t of thesedeformations 
an be easily 
al
ulated as follow: 1) 
al
ulate for
es as in Se
tion 3, 2) with Eq. 16 
al
ulate thea
tuator deformations and 3) with Eq. 13 
al
ulate the fo
al plane motion due to these deformations. The resultof these 
al
ulations is shown in Figure 7.Plots 7.1 to 7.6 show the fo
al plane displa
ements (�x;�y;�z;��x;��y;��z) as a fun
tion of 
 due to theelasti
 deformation of the a
tuators. The light blue, blue, green, red and bla
k 
urves in ea
h plot 
orrespondto � values of 0, 30, 45, 60 and 90 degrees. This range of � and 
 
overs the entire motion of the teles
ope. Thedispla
ements shown in the plots ex
eed our spe
i�
ations. This of 
ourse means that as the teles
ope moves wewill have to step the a
tuators to 
orre
t for the a
tuators elasti
 deformations. One 
an do this by monitoringthe length of the a
tuators, or by installing devi
es to measure the position of the 
amera relative to the 
age.In our minds the problem of just 
ontrolling the length of the a
tuators is that most likely there will be otherdeformations (like at the a
tuator insertion points) that 
an not be 
ompensated that way. So it appears to usthat installing devi
es to measure the position of the 
amera with respe
t to the 
age is the right thing to do,spe
ially if these devi
es are installed near the fo
al plane.

Figure 7. Plots 1-6 show the fo
al plane motions (�x;�y;�z;��x;��y;��z) produ
ed by the elasti
 deformations of thea
tuators as the teles
ope moves. The displa
ements are plotted as a fun
tion of 
 and the light blue, blue, green, redand bla
k 
urves 
orrespond to � values of 0, 30, 45, 60 and 90 degrees. Lengths are in mi
rometers, angles in ar
se
onds.9



We want now to turn our attention to the problem of trying to fo
us the 
amera during exposures. As we 
ansee from Eq. 13 if we step all a
tuators by the same amount (�L1 = �L2 = �L3 = �L4 = �L5 = �L6 = �L)then the fo
al plane moves in the z dire
tion by the amount �z = 1:22�L, and all the other motions are zero.Then assuming that all a
tuators 
an a
t equally the motion of fo
using the 
amera should be smooth and shouldonly a�e
t the z-motion. This is true ex
ept for elasti
 deformations. As the a
tuators move theirs lengths will
hange and sin
e the loads on the a
tuators is usually very di�erent they will deform by di�erent amounts. Westudied this problem in the following way: 1) for a given 
amera position we 
al
ulated all the a
tuator loads,2) we moved the 
amera axially by 10 millimeters and re
al
ulated all the loads, 3) we 
al
ulated the elasti
deformation on the a
tuators due to the 
hange in loads and 4) we used Eq. 13 to 
al
ulate all the displa
ements.The results of this 
al
ulation are shown in Figure 8. The plots are de�ned as in Figure 7. We 
an see that allmotions are well within spe
i�
ations. So we should be able to fo
us the 
amera smoothly if all a
tuators 
anbe made to move in syn
 by the same amounts.

Figure 8. Plots 1-6 show the fo
al plane motions (�x;�y;�z;��x;��y;��z) produ
ed by the elasti
 deformations of thea
tuators as the 
amera is moved by 10 millimeters along its axis. The displa
ements are plotted as a fun
tion of 
 andthe light blue, blue, green, red and bla
k 
urves 
orrespond to � values of 0, 30, 45, 60 and 90 degrees. Lengths are inmi
rometers, angles in ar
se
onds. 6. CAMERA VIBRATIONSIn this se
tion we will 
al
ulate eigenvalues and eigenve
tors for the hexapod vibrations. We will make two (inour minds) very reasonable simplifying assumption. The �rst one is that the prin
ipal axis of the moment ofinertia tensor 
oin
ide with the 
amera axis. The se
ond one is that vibrations are dominated by the elongationof the hexapod legs.Due to the �lters and the ele
troni
 
rates the 
amera does not have rotational symmetry around the tele-s
ope's axis. But we will assume that this deviation from symmetry will have a small e�e
t in the vibrationmodes. In this 
ase the moment of inertia tensor will be diagonal in the 
oordinate system of the 
amera.10



The �xed and motion plates 
an be designed su
h that they deform very little in 
omparison to the deforma-tions of the haxapod legs, so it is reasonable to ignore these deformations. Also we believe that the transversevibrations of the hexapod legs 
an be ignored. The reason is that the 
hange in length of the hexapos legs due totranverse vibrations is negligible, and therefore the 
amera motion should not be a�e
ted by these vibrations. Wewill further assume that the elongation of the hexapos legs is elasti
 and 
an be des
ribed by a single 
onstant.This 
onstant will be dominated by the weakest point in the leg, and 
ould be either the a
tuator or the joint.In the presen
e of motion equations 61 and 62 have to be modi�ed to read6Xi=1 Fi f̂i + �!w = d(m�!v )dt (17)6Xi=1 Fi �!� i � f̂i = d(I �!w )dt (18)where (as before) the translations and rotations are de�ned with respe
t to the 
enter of mass. For smalldeformations the motion of the 
amera due to the elasti
 deformation of the hexapod legs 
an be 
onsidered linear.Therefore vibrations will be linearly superimposed to the 
amera motion due to gravity, then for 
al
ulatingvibrations we 
an set �!w = 0 in Eq. 17. Following the notation of Eq. 64 we 
an write0BBBBBB� fx1 fx2 fx3 fx4 fx5 fx6fy1 fy2 fy3 fy4 fy5 fy6fz1 fz2 fz3 fz4 fz5 fz6nx1 nx2 nx3 nx4 nx5 nx6ny1 ny2 ny3 ny4 ny5 ny6nz1 nz2 nz3 nz4 nz5 nz6
1CCCCCCA0BBBBBB� F1F2F3F4F5F6

1CCCCCCA = d2dt2 0BBBBBB� m�xm�ym�zIx��xIy ��yIz ��z
1CCCCCCA (19)As shown in Eqs 8, 12 and ?? for small hexapod motions we 
an establish a linear relation between the 
ameramovement and the 
hange in length of the hexapod legs. The relationship will be given by a matrix E de�nedas: 0BBBBBB� �L1�L2�L3�L4�L5�L6

1CCCCCCA = E 0BBBBBB� �x�y�z��x��y��z
1CCCCCCA (20)The for
e Fi along a hexapod leg and the leg's deformation �Li are related by Fi = �k�Li. The minus signis due to the fa
t that the for
es Fi are de�ned as positive when they push on the 
amera. For vibrations when�Li is positive the for
es are pulling on the 
amera and therefore the need for the minus sign. Then Eq. 19redu
es to (M � E) 0BBBBBB� �x�y�z��x��y��z

1CCCCCCA = �mk d2dt2 0BBBBBB� �x�y�z~Ix��x~Iy��y~Iz ��z
1CCCCCCA (21)where M and E are the matri
es in Eqs 19 and 20, and ~Ii = Ii=m. For the Con�guration 1 parameters given inTables 1 and 2 we have 11



(a) = (M �E) = 0BBBBBB� 1:440 0:000 0:000 0:000 �0:494 0:0000:000 1:440 0:000 0:494 0:000 0:0000:000 0:000 3:120 0:000 0:000 0:0000:000 0:494 0:000 0:670 0:000 0:000�0:494 0:000 0:000 0:000 0:670 0:0000:000 0:000 0:000 0:000 0:000 0:924
1CCCCCCA (22)whi
h 
learly de
ouples Eq. 21 into the following equations� a11 a15a51 a55 �� �x��y � = � 1!20 d2dt2 � �x~Iy ��y � (23)� a22 a24a42 a44 �� �y��x � = � 1!20 d2dt2 � �y~Ix��x � (24)a33�z = � 1!20 d2dt2 (�z) (25)a66��z = � 1!20 d2dt2 � ~Iz ��z� (26)with a11 = a22 = 1:440, a15 = a51 = �a24 = �a42 = �0:494, a55 = a44 = 0:670, a33 = 3:120 and a66 = 0:924.For 
onvinien
e we have written !0 = pk=m whi
h is the angular frequen
y of one haxapod arm when loadedwith the entire 
amera mass. The solutions of the harmoni
 os
ilator equations 25 and 26 are sin(!t) and 
os(!t)with !z = !0pa33 for Eq. 25 and !�z = !0qa66= ~Iz for Eq. 26.To solve Eq. 23 (or Eq. 24) we make a linear transformation to a new set of variable (�; �)� �x��y � = � u11 u12u21 u22 �� �(t)�(t) � = U � �(t)�(t) � (27)with this transformation Eq. 23 be
omes�U1 � a11 a15a51= ~Iy a55= ~Iy � U � � �(t)�(t) � = � 1!20 d2dt2 � �(t)�(t) � (28)and now we 
onstru
t U su
h that the matrix in square bra
kets be
omes diagonal. That isU1 � a11 a15a51= ~Iy a55= ~Iy � U = � �� 00 �� � (29)so we arrive at having to diagonalize the 2x2 matrix� A� �j BC D � �j �� u1ju2j � = � 00 � (30)with (A;B;C;D) = (a11; a15; a51= ~Iy; a55= ~Iy) for Eq. 23, and (A;B;C;D) = (a22; a24; a42= ~Ix; a44= ~Ix) for Eq. 24.On
e the diagonalization problem is solved Eq. 28 redu
es tod2�(t)dt2 + !20 �� �(t) = 0 (31)d2�(t)dt2 + !20 �� �(t) = 0 (32)12



whi
h are just the equations of the harmoni
 os
illator with frequen
ies !i = !0p�i. The solution of Eq. 30gives the eigenvalues �� = (A+D)�p(A�D)2 + 4CB2 (33)and the eigenve
tors U = � 1 1�(A� ��)=B �(A� �+)=B � (34)Sin
e we are assuming rotational symmetry we have that Ix = Iy , then the eigenvalues of Eqs 23 and 24 are thesame. Then there will be six vibration resonan
es with freque
ies fi = f0p�i with�1;2 = 0:5 �(a22 + a44=~I)�q(a22 � a44=~I)2 + 4a224=~I� (35)�3;4 = 0:5 �(a22 + a44=~I) +q(a22 � a44=~I)2 + 4a224=~I� (36)�5 = a33 (37)�6 = a66=~Iz (38)Writing 
1 = �(a22 � �1)=a24 and 
2 = �(a22 � �3)=a24 the 
orresponding matrix of 
olumn eigenve
torswill be U = 0BBBBBB� 1 0 1 0 0 00 1 0 1 0 00 0 0 0 1 00 
1 0 
2 0 0�
1 0 �
2 0 0 00 0 0 0 0 1
1CCCCCCA (39)The moments of inertia per unit mass of a solid 
ylinder are ~Ix = ~Iy = (3R2 +H2)=12 and ~Iz = R2=2, where Rand H are the radius and hight of the 
ylinder. For a 
ylinder with all the mass 
on
entrated in the radial skinwe have ~Ix = ~Iy = (6R2 +H2)=12 and ~Iz = R2.Assuming that DECam is a solid 
ylinder of R=0.6 meters and H=2 meters (~I = 0:423 and ~Iz = 0:180) andCon�guration 1 for the hexapods we have for the eigenvalues and eigenve
torsf = f0 � 0:865 0:865 1:508 1:508 1:766 2:265 � (40)

U = 0BBBBBB� 1:000 0:000 1:000 0:000 0:000 0:0000:000 1:000 0:000 1:000 0:000 0:0000:000 0:000 0:000 0:000 1:000 0:0000:000 �1:400 0:000 1:687 0:000 0:0001:400 0:000 �1:687 0:000 0:000 0:0000:000 0:000 0:000 0:000 0:000 1:000
1CCCCCCA (41)Then the pi
ture of the resonan
e modes is 
lear. For the two lowest frequen
ies we have (A0 is just anarbitrary 
onstant) �x = 1:000A0 
os(2�f1 t)��y = 1:400A0 
os(2�f1 t) , and �y = 1:000A0 
os(2�f1 t)��x = �1:400A0 
os(2�f1 t) (42)13



we see that (�x;��y) os
illate with the same sign, whi
h means that when the 
amera moves towards positivex it rotates 
lo
kwise around the y-axis. The same is true for (�y;��x) be
ause as the 
amera moves towardspositive y it rotates 
ounter 
lo
kwise around the x-axis. So this is like a person ro
king standing on his feet.For the next two modes we have�x = 1:000A0 
os(2�f1 t)��y = �1:687A0 
os(2�f3 t) , and �y = 1:000A0 
os(2�f1 t)��x = 1:687A0 
os(2�f3 t) (43)and this os
illation is like a person hanging from his head. The other two modes 
orrespond to os
illations alongand around the z-axis.Figure 9.1 shows how the normalize frequen
ies vary with the moment of inertia per unit mass (f1;2=f0 arein red, f3;4=f0 in blue, f5=f0 in light blue and f6=f0 in green). The left dots 
orrespond to the assumption thatthe 
amera is a solid uniform 
ylinder, the dots on the right to the assumtion that the weight of the 
amera is
on
entrated on the walls of the 
ylinder.

Figure 9. Left plot shows the normalize frequen
ies as a fun
tion of the moment of inertia per unit mass. The di�eren
e
olors 
orrespond to: red = f1;2=f0, blue = f3;4=f0, light blue = f5=f0 and green = f6=f0. The left (right) dots 
orrespondto I=m for a solid (hollow) 
ylinder. The plot on the right shows the variation of f=f0 for the di�erent hexapod parameterslisted in Table 4.Table 4. List of the hexapod parameters used to 
al
ulate resonan
e frequen
ies. The parameters r to B are in millimeters,the resonant frequen
ies fi=0 = fi=f0 are 
al
ulated using the moment of inertia 
orresponding to a hollow 
ylinder.r R A A' B a22 a24 a44 a33 a66 f1=0 f3=0 f5=0 f6=0Cnf. 1 612.5 715.0 697 697 100 1.440 0.494 0.670 3.120 0.924 0.82 1.44 1.77 1.60612.5 715.0 697 697 0 1.440 0.350 0.585 3.120 0.924 0.88 1.34 1.77 1.60612.5 715.0 697 697 200 1.440 0.638 0.783 3.120 0.924 0.77 1.54 1.77 1.60Cnf. 2 612.5 715.0 697 500 100 1.389 0.404 0.710 3.223 1.022 0.91 1.40 1.80 1.68612.5 715.0 697 500 0 1.389 0.265 0.643 3.223 1.022 0.97 1.30 1.80 1.68612.5 715.0 697 500 200 1.389 0.542 0.805 3.223 1.022 0.85 1.50 1.80 1.68612.5 715.0 460 300 100 2.116 0.498 0.442 1.769 1.557 0.74 1.56 1.33 2.08612.5 612.5 697 697 100 1.307 0.586 0.739 3.386 0.736 0.74 1.48 1.84 1.43We also studied the stability of the resonant frequen
ies with respe
t to di�erent hexapod parameters. Table4 shows a list of the parameters that were varied: r and R are the radius of the motion and �xed plates, A is the14



distan
e between the motion and �xed plates, A0 is the distan
e between the two planes formed by the hexapodjoint insertion points, and B is the distan
e between the motion plate and the Center of Mass. The matrixelements a22 to a66 are used to 
al
ulate the resonant frequen
ies in Eqs 35 to 38. The resonant frequen
iesfi=0 = fi=f0 are 
al
ulated using the moment of inertia 
orresponding to a hollow 
ylinder. Figure 9.2 shows thenormalize resonan
e frequen
ies for all the 
ases listed in Table 4.Looking at Figure 9.2 and Table 4 it is fair to say that the lowest resonant frequen
y will most likelybe larger than 0:75 f0. To 
al
ulate f0 = pk=m=2� we will assume a 
amera mass of m = 3500 Kg, andk = (75; 100; 150; 200) Newtons/�m, then f0 = (23:3; 26:9; 32:9; 38:0) Hz. Then we believe that it is save to saythat the lowest resonan
e mode will have a frequen
y larger than 0:75� 23:3 = 17:5 Hz.7. CONCLUSIONSIn this note we have shown that� Six a
tuators arranged in a hexapod 
on�guration form a system that is not over-
onstrained and that isstable with respe
t to 
hanges in the design parameters.� Given the spa
e we plan to utilize for our hexapod system and the range of CM positions, the maximumfor
e in any of the a
tuators is about 2/3 of the 
amera weight.� The a
tuator to plate joints should be designed su
h that the a
tuators 
an rotate in all three dimensionsand that the binding in the joints is small enough to allow for a single a
tuator step motion.� The a
tuators should be made as sti� and short as possible in order to minimize 
amera motion due toelasti
 deformation in the a
tuators. Also the sti�er the a
tuators the larger the one step for
e exerted onthe plates, whi
h will fa
ilitate the design of the a
tuator to plate joints.� We have 
al
ulated the rms and the minimum interval that 
overs all possible motion errors due to the�nite a
tuator step size. We �nd that an a
tuator positioning errors of 3 �m is enough to satisfy all the
urrent positioning requirements. We have also shown that the requirement on tip and tilt determine the3 �m positioning error in the a
tuators.Perhaps one last 
omment on plate design versus a
tuators length is in order. Using long a
tuators allowsto group the insertion points in pairs, whi
h is equivalent to having three insertion points in ea
h plate. Thisminimizes the moments on the plates but in
reases the elasti
 deformations in the a
tuators. If the plates 
anbe designed in a very sti� way the insertion points 
an be opened up whi
h will shorten the a
tuators lengthand minimize the 
amera motion due to elasti
 deformations.
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APPENDIX A. ACTIVE ROTATIONSThis se
tion des
ribes the 
al
ulation of the matrix needed to perform a
tive rotations in three dimensions. Inan a
tive rotation the obje
ts are rotated while the 
oordinate system remains �xed. In Figure 10 the ve
torlabeled �!x 1 has been rotated by an angle � to a new position �!x 2. In terms of the 
oordinates (x; y) this rotationis written as

Figure 10. Two dimensional rotation.� x2y2 � = � 
os � �sin �sin � 
os � �� x1y1 � (44)It is easy to understand the stru
ture of the above matrix as follows. To preserved lengths the 2x2 matrixresponsible for the rotation has to be unitary, whi
h means that the matrix 
an be written in terms of sines and
osines. For a zero angle rotation the matrix has to be the identity matrix, whi
h means that the 
osines haveto be along the diagonal and the sines o� the diagonal. In order for the s
alar produ
t of rows 1 and 2 to bezero one of the sines need to have a negative sign. It is easy to see where to put the negative sign by looking awhi
h 
oordinate gets smaller. In the rotation shown in Figure 10 the x 
oordinate gets smaller after the rotationtherefore the minus sign is in row 1. The extension to three dimensions is obviously given by:0� x2y2z2 1A = 0� 
os � �sin � 0sin � 
os � 00 0 1 1A0� x1y1z1 1A (45)The above rotation is said to be around the z-axis, and the rotation is de�ned as positive when the obje
ts rotatearound the z-axis as a right handed 
ork s
rew. To simplify the notation we 
an write�!x = 0� xyz 1A (46)and �!x 2 = Rz(�)�!x 1 (47)Writing 
� = 
os � and s� = sin �, the rotation Rz(�) 
an simply be written asRz(�) = 0� 
� �s� 0s� 
� 00 0 1 1A (48)16



In the same way we 
an de�ne 3-dimensional a
tive rotations around the x-axis and y-axis asRx(�) = 0� 1 0 00 
� �s�0 s� 
� 1A , and Ry(�) = 0� 
� 0 s�0 1 0�s� 0 
� 1A (49)

Figure 11. Three dimensional rotation using Euler angles.As we 
an see in Figure 11 if a body is rotated around the x-axis the y-
oordinate is the one that gets smallerand the minus sign has to be in the se
ond row. For a rotation around the y-axis the z-
oordinate gets smallerand the minus sign is in the third row.Using Euler angles as de�ned in Figure 11 a general 3-dimensional rotation 
an be written asR(�; �; 
) = Rz(�) Ry(�) Rz(
) (50)Or in matrix form asR(�; �; 
) = 0� 
� �s� 0s� 
� 00 0 1 1A0� 
� 0 s�0 1 0�s� 0 
� 1A0� 

 �s
 0s
 

 00 0 1 1A= 0� 
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 s� s�� s� 

 s� s
 
� 1A (51)Rotations around the x-axis using Euler angles 
an be produ
ed byRx(�) = R(3�=2; �;�3�=2) (52)This is easy to see by noting that sin(3�=2) = �1 and 
os(3�=2) = 0, and therefore 
� = 

 = 0 and s
 = �s� =1. Repla
ing these values in Eq. 51 we obtain the rotation around the x-axis shown in Eq. 49. It is also easy tosee that the rotations around the y-axis and z-axis are given byRy(�) = R(0; �; 0) , and Rz(�) = R(�; 0; 0) = R(0; 0; �) (53)17



A.1 Small rotationsSmall rotations 
ommute, so it is 
onvenient in this 
ase to use rotations around the x, y and z axis de�ned as(tip,tilt,twist)=(�x; �y; �z). For small angles we 
an write Eqs 48 and 49 asRi(�) = I(1� �22 ) +Mi � +O(�3) (54)where I is the identity matrix andMx = 0� 0 0 00 0 �10 1 0 1A , My = 0� 0 0 10 0 0�1 0 0 1A , and Mz = 0� 0 �1 01 0 00 0 0 1A (55)Negle
ting terms in �3 or higher, the result of a tip, tilt and twist rotation will be given byRxyz(�x; �y; �z) = Rx(�x)Ry(�y)Rz(�z) (56)= �I(1� �2x2 ) +Mx �x� "I(1� �2y2 ) +My �y# �I(1� �2z2 ) +Mz �z� (57)= I + (Mx �x +My �y +Mz �z) + (MxMy �x�y +MxMz �x�z +MyMz �y�z)�I(�2x2 + �2y2 + �2z2 ) (58)The required resolution for tip and tilt is 1 ar
se
 = 4.85 �rad. So we want the non-linear terms in Eq. 58 tobe smaller than 1 ar
se
. That means �2 < 4:85 �rad or � < 2:20 mrad = 454 ar
se
. So as long as the tip, tiltand twist rotations are smaller than 400 ar
se
 (whi
h translates into about 1.5 mm at the fo
al plane) we 
ansafely use the approximation Rxyz(�x; �y; �z) = I + (Mx �x +My �y +Mz �z) (59)APPENDIX B. CALCULATING ACTUATOR FORCESB.1 Stati
 for
es when the a
tuator's weight is negle
tedIn this appendix we will 
al
ulate the stati
 for
es on the hexapod a
tuators when the weight of the a
tuators 
anbe negel
ted. In Se
tion B.2 the for
es will be 
al
ulated in
luding the a
tuators weight. The stati
 problem wewant to solve requires the for
es on the DECam 
amera, so we will 
al
ulate the for
es exerted by the a
tuatorson the motion plate. The for
es on the a
tuators themselves are just the negative of the for
es we will 
al
ulate.Sin
e these for
es are in the dire
tion of the a
tuators we will write them as�!F i = Fi f̂i (60)where f̂i is a unit ve
tor in the dire
tion of a
tuator i, and points from the �xed to the motion plate. With thisde�nition of f̂i the for
e Fi will be positive when the a
tuator is pushing on the motion plate, therefore Fi > 0means that the hexapod is under 
ompression.The stati
 problem that we have to solve is: 6Xi=1 Fi f̂i + �!w = 0 (61)6Xi=1 Fi �!� i � f̂i = 0 (62)18



where �!w is the DECam weight applied in the DECam Center of Mass (CM) and the moments in Eq. 62 are
al
ulated relative to the CM, that is �!� i = �!r i ��!r CM (63)The previous equations form a 6x6 linear system with the following stru
ture0BBBBBB� fx1 fx2 fx3 fx4 fx5 fx6fy1 fy2 fy3 fy4 fy5 fy6fz1 fz2 fz3 fz4 fz5 fz6nx1 nx2 nx3 nx4 nx5 nx6ny1 ny2 ny3 ny4 ny5 ny6nz1 nz2 nz3 nz4 nz5 nz6
1CCCCCCA0BBBBBB� F1F2F3F4F5F6

1CCCCCCA = 0BBBBBB� �wx�wy�wz000
1CCCCCCA (64)with �!n i = �!� i � f̂i. If we write Eq. 64 as M �!F = �!U then the solution is�!F =M�1�!U (65)The weight is always in the -z dire
tion, �!w = (0; 0;�w), therefore the for
e a
tuator i exerts on the motion plateis given by Fi =M�1i3 w (66)and the for
es per unit weight are Fi=w =M�1i3 (67)B.2 Stati
 for
es when the a
tuator's weight is in
luded
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