ITR: A Computing and Data Grid for the DØ Experiment

Ongoing Grid Research

There are three major Grid efforts in the US, GriPhyN [www.griphyn.org], iVDGL [www.ivdgl.org], and PPDG [www.ppdg.net]. These three groups are working together as a three prong approach to meet the grid needs for US physics experiments through the Trillium coordination. The GriPhyN (Grid Physics Network) collaboration is a team of experimental physicists and information technology (IT) researchers who plan to implement the first Petabyte-scale computational environments for data intensive science in the 21st century.  The GriPhyN effort includes massive computing challenges in the fields of Astronomy, Gravitational Wave detection, and HEP. The iVDGL  (international Virtual Data Grid Laboratory) is a global Data Grid that will serve forefront experiments in physics and astronomy. Its computing, storage and networking resources in the U.S., Europe, Asia and South America provide a unique laboratory that will test and validate Grid technologies at international and global scales. The PPDG (Particle Physics Data Grid) collaboration was formed in 1999 to satisfy the need for Data Grid services to enable the worldwide distributed computing model of current and future high-energy and nuclear physics experiments.  It has provided an opportunity for early development of the Data Grid architecture as well as evaluating some prototype Grid middleware. The DZero Collaboration is a participant  in the PPDG effort and thus closely associated with its projects. Through these ties DZero also  works closely with complementary data grid initiatives in Europe and beyond: GlobalGridForum[www.gridforum.org], European DataGrid [www.eu-datagrid.org] and as part of the HENP InterGrid Coordination Board (HICB) [www.hicb.org] and HICB Joint Technical Board. 
Current SAM-Grid Project Status

The SAM system was developed at Fermilab to accommodate the high volume data management requirements for Run 2 Physics experiments. The system  is designed with a distributed architecture, using CORBA as its underlying framework and  is largely devoted to transparently delivering files and managing large caches of data.  Based on the success of SAM, a larger architecture has been conceived that encompasses Grid level job submission and management, and information services; this is called SAM-Grid.  This system expands the existing system to enable grid access to additional computing resources within the D0 collaboration and beyond.
The prototype version of the SAM-Grid software was released in early October 2002, and demonstrated to the DZero experiment on  Oct 10, 2002. A refined and improved version was shown at SC2002 in Baltimore in November of 2002. Features include:

· Remote submission of  via the SAM-Grid, Condor-G, and Globus layered system.

· Grid job brokering based on the amount of data cached at the participating sites 

· Web-based monitoring of the grid system and of grid jobs. The monitoring is viewable at: http://samadams.fnal.gov:8080/prototype/
At each submission site, a user interface is provided which accepts jobs written in a simple Job Description Language (JDL). A parser translates the description into a  Condor ClassAd which is delivered to the Condor queuing server (Schedd).  A Condor Collector  gathers information from each execution site’s Grid sensor, or advertising entity, also through ClassAd’s.  The information for submitted jobs, and available site resources are matched in the Condor Negotiator to rank jobs for submission. The Condor team provided  the ability to use an external module for the  matching criteria,  and this provides the ability to write algorithms using known resource parameters  to control the job distribution for  the system.  The Condor negotiator sends the jobs through the Condor Grid Manager to the GRAM server (gatekeeper)  on the gateway  at the appropriate processing resource. Standard GSI mechanisms are used to provide authentication for each user with  grid certificates.  A  kerberos to x509 translator is used to also enable the use of existing Fermilab Kerberos principals.

The jobs that can be submitted include both  “vanilla” and  “SAM-enabled”. Vanilla refers to those jobs which do not take advantage of any SAM provided data management services. SAM-enabled jobs include dataset descriptions and the data handling facilities of the existing SAM infrastructure provide files at the selected processing site for the job to consume.  The decision of where to send a processing job  is currently based on number of needed files for the project already cached at each execution site. This algorithm will be extended and mature with experience, but its flexibility is a major feature of the system.  A “sandboxing” mechanism was build that packages up a complex user job at the submission site, and sends it with the job to the execution site. 

(merge next 2 paragraphs and summarize list of deployment sites?)

For the SC2002 presentation both DZero and CDF submission, execution, and monitoring sites were deployed.  This was not really a special demonstration that was prepared, but just a view of the system as it existed a the time. Existing  DZero SAM sites were selected and upgraded with JIM software. The SAM-Grid job management was integrated with the CDF Cluster Analysis Facility (CAF)  software to provide a working analysis system for CDF. CDF and DZero  analysis and test  jobs  were submitted and resulting histograms were collected from the grid to a web-accessible area for display. For SC2002, there were eleven, and by the end of 2002 there were  thirteen  sites enabled altogether. The DZero sites included  1) Fermilab, 2) the University Texas, Arlington, TX, 3) Michigan State University, East Lansing, MI, 4) The University of Michigan, Ann Arbor, MI, 5)Imperial College, London, UK, and 6) GridKa in Karlsruhe Germany.  The CDF sites included  1)Fermilab, 2) Texas Tech University, Lubbock, TX, 3) University of Toronto, Toronto, Canada, 4)Rutgers State University, NJ, 5) ScotGrid, Glasgow, UK, 6)Rutherford Appelton Laboratory, Oxfordshire, UK, 7) Kyungpook National University, Daegu, Republic of Korea. 

A lot has been learned about  the installation and operation of the current software in the last quarter of 2002, but there remains extensive work to be done  before the system can be used for production  in the spring of 2003.  The installation procedures are being improved and automated so the system can be deployed to all of  the existing sites by  personnel at each location, and not require extensive help form the Fermilab team.  Many problems related to various firewall configurations and requirements have been confronted during the testbed deployment and they are resolved and  briefly documented.  SAM has adapted well to operating on various cluster configurations, including local disk on each node, shared NFS disk,  private and public networks.  Additional details about the system and installation can be found at http://www-d0.fnal.gov/computing/grid/SAMGridManual.htm. After SC2002, the main concentration has  been on the evolution of the software version 1, and  this resulted in design discussions on the manipulation of the site xml-based configuration for most of the execution and monitoring side server activities.
Proposed Research

(maybe get rid of this paragraph)

Grid computing is a promising area in the high-performance computing. The challenges at the grid level include research areas such as distributed computation, data storage, security, scheduling, and resource optimization. Some of these problems can be studied in the context of spatial and temporal dynamics of distributed systems. Theoretically, these systems can be modeled by Neural Networks, Cellular Automata, Coupled Maps Lattices, and L Systems (grammars). 

The goal of the SAM-Grid effort  has always been the use of standard grid middleware and compliance with the emerging protocol standards to assure reuse of our software and interoperability with other grid systems.  As the project moves ahead it will become increasingly important that it  adapts to  new technologies and standards as they emerge. With the experience gained in the existing project we propose to continue with these ideas and adopt additional technologies to provide additional performance, scalability, reliability and functionality for the system. Areas included in our planned work are 1) More comprehensive Monitoring and Information Service, 2) Careful attention to fault tolerance, 3) innovative scheduling, 4) improved performance and security using  NFS version 4, and 5)additional security features including  code signing and needed improvements to security infrastructure, 6) Network performance and Quality of Service, and 7) use of Web Services with emphasis on interoperability with other grids.  This effort is targeted at functionality and success and therefore a large amount of work will be devoted to testing and deployment to D0 collaborating sites. The focus will be on major regional analysis and processing centers for experience and feedback. Additional job submission sites will be enabled using the existing infrastructure as a stepping stone to facilitate the project.  
Monitoring and Information Service (The following is from Michigan (Abhijit Bose))

Any large-scale wide-area distributed computing system such as the D0 Grid must be instrumented with monitoring and reporting agents so that a set of performance metrics (e.g. average and peak times to transfer data files among the computing sites, average number of jobs processed in the system in a given period etc.) can be evaluated for the overall system.  The agents will also allow the system to detect potential problems, e.g. hardware and software faults, and use this information to make intelligent scheduling decisions for it’s computing and storage nodes. Therefore, grid monitoring and fault tolerance are considered two most crucial aspects of any large-scale production-quality  Grid computing framework. (Another important aspect, grid- and node-level security issues, is presented elsewhere in the ITR proposal.) .  Both of these areas are in early stages of development and therefore, present promise of significant advancement by the D0 team, especially in the context of an already-operational Grid environment. In the following, we present requirements and our proposed activities in the context of the D0 Grid:

Monitoring and Trace Collection:

The basic design requirements of the D0/SAM Grid monitoring system, expanded from [1] are as follows: 

1) Scalability: the monitoring architecture has to be scalable for deployment in a wide-area network involving hundreds and possibly thousands of computing and storage nodes.

2) Reliability: the monitoring data should be correct during its intended time window and replicas should be placed and checked for consistency at periodic intervals.

3) Performance: the monitoring architecture should pose minimum overhead on the participating sites as well as the network. 

4) Non-Intrusiveness: the monitoring protocol and messages should not interfere with the scheduled computation and data transfer operations. 

5) Flexibility: the architecture should be flexible and extensible enough so that new schemas and Grid standards can be incorporated without much integration efforts. This is an important requirement since the standards for Grid interoperability and monitoring are in very early stages of development and hence, are subject to change.  The flexibility is also important for integrating monitoring tools and schemas that have already been developed. 

6) Security: the monitoring data should be made available based on a set of access control lists so that only intended users have access to such data. Unauthorized access to such data may result in launch of denial of service attacks or theft of resources in such a system. 

There are two basic architectures for a grid monitoring and trace collection system: 

(i) Centrally-located server: in which client agents at the computing sites and network sensors periodically update appropriate databases in the central monitoring server.  Consumers of such data such as performance evaluation agents, schedulers etc. register with the central server for access to the data over their respective administrative and functional domains.  This model, although relatively simple to develop and manage, has a potential bottleneck as the number of sites in the Grid continues to grow.  

(ii) Distributed servers: in which each administrative domain or a collection of administrative domains periodically update monitoring data with a local server and the servers themselves periodically exchange high-level information about the domains. This model scales well and is therefore, considered for our proposed architecture. 

Figure 1 shows the basic architecture of D0 Grid monitoring and trace collection system.  Each of the participating sites registers with a local monitoring server. The nearest server to a participating site can be found from a central directory service. The traces from network measurements, hardware and software monitors placed at the participating site are stored at this server. The monitoring data is arranged in a hierarchical fashion: local information about cpus, network status constitute the lowest level of information about a computing site, SAM-related information on data transfer rates, data file availability, caches constitute higher-level information which can be used to make global scheduling decisions. Such global or high-level information about participating sites can be periodically replicated across all the monitoring servers for reliability and performance using a distribution protocol such as via event pushes. The Discovery and Monitoring Even Description (DAMED) working group of the Global Grid Forum [2] has described a set of basic attributes or schemas for the “top N” most widely reported monitoring elements. While some of these attributes will be relevant for the D0 Grid, there are several attributes unique to the D0 project that will need to be developed. These relate to the particular architecture of the SAM stations, database servers and computing elements.  It should be noted that every operational Grid will have such unique monitoring attributes in addition to a standard set of attributes proposed by the GGF.  It is a research problem as to how to provide a scalable and general framework for both the standard and Grid-specific attributes to monitor. 

(will add some more on schemas and will draw Fig 1)

Fault-Tolerance: (this section is incomplete)

One of the operational requirements of the D0 Grid is to tolerate partial failure. A partial failure can happen at a computing site, the network connecting any two or more computing sites, at the central database or replication catalog servers or at any point in the distributed environment. Our proposed work in the fault-tolerance area is to design the SAM-Grid system in such a way so that it can recover from such partial failures without affecting its overall performance over a specified level.  In the following, we classify the various failures that can happen in the context of the D0 Grid using definitions in [3]:

1. Crash failure: any of the compute or database servers crashes but was working correctly until it halts.

2. Omission failure: any SAM data transfer message (either request or receive messages) is lost, or, data transfer is incomplete. 

3. Timing failure: a SAM station’s or a compute cluster’s response is outside a specified time interval. This could be either due to network congestion or server overload. 

4. Response failure: this happens typically when a server’s response is incorrect. In the context of D0 Grid, a likely scenario is during the collection at the replication database from a computing site. (need to verify)

5. Other failure: scheduler failure, local compute-site specific failure such as file server or NFS mount failures. 

I will have to write more on (1) how we construct the Grid collective communication strategies (improving on the existing SAM-Grid) to do failure masking and replication with inputs from the monitoring system, and (2) scheduler redundancy for SAM station servers. 

Job Scheduling   (The following stuff is from UTA (Jeff Lei and David Levin))
(Clean up these sections)


There are several critical activities involved in making this Grid operational. Work must be described as jobs to run, data sets needed, time constraints, software versions required, and hardware constraints (such as memory, scratch disk space, etc.) [References will be added later]. Scheduling jobs will use the information described above and knolwedge of available systems (known through monitoring) to allocate jobs to clusters and individual/scheduler or machines. (add refs to Condor/Globus, Pat McGuigons Thesis). Monitoring is a broad range of activities that include dynamic monitoring the "health" of machines in a cluster (machines running, available in network), the status of task running on machines or clusters, semi-static information about versions of the operating system, libraries, applications, memory avaialble, and network monitoring which includes bandwidth, delay, and other network QoS information.
Monitoring of semi-static information will be done by discovery and subsequent publishing of this information to a directory while dynamic, fast-changing information will be pulled on-demand and cached where appropriate.

(The following is from UTA (Farhad Kamangar))

Inherent to all distributed systems is their ability to be organized as conceptual hierarchical structures. In the context of grid computing, the conceptual hierarchical structuring allows the restructuring of resources into groups of collaborative partners for achieving a particular goal. It is desirable to be able to create appropriate infrastructures and algorithms to dynamically assemble virtual pools of resources (computers, storage devices, networks, etc.) to perform a specific task. Such dynamically created structures must be able to automatically handle member recruitment, role assignment, data storage, job management, and scheduling.

Currently, the scheduling and restructuring of the resources are mostly performed by centralized paradigms that make decisions based on global information.  The capabilities of such systems are determined at built time and their ability to react to dynamics of the environment is limited. I am interested in building large-scale cluster, grid, and peer-to-peer computing systems where each node participates in the scheduling and resource allocation based on available local information. These systems are characterized by heterogeneous decentralized control and have self-organization abilities that allow them to cope with the extreme dynamism of their operating environment. Some of the important characteristics of such systems include (Heylighen):

· Global order from local interactions:  Self-organized systems achieve a particular state by interaction of the elements on a local level. No global information is communicated between the local elements and individual nodes are not aware of the global state of the system. 

· Distributed Control: The control of the self-organized systems is distributed among the elements. No external agent is responsible for directing the system and no global information is communicated between the nodes. 

· Robustness and Resilience: Self-organized systems are inherently robust and fault-tolerant. Removing elements from such systems generally results in graceful degradation of the performance.  

· Organizational closure, hierarchy and emergence: Self-organized systems usually form a structured hierarchy with distinct boundaries. These structures are relatively stable (closed) and are not disturbed by external disturbances. Entities in higher levels exhibit properties that that do not exist in lower levels of hierarchy. These properties are called “emergent” and they can not be explained by examining the properties of the individual elements in the lower levels.

Performance and Security Using NFSv4  (The following is from Michigan (Charles Antonelli))

We propose the adoption of NFSv4, the new, emerging standard for secure, reliable wide-area distributed file operations, as the basis for a grid file system.

Contributions of NFSv4
Originally developed by Sun Microsystems in 1985, NFS was subsequently turned over to the Internet Engineering Task Force (IETF) for standardization and improvement . This has led to NFSv4 [PSB00], a major new version of the protocol.  NFSv4 resolves the limitations in earlier versions that inhibited the use of NFS in wide-area networks.

There are three broad areas in which NFSv4 contributes to the long term goals of this proposal.  First, the NFSv4 protocol improves performance while maintaining consistency via its delegation and compound RPC features.. To improve consistent sharing, NFSv4 provides a mechanism by which a client can be delegated control over a file; all client accesses can be satisfied by a locally cached copy of the file, and consistent access is assured while obviating the need to contact the server.  Especially in read-only environments, this improves performance considerably.  NFSv4 goes further by defining a compound RPC mechanism that allows bundling multiple RPC requests in a single network transit.  For example, an “open” RPC might add a read request for the initial part of a file.

These protocol features have the potential to improve the performance of architectures such as the SAM-Grid [BBG02] for two reasons – as SAM data are read-only, delegation is especially efficient, and NFSv4 does not require the transfer of an entire file before the application is allowed to begin accessing the file’s data.

Second, NFSv4 addresses security by requiring an Internet standard extension to ONC (the NFS RPC layer) called RPCSEC_GSS.  This marries the Internet standard GSS API to ONC.  The NFSv4 standard also requires two mandatory GSS security flavors, one based on Kerberos V and the other on an Internet standard public key protocol, LIPKEY,  that makes few infrastructure demands.  In addition, NFSv4 authorizes access to files and directories via access control lists, and supports data integrity and privacy controls over RPC data.

These protocol features provide the immediate capability for limiting grid users, via a rich set of access rights, to those disk resources for which they are authorized, and for securing users’ data in transit; the latter especially in wide-area deployments.  Furthermore, NFSv4 permits the operation of a host system mostly and potentially entirely from NFSv4-mounted filesystems, limiting damage from misbehaved applications and thus reducing system administrator workload.

Third, NFSv4 is designed to operate efficiently in wide-area networks, where large latencies and dropped packets are the norm, not the exception.  Compound RPC and delegation are especially effective in the WAN environment.  In addition, NFSv4 offers support for two vexing aspects of naming: global naming of files and global naming of users.  For the former, NFSv4 defines a server-controlled mechanism that dictates the placement of NFSv4 mounts in a client name space.  For global user names, NFSv4 defines names as arbitrary strings interpreted according to client/server agreement.  This will support Kerberos user@realm style and X.509 distinguished names and is easily extensible.

This allows access to the filesystem beyond the conventional computing cluster, enabling researchers at their desktops to access filesystem data directly over the WAN.  The full implication of the NFSv4 global name space and wide area features on grid computing need to be more fully explored and understood.

CITI and NFSv4
This proposal leverages considerable work performed at the Center for Information Technology Integration (CITI) at the University of Michigan.  Since 1999, CITI students and technical staff have been engaged in the development of an NFSv4 reference implementation in joint efforts with industrial partners Sun and Network Appliance.  CITI has participated in a series of interoperability “bakeoffs” with Sun, Network Appliance, and Hummingbird, fully achieving its goal of providing early, complete implementations to flush out ambiguities in the specification and to provide a path for the industrial implementations to follow. A Linux 2.4.18 version of NFSv4 that passes all Connectathon tests is available, as is a pre-alpha OpenBSD version  [NFSv4].  A full reimplementation for Linux 2.5.x emphasizing performance is underway, with agreement reached for insertion of our code into the Linux kernel.  We expect this work, as well as a back-port to 2.4.18, to be completed by summer 2003.  The results and expertise developed during this effort are highly synergistic with the NFSv4 portion of this proposal, and we expect to draw heavily upon them .

In addition, CITI has embarked on an ambitious effort to apply NFSv4 technologies at a grid-level scale.  Supported by the ASCI Tri-Lab, we are designing an NFSv4 front-end to a cluster-wide filesystem [ASCI].  NFSv4 clients running on cluster computer nodes access NFSv4 servers running on I/O nodes and fronting GPFS backend filesystems.  The intent is to support scalable parallel I/O from GPFS through multiple data streams back to the applications.  A metadata server provides efficient namespace and shared lock state management.  There is considerable synergy with this project as well.

Security
(need to fill in  additional details, and/or consolidate with previous section??)

In addition to using NFS v4 security features to build sandboxes to limit access for clients on host systems, there are other security issues to be explored.  Signed code and other measures to allow trusted access to compute and memory resources by grid clients.  (REF Bor-Yuh E.C., et al,”Trustless Grid Computing in ConCert”, Grid Computing – GRID 2002, p112-125.) 

There are many issues related to Authentication and Authorization for each Virtual Organization, and its individual members within the  security policies at each site. Currently, the SAM-Grid project uses gridmap files to specify which user certificates are recognized at each facility, and management of these files is problematic. The current implementation of GSI and the use of gridmap files does not allow any kind of access control that is tailored to individual users or particular organizations and a much richer set of tools is required.   Work in this area is being done by other groups and we plan to leverage these efforts.  (REF GRID 2002, p169-179,199-206)

Network Quality of Service

We have estimated what our network needs, in terms of bandwidth, will be based on event rates from the detector, and anticipated data access patterns and processing scenarios. Network performance and monitoring is an area whose resulting information will be fed back into the scheduling algorithm of the request broker. Network Quality of Service (QoS) is an area for which there is some expertise at the University of Michigan and might be used to enhance the performance to some sites. 

When problems arise in the network they can be very difficult to isolate for a number of reasons: insufficient access to all the intervening networks, lack of information on the current state of the various network segments, lack of historical information representing the operational baseline, and lack of information about the performance of the host and applications involved. A critical part of our work in ensuring the network can meet the requirements of DØ Grid computing model, is collecting sufficient information about the state of the network and determining how best to use this information to help troubleshoot problems within the Grid network. We propose to build “Monitors and Beacons”: specially configured PCs that will be located at critical points within the network (usually directly connected to primary routers/layer 3 switches). The name “Monitors and Beacons” refers to their dual role as both passive network monitors and active network testers (beacons). These machines are designed to serve a number of purposes: 1) provide local network segment monitoring (bandwidth, losses, traffic analyis) 2) serve as an active network probe when accessed via authenticated and authorized means (Ipef server/client, IP reflector, etc), 3) router monitoring (syslog host), 4) end-to-end path monitoring component, 5) multicast reflector/test-point, 6) QoS related diagnostics and monitoring.

Timely analysis of DØ data requires the transfer of large amounts of data across computer networks in a timely fashion. The internet as it is presently constructed is not up to this task. Today’s Internet provides only a “best effort” data delivery service where all network traffic receives the same priority, whether it contains time-sensitive medical data or is just part of a popular music file. When network traffice exceeds the capacity of some network  to carry all of the traffic, the network responds to the congestion by dropping some packets, which must then be resent. Two approaches are being pursued to overcome the limitations of “best effort” delivery. The first and so far trhe most common approach is to build specialized portions of the network that are capable of very high performance and which are open to relatively few users. The other approach is to implement different levels of network service that may be requested by an application, so that important or time-sensitive traffic is given preference over other traffic, much like first-class mail is given preference over parcel post. The general name for such differentiated service is “Quality of Service” (QoS)…

Interoperability and Web Services (needs more work, Lee)

When the SAM project originated in 1997 many of the technologies needed to construct  grids were in their infancy. The architecture which was used for SAM-Grid is largely compliant with the view of the grid as a set of layered services [Anatomy of the Grid paper], but the emerging field of web services promises to provide exciting new functionality and interoperability [physiology  of the grid paper]. SAM-Grid currently employs two standards for communication among its distributed components, 1) CORBA for the SAM Data Management component, and 2) the Globus Toolkit  version 2 (GT2) for the Job and Information Management.  As Globus transitions from the current GT2, to Open Grid Services Architecture (OGSA) structured on web services to be distributed in Globus Toolkit v3 (GT3) the SAM-Grid project will explore the features and advantages it will provide. It is likely that the new architecture will afford additional ease of use, scalability, reliability, and certainly interoperability.  

Web services are a set standards being defined within the W3C and other standards bodies, and being used by the Globus team to provide the new OGSA which defines Globus Toolkit v 3.  This includes the use of web services including   SOAP (Simple Object Access Protocal), WSDL (Web Services Description Language), and WS-Inspection to achieve the needed resource advertisement, location, and , security for grid systems.  There is an effort within the Globus community to develop CoG’s (Commodity  Grid Kits)  which provide a bridge between existing languages or  frameworks, such as CORBA,  and Grid services, these might be used as an intermediary route to move the system quickly toward web services. Adhering to these standards will provide the necessary interoperability required for the SAM-Grid effort to move ahead and function with other grids, and there is a straightforward roadmap of how to achieve this.  
The SAM Data Handling system relies on CORBA as the framework for communication among the various modules which comprise the system. CORBA IDL  interfaces are used to pass information through the distributed servers, these include the user interface client, station servers, middle tier database server, as well as a couple of miscellaneous other serves that manage optimization and message logging.  This portion of the system is quite stable and has shown no evidence that it will not continue to scale to meet the needs for some time.  The system currently employs a central naming service and requires that numerous ports be opened through a site’s firewall to allow for the CORBA, and Globus   communication to pass. Web services eliminates the need for a CORBA naming service, also a single point of failure,  the use of a distributed naming service is reasonable, and quite straight forward. The system has already employed remote naming services to allow resources on private networks to be operated.  By transitioning to web services the system becomes more distributed,  the interfaces are lighter weight, and additional agility is afforded to function within the constraints of firewalls. Moving this to a more distributed topology employing web services will provide additional scalability, reliability, and manageability. 

The SAM-Grid system relies largely on Globus middleware for its resource management and security services. This includes gateway resource management using GRAM and GASS servers, information management using MDS, grid security through GSI, and a component for  file transfer, GridFTP. The SAM system provides a centralized replica catalog managed and stored in its central metadata repository in the form of an Oracle database served to the system through a middle tier server. We plan to transition this to a distributed Replica  Location Service  (RLS),  similar to the plans for distributing other parts of the system  discussed above.  This will expose the data resources within SAM-Grid to other operational grids, and facilitate the use of additional compute and storage resources. 

Our vision is to ultimately work toward complete interoperability with other grids. This will provide many additional resources and prepare the  system for the next generation of  experiment needs.  We plan throughout the project to test this interoperability with existing HEP experiments. The DZero experiment shares computing resources with many other experiments throughout the US, Europe, and Asia and will be forced to operate in an environment of grid standards. We will also  explore interoperability with grids in other scientific areas, and the relationship to M-Grid and the  Computer Science Departments at participating institutions will greatly facilitate this objective.

Work Plan 

Institutional interest breakdown

· Monitoring and Information Service, Fault tolerance, Scheduling – UTA, UM, FNAL

· NFSv4 performance, NFSv4 sandbox, NFSv4 WAN, Network QoS, Code Signing – UM, MSU

· Web Services + interoperability – FNAL, UM, UTA

· Testing and Deployment – MSU, UCR

Task list

The following is a list of proposed tasks as part of the ITR proposal (these to be put with tasks below): 

1. develop a set of  D0-specific attributes, the corresponding data models (i.e. hierarchical or sequential)  and representative schemas based on LDAP and XML.

2. develop a general monitor object model that can be a template for implementing the attributes. 

3. develop the distributed monitoring framework described earlier, with a high-level distribution protocol (i.e. exchange high-level data among the servers). (We can start with a simple basic push protocol but our design should be flexible enough to accommodate any future standard protocol being developed by the GGF. )

4. develop the directory service for registering monitoring servers and sites that use them. 

5. install servers across a few sites to begin with, and test the monitoring system.

6. add additional client site agents and perform scale-up studies. 

Year 1

1. Review the overall architecture of SAM-Grid, establish detailed plan for additional use of Web Services, modular component design, and minimizing DZero specific parts of existing software.

2. Establish groundwork code sharing and documentation within the project.  

3. establish testing and deployment system for existing SAM-Grid at MSU

4. Review existing scheduling and begin to test straightforward extensions

5. Deploy shared disk SAM station using NVSv4 at MSU and begin extensive testing and performance measuring

6. Begin deployment of NFSv4 at select Regional Analysis Centers, notably GridKa in Karlsruhe Germany.

7. Begin using network beacons for network throughput and availability monitoring within DZero collaborating sites

8. establish areas of potential interoperation outreach with other HEP grid efforts and potential interdisciplinary work on university campuses.

Year 2

1. Monitoring infrastructure updates to provide information needed for scheduling 

2. begin multi parameter scheduling and fault tolerance work

3. develop and distributed intercommunicating brokers and needed messaging

4. signed (digital identity) code security project

5. Begin use of NFSv4 security and ACL features to establish secure diskless systems at grid execution enabled sites.

6. continue testing and deployment program

7. Continue to upgrade existing system with Web services architecture

Year 3

1. Continue work on scheduling and fault tolerance and Information collection

2. Integration work among all systems

3. Explore using NFSv4 WAN features within the context of grid file access

4. Continue to testing and deployment program 

Year 4

1. Begin interoperability outreach effort

1.1. Other HEP experiments and European and Asian collaborators

1.2. Interdisceplinary university contacts

2. provide fully  operational systems
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