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Chapter 1

Basic Concepts of Data Analysis

1.1 Elements of Probability Theory

Probability theory is nothing but common sense reduced
to calculation.
Laplace, 1819

Probability theory is a vast mathematical continent. Nonetheless, it is
possible to glean its essential features by judiciously selecting the parts to
be explored. In this section we explore those aspects of probability theory
of direct relevance to data analysis in the physical sciences.

1.1.1 Deductive Reasoning

In about 350 BC, Aristotle noted that when we reason correctly we do so
according to definite rules, which can reduced to a few fundamental ones
called syllogisms. In addition to the syllogisms listed in Table 1.1.1, we note
the rule that if A is true then its negation, written as A, is of necessity false.

Table 1.1 Syllogisms.

modus ponens (ponere=affirm) | modus tollens (tollere=deny)

Major premise | If A is TRUE, then B is TRUE | If A is TRUE, then B is TRUE
Minor premise A is TRUE B is FALSE
Conclusion Therefore, B is TRUE Therefore, A is FALSE
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Table 1.2 Syllogism Mnemonics.

modus ponens | modus tollens

Major premise AB=A AB=A
Minor premise A=1 B=0
Conclusion B=1 A=0

We say that A contradicts A. A mnemonic for the syllogisms are the set
of symbolic expressions given in Table 1.1.1. The symbols A, B, 1, 0, and
their negations—A, B, 1 and 0, are called propositions. The proposition 1
has a truth value which is always true; 0 is always false. Here is an example.

Example 1.1 Let A = (You got more votes) and let B = (You become
president). Our major premise is if (You got more votes), then (You become
president). Our minor premise is (You got more votes) is true. Therefore,
our conclusion is (You become president) is true. Note, however, that if
B is true then it does not follow that A is true. In our example, if (You
become president) is false then we conclude that (You got more votes) is
false. However, if (You become president) is true it does not follow that
(You got more votes) is true. Conversely, if A is false we cannot conclude
that B is false.

The simplest way to see this is to use the symbolic expressions and note
that if B is set to 1 (that is, to the proposition that is always true) in
AB = A we get A = A and we cannot determine the truth value of A;
likewise, if A = 0 then the truth value of B is undefined.

It should be noted that syllogisms reflect merely the logical relation-
ship between two propositions A and B. They are silent as to whether or
not a causal relationship exists between them. Two propositions could be
logically related yet fail to be causally related.

1.1.2 Inductive Reasoning

Deductive reasoning is extremely important to the practice of science. How-
ever, in scientific work we are frequently not sufficiently well informed to
reason deductively. We may have performed an experiment and acquired
data that are insufficient to allow for a precise deduction of the value of a
physical parameter. In the example, given above, no one doubts that if the
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Table 1.3 Weak Syllogisms.

Major premise | If A is TRUE, then B is TRUE | If A is TRUE, then B is TRUE
Minor premise B is TRUE A is FALSE
Conclusion Therefore, A is plausibly TRUE | Therefore, B is plausibly FALSE

proposition B is false then so too is proposition A. While we risk being
proved wrong, most of us would consider it reasonable that if B is, in fact,
true then A is likely to be true. The issue is can such a vague statement
be made precise?
Interestingly, an affirmative answer was provided by the physicist R.T. Cox

in a 1946 article in the American Journal of Physics *. Cox showed that a
caculus can be established that assigns truth values that lie between false
and true. These truth values can be represented by real numbers in the
interval [0, 1]. The rules of the calculus established by Cox are isomorphic
to those of probability theory. Consequently, these truth values can be
construed as providing one interpretation of probabilities, which strictly
speaking are mathematical abstractions. These truth values are a measure
of the plausibility of propositions. The Cox theory, which solidified the
work of Thomas Bayes, Laplace, Sir Harold Jeffreys and others, is really
a theory of inductive reasoning. It provides quantitative meaning to the
weaker syllogisms shown in Table 1.1.2.

1.1.3 The Axioms of Probability Theory

Probability theory is based upon two sets of rules. The first set is George
Boole’s algebra of propositions, called Boolean algebra. Let A, B, C, 1,0
and their negations be propositions, and + and - binary operations defined
on them. The axioms of Boolean algebra are

(1) A+0 A A-1 = A

(2) A+ A =1 A-A =0

(3) A-B = B-A A+ B = B+A4

(4) A-(B+C) = A-B+A-C A+B-C = (A+B)-(A+0).

*R. T. Cox, Probability, Frequency, and Reasonable Expectation, Am. J. Phys. 14
(1946) 1.
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Axioms (3) and (4) are known as the commutative and distributive laws,
respectively. Several equivalent sets of axioms can be written down. This
particular set is referred to as the Huntington azioms. Note the duality
between the operations + and -. For simplicity, the - operation is often
omitted.

The second set of rules are the product rule

P(AB|C) = P(B|AC)P(A|C), (1.1)
— P(A|BO)P(BO),
and the sum rule
P(A|B) + P(A|B) =1, (1.2)

and the conventional numerical assignments for true and false

PAIB) = 1, (1.3)
PO|B) = o. (1.4)

The symbol P(x|*) denotes a probability. The Cox theorem derives rules
Egs. (1.2) and (1.2) as a consequence of a more basic set of axioms. Other
axiom sets have been proposed, most notably by Kolmogorov who defined
probability in terms of measures and sets. However, for our purposes the
rules stated above are adequate.

All theorems of probability theory, when combined with the rules of
arithmetic, can be deduced from these axioms. We list a few of the more
important ones below.

1) A+1 =1 A0 0

(2) 0 =1 1 =0

3) A+AB = A A(A+ B) = A

(4) AA = A A+ A = A

(5) ABC) = (AB)C A+ (B+C) = (A+B)+C
(6) AB = A+B A+B = AB.

Theorems (4) and (5) are known as the idempotency, and associative laws,
respectively, while (6) is known as de Morgan’s laws. To illustrate the use
of these rules we shall prove a theorem that relates P(A+ B|C) to P(A|C)
and P(B|C). To do so we simply apply the rules repeatedly in more or less
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the right order
P(A+B|C) = 1-P(A+B|0)
_ P(AB|C)
— P(BJAC)P(A|C)
1 - [1 - P(B[AC)] P(A|C)
— P(A(C) + P(BJAC) P(4|C)
P(A|C) + P(B|AC)P(A|C)
P(A|C) + P(AB|C)
P(A|C) + P(A|BC)P(B|C)
P(A|C)+[1-P(A|BC)]P(B|C)
P(A|C) + P(B|C) — P(A|BC)P(B|C)
P(A+ B|C) = P(A|C)+ P(B|C)— P(AB|C). (1.5)

This is something one could have anticipated from a consideration of Venn
diagrams. Indeed, many tentative theorems of probability theory can be
guessed in this way. The hard part, of course, is establishing that the
tentative theorem is either true or false using only the rules given above.

1.1.4 Bayes’ Theorem

In 1763 Thomas Bayes published a paper T in which he gave a formula, the

general version of which now bears his name. Bayes’ theorem
P(A|BC)P(Bx|C)

>.; P(A|B;C)P(B;|C)’

P(By|AC) = (1.6)

where By, are considered to be a set of mutually exclusive—and exhaustive—
propositions, is a direct consequence of the product rule. The theorem has
become an extremely important, and controversial, one for data analysis.
Here is a simple proof of it.

1.1.4.1 Proof of Bayes’ Theorem

Two propositions A and B are said to be mutually exclusive if the truth of
one denies the truth of the other, that is: P(AB|C) = 0. In that case, from

TPosthumously; he died in 1761.
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the theorem we proved above, we get
P(A+ B|C) = P(A|C) + P(B|C), (1.7)

which is readily generalized to any number of mutually exclusive proposi-
tions. A set of mutually exclusive propositions By, is said to be ezhaustive
if their probabilities sum to unity

> P(BiC) =1. (1.8)
k

If By D; are a set of mutually exclusive and exhaustive joint propositions
then we can write Bayes’ theorem as

o P(A|BD;C)P(B;,D;|C)
P(BD;|AC) = > P(AIB:D,C)P(B;D;|C)

(1.9)

To prove the theorem we replace B, in the product rule Eq. (1.2), by the
joint proposition By D;

P(A|B,D;C)P(ByD;|C) = P(ByD;|AC)P(A|C). (1.10)
and then sum over the set of joint propositions

Y P(A|ByD;C)P(ByD;|C) = P(A|C)>  P(BD;|AC)
kg k.j

= P(A|C). (1.11)

In the last step we have assumed that the joint propositions ByD; form an
exhaustive set. Using Eq. (1.10), we substitute into Eq. (1.11) the formula
for P(A|C) and re-arrange to arrive Bayes’ theorem, Eq. (1.31). It is should
be noted that to reduce Bayes’ theorem to a statement about Bj only, we
need merely sum Eq. (1.31) over the propositions D;. Bayes’ theorem is
easily extended to encompass larger sets of joint propositions.

1.2 FElements of Statistical Inference

The aim of statistical inference is to extract useful information from data
as efficiently as possible, even in the presence of uncertain knowledge about
relevant aspects of the data collection system. In science the data collection
system is usually a well defined experiment. This task is intrinsically one
of induction, for which probability theory is the natural language.
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Our statement of the aim of statistical inference, while true, is too
vague to be immediately useful. A more useful way of stating the goal,
from the point of view of a scientist, is that it is to establish “facts” about
the world. A seismologist, for example, might be interested in establishing
the total energy released in an earthquake. A high energy physicist may
wish to know the mass of the top quark. More generally, a scientist may
be interested in establishing to what extent one or more models, currently
under consideration, accord with observation. To the degree that a model
accords with observation it can be construed as a (tentative) fact about the
world. In this book we are primarily concerned with facts about the world
that can be described by the parameters of a mathematical model. These
parameters need not necessarily have deep physical significance. Sometimes
our interest may be to develop an empirical model of some phenomenon,
in which case it may be sufficient to use a model having a convenient set of
adjustable parameters none of which may have any physical significance.

The object of interest, therefore, is a vector of K parameters © =
(01,...,0K) of some mathematical model, M(®). Together with one or
more models, we have a vector x = (z1,...,zy) of data, which has been
acquired in the hope of shedding light on two things: 1) the degree to which
the model accords with observation and 2) the values of its parameters.
The first task is called hypothesis testing or, more generally, model
selection; the second is called parameter estimation.

The fundamental idea, which happily every scientist accepts, is that
the connection between the model M(@®) and our data x is a probability,
P(x|®). That symbol is to be read as “the probability of x given ®”. In
general, the probability can be written as

P(x|®) =" f(2/®), (1.12)

2€Q

where the sum is over a neighborhood Q of the point x. If the point x is
a member of a continuous set the sum is to be replaced by an integral. In
practice, the neighborhoods are chosen to be very small, in which case we
can write

P(x|®) = f(x|©) dx, (1.13)
if x forms a continuous set, or

P(x|®) = f(x[®), (1.14)
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if x is discrete. The function f(x|®) is called the probability density
function (pdf), if x is continuous.

The number P(x|®) is the probability that we would assign to our
data if we knew the values of the parameters, assuming the model to be
correct. We say “assigned” because in most situations that is exactly what
we do. The probabilities are generally derived by contemplating the nature
of the experiment being performed. When we choose to use a Poisson
distribution to describe the counts in an experiment it is generally because
some mathematical reasoning led to that choice. It is quite rare that we
are able to say with certainty that a particular probability describes our
experiment. Ultimately, the probabilities used are based on what we believe
we know about our experiment.

When we go from the parameters of a model and predict all possible data
that can be obtained, we are performing deductive reasoning. Statistical
inference solves the inverse problem: we have data and we wish to infer
something about the correctness or otherwise of the models and the values
of their parameters. This entails inductive reasoning.

The problem of inference has been solved in two different ways. The
first solution was presented by the English cleric Thomas Bayes (1763) and
the great mathematical physicists of the 18th and 19th centuries Daniel
Bernoulli, Laplace and Gauss. Their solution, now called Bayesian statis-
tics, fell into disfavor towards the end of the 19th and the early part of
the 20th century. However, since the middle of the 20th century Bayesian
statistics has experienced a vigorous renaissance, which was initiated by Sir
Harold Jeffreys (1891 - 1989) in the 1930s. The rivival was sustained by
many scientists, notably the physicist Edwin T. Jaynes.

In the Laplace-Bayes theory, probability is interpreted as a measure
of the plausibility, or “degree of belief”, of a proposition, an interpretation
that was given a sound underpinning by Cox in 1946. Consider the following
everyday statement: “There is an 80% chance of rain tomorrow”. This
statement instructs us to assign a degree of belief of 0.8 to the statement
“It will rain tomorrow”.

The second solution, called variously classical, orthodox or frequentist
statistics was developed in the early part of the 20th century. Its chief
proponents were Sir Ronald Aylmer Fisher (1890 - 1962) and Jerzy Neyman.
Important contributions were made by Pearson, Cramer, Rao, von Mises
and Kolmogorov. In their approach probability is interpreted as the relative
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frequency with which something occurs. Therefore the statement “There is
an 80% chance of rain tomorrow” is considered devoid of meaning because
of the impossibility of repeating that particular day. On the other hand,
the statement “There is an 80% chance of rain on Mondays in Seattle”
makes sense, since Mondays in Seattle occur rather frequently.

1.2.1 Loss and Risk Functions

Given a data-set x = (z1,...,zn) and a mathematical model M(®) and
the associated probability P(x|@®) we use statistical analysis to decide the
best values to assign to the parameters ®. If we have several models
M(®1)1,M(©3)a, ... then we will, in addition, want to decide which one is
best, which begs the question: What does one mean by best?

The mapping (z1,...,28) — (01,...,0) from our data-set to the
parameters of a given model is called a decision function; we shall denote
it by the symbol d(z1,...,zx). For now, we shall limit our discussion
to models that depend upon a single parameter 8. We denote by 6 any
estimate of 0. If the decision function is chosen so that 8 = d(z1, . ..,zx)
then d is called an estimator of #. When we insert into it a given data-set,
Xo, the function d gives a specific estimate, éo, of 6.

Suppose someone asks you for the time one bright sunny day. In spite
of the fact that you do not have a watch with you, you wish nonetheless
to be helpful. You note that the sun is high in the sky, which you take as
your datum. Given this datum, here are two possible decision functions

e The sun is high in the sky; therefore, say it is not midnight.
e The sun is high in the sky; therefore, say it is noon.

The first time estimate is rather safe, but not too useful, while the second
one is likely to be true only approximately. The question is: Which is the
better estimate?

To choose a decision function we need a way to quantify the quality of
its estimates. Since bad decisions entail loss we construct a loss function,
L(6,d), to measure the loss arising from a decision. The loss function
depends both on our decision function, which in principle we know, and on
the parameter, whose value we do not know. Moreover, the loss function,
through its dependence on the decision function, is a function of the data.
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The most commonly used loss function is the quadratic loss
£(0,d) = (0 —d)>°. (1.15)

Its main virtue is that it is both reasonable and mathematically convenient.
In practice, one does not use the loss function directly, but rather some
sort, of average thereof, called the risk function. But, the averaging is done
differently in Bayesian and frequentist statistics. The reason is because of
an important conceptual difference between the two approaches, which is
stated below.

e Frequentist: Inferences can be based on data that could have been
observed as well as data observed.
e Bayesian: Inferences must be based only on data observed.

Accordingly, a frequentist asserts that the averaging should be done over
all data-sets that could have been observed. This leads to the risk function

Ra(0) = E[L(6, d)]x. (1.16)

We note that the frequentist risk function is an ordinary function of the
parameter #, but a functional of the decision function d, that is, it depends
on the set of all possible values of d. The symbol E[-]x is the averaging or
expectation operator.

In accordance with the Bayesian viewpoint, however, the averaging is
done not with respect to all possible data-sets, but instead over all possible
propositions (that is, hypotheses) about the value of §. The only data-set
that enters the risk function, in this case, is that which was obtained. The
probability of a given hypothesis about the value of 8, given the data-set x,
is denoted by P(6|x). The risk function in Bayesian statistics is therefore
given by

Ra(x)

E[L(6,d)]o,
/.c 6, d)P(6]x). (1.17)

Inserting into it the quadratic loss function, Eq. (1.15), we obtain

Ra(x) = /9 6 — d)* P(8]x). (1.18)
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The corresponding frequentist risk function, called the mean squared error,
is

Ra(8) = E[(6 — d)*]x. (1.19)

Owing to their different interpretations of probability, inference pro-
ceeds differently in frequentist and Bayesian statistics. While there are
common concepts and features, we think it better to consider them sepa-
rately from this point onwards. The following two sections consider infer-
ence from the frequentist and Bayesian perspectives, respectively.

1.2.2 Frequentist Inference
1.2.2.1 Sampling Distribution, Bias and Variance

The mean squared error can be written in a more useful form. To do so,
we apply the expectation operator to the function d itself. Remember, in
Eq. (1.19), we are averaging over all possible data-sets. The data-set we
have obtained is regarded as having been drawn from an ensemble of all
possible data-sets. The probability to draw a given data-set is assumed to
be P(x|f). When this probability is interpreted in this way it is called the
sampling distribution of x. The expectation value of d can be written as

Eld(z1,...,zn)]x = 6 + b(6). (1.20)
The function b(8) is called the bias. We can re-write Eq. (1.19) as
Ra(0) = Var[d]x + b(8)?, (1.21)
where
Var[d], = E[d*]x — E[d]2, (1.22)

defines the variance operator, Var[-]x. The expectation value, or the mean,
and the variance, or its square-root the standard deviation, are important
characteristics of a sampling distribution.

If our estimates 6 = d(zy,...,zn) are such that b(#) = 0 for every
possible value of 8 then our estimates 6 and our estimator d are said to be
unbiased. In that happy circumstance the mean squared error is equal to
the variance of the sampling distribution. If we have several estimators of

the parameter of interest it seems prudent to use the best one. But to do
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that we must answer the question: What is the best estimator? A sensible
answer would be

Proposition 1.1  The best estimator is that which minimizes the risk.
However, in practice the answer accepted by most scientists is

Proposition 1.2 The best estimator is unbiased and has the smallest
variance.

It is important to understand that these two answers are different, and
would in general yield different choices for the “best” estimator. The first
answer could well pick an estimator that is biased! But, by construction,
this will be the estimator that minimizes the frequentist risk. Since the
second answer insists on zero bias, it may not minimize the risk function.

1.2.2.2  Efficiency, Likelihood and the Minimum Variance Bound

If one had the best estimator for the inference problem under consideration,
assuming that one exists for that problem, how would one recognize it? We
begin with some definitions. The efficiency of an estimator d is defined by

e(6) = Var[d*]/Var[d, (1.23)

where d* is the best estimator, as defined in the previous section. The
likelihood function L(6), as defined by Fisher, is the probability density
function f(x|6) regarded as a function of the parameter. The data-set x is
to be regarded as a constant, equal to the observed data-set. Therefore,
the likelihood function characterizes the specific data-set obtained. Inter-
estingly, on this specific point, Fisher’s point of view accords with that
of the Bayesians, namely that the likelihood function provides a complete
encoding of a given data-set. In this book, we shall try to make a clear
distinction between a probability density function f(x|*), which is a func-
tion both of data and parameters, and the likelihood function L(x), which
is a particular instance of the former obtained by fixing the data to the
observed values.

The probability density function is an important quantity for which
many theorems have been derived. One such is that proved by Aitken,
Silverstone, Fréchet, Cramér and Rao, which is known as the Cramér-Rao
inequality or the minimum variance bound. The theorem states that
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Theorem 1.1
1+ D 2
Vard) > (L + Dob(0)) -, (1.24)
E[(DyIn f(x[6))"]

with the corollary that

Corollary 1.1

1

= B0 s 10))

(1.25)

is the variance of the best (unbiased) estimator of 6, if it exists. The symbol
Dy is the derivative operator with respect to #. The main mathematical
requirement on f(-|-) for the theorem to hold true is that the boundary
of the domain over which the probability density function is defined is
independent of the parameter 6. (See the Appendix for a simple proof.)

The upshot of this, is that if the efficiency of an estimator turns out to
be unity, then one is assured that this estimator is the best one for your
parameter, according to the criterion given above. Although we have a
test for “bestness” it would clearly be useful to have a systematic way to
construct such estimators.

1.2.2.3 Mazimum Likelihood and Consistency

The first person to use the idea of mazimum likelihood was Gauss, the
Prince of Mathematics. However, it was Fisher who elevated the principle
to its justly famous status. The principle of maximum likelihood provides
a frequentist with a general and systematic way to construct estimators.
The principle is

Proposition 1.3 Choose as an estimate the value of 6, call it 6—which
will be equal to some function d(x), that mazimizes the likelihood function.
That is, we solve Dy L(x)0 = 0, for 6.

While this principle can be arrived at by choosing the appropriate loss func-
tion and minimizing the corresponding risk, its real justification is that it
yields frequentist estimators with desirable properties. The most important
consequence of the principle is the following theorem, stated without proof,

Theorem 1.2 If an efficient unbiased estimator exists for a parameter 0
then the likelihood principle will find it.
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An estimator is said to be consistent if, as the size of the data-set grows
without limit, the bias b(f) tends to zero. An important feature of max-
imum likelihood estimators is that they are, in general (although not al-
ways), consistent. For large samples, the distribution of the estimates 6 has
a mean equal to the true value of § and a variance that attains the minimum
variance bound. This state of affairs is referred to as the asymptotic limit.
It is reasonable to expect that as more and more data are accumulated in-
ferences based on them will yield better and better results. Consistency is
such a desirable property that one would be inclined to reject any method
that failed to satisfy this criterion.

Another desirable property of estimators obtained from the maximum
likelihood principle is invariance of the estimators under re-parameterization.
Consider 6, found by solving

DyL(x)d = 0, (1.26)
or what is usually more convenient
Dy In L(x)d = 0. (1.27)

Suppose, however, it proved to be more convenient to solve the above
equation using instead the parameter a = g(f). It is readily shown that
& = g(f). Therefore, one might as well solve the problem using the most
convenient parameterization and, at the end, transform to the parameter
of interest.

There is, however, a subtlety. For a given likelihood function, if a best
estimator exists it is unique; consequently, all other estimators will, in
general, be biased! The easiest way to see this is to do a Taylor series

~

expansion of & = g(f) about the parameter 6:

~

&~ g(0) + (0 — 6) Dog(0) + %(é — 9)2D29(6), (1.28)

and then apply the expectation operator to both sides, where in accordance
with frequentist reasoning the averaging is done with respect to all possible
data-sets x. Assuming 6 to be unbiased we get

E[a] ~ a + %Var[é]DZg(G), (1.29)

which shows that the estimate & is biased, in general, even if 6 is not. The
above, however, suggests an approximate way to reduce the bias in &, which
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we leave as a simple puzzle for the reader!

1.2.2.4  Sampling Distributions of Estimators

As noted above the probability P(x|f) = f(x|6)dx is interpreted as the
sampling distribution of the data-set x. From the maximum likelihood
principle we can obtain an estimate 6 = d(z1,...,2n). The next task is
to compute the sampling distribution P(8]6) of the estimator . The basic
method is simply stated. One computes the integral

P(6]6) = db / 5(6 — d(x))P(x6). (1.30)

The integral is over all possible data-sets x = (z1,...,2zN) subject to the
constraint that the estimate 8 is equal to the value of the estimator d(x).
The é-function is the simplest way to impose that constraint. In practice,
it is seldom possible to calculate the integral in Eq. (1.30) analytically
and one must resort to numerical methods, usually involving Monte Carlo
techniques. The uncertainty in the estimate 6 is judged either from the
width of the sampling distribution at a fized parameter value @, or more
sensibly from the width of the likelihood function. Recall, that by definition
the latter is the probability density function for a fixed data-set, here a
particular estimate 6. Note, that this width will vary from one data-set to
another. On the other hand, the width of the sampling distribution simply
measures the spread of the possible estimates 6 for an assumed value of the
parameter 6.

1.2.3 Bayesian Inference

Since, Bayes’ theorem

o P(A|BD;C)P(B;,D;|C)
P(BDjAC) = Y. P(A[B;D,C)P(B;Dy|C)’ (1.31)

is, after all, a theorem, it is true however one interprets probability. How-
ever, when probability is interpreted as a degree of belief the theorem as-
sumes a profound role in Bayesian inference. But first a few more def-
initions. The probability P(ByD;|C) is called the prior probability as-
signed to proposition ByD;; P(A|B,D;C) is the likelihood assigned to
proposition A given the joint proposition By D;C and P(ByD;|AC) is the
posterior probability of proposition BiD;. We shall suppose that the
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proposition By, is the object of interest and the various D; are not. The
Bayesian inference procedure is

e Assign a prior probability P(ByD;|C) to each proposition ByD; in
light of prior knowledge, represented by proposition C.

e Acquire some pertinent data, represented by proposition A, and
assign to these data a probability P(A|ByD;C).

e Compute the posterior probability P(BD;|AC) from Bayes’ theo-
rem. However, since our interest is in the set of propositions { By}
we sum over the uninteresting ones D;: P(Bi|AC) = >, P(BrD;|AC)
to arrive at the posterior probability P(By|AC) from which ques-
tions about By can be answered.

In many applications the propositions are just declarations that a set
of parameters have a set of values. Moreover, these parameters are often
assumed to form a continuous set. Suppose that

P(x|6,)) = /Q (216, \)da, (1.32)

is the probability assigned to the data-set x, contained in a neighborhood
Q of x, and that # and A\ are the parameters of the model being tested.
Perhaps, 6 is the parameter that is of interest while A is not —that is, A
could represent one or more nuisance parameters. If P(6,)) = h(6, \)dfdA
is the prior probability we have assigned to the proposition that 8 and A
have certain values we can write Bayes’ theorem as

P(x|6,\)P(6, )

PO = 1 i, N PO, N (1:33)

which is valid for a continuous set of propositions. Notice that we have
dropped the dependence of the probabilities on the prior information C; this
we do to simplify the expressions. The dependence on C'is now implicit. We
remove the nuisance parameters A by integrating the posterior probability
with respect to A

P(8)x) = /A PO, \|x). (1.34)

This is the general method of performing inferences in Bayesian statistics
and of dealing with nuisance parameters, the nature of which is unrestricted.
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For example, the nuisance parameters could represent “theoretical uncer-
tainties”. The nuisance parameters represent everything about which we
are uncertain. We might add, that no such general method exists in the
Fisher-Neyman-von Mises theory.

1.2.3.1 Combining Results

Combining results is easy and systematic. The posterior probability ob-
tained from one experiment serves as the prior probability for another.
Actually, the order in which experiments are combined is completely im-
material. By repeatedly applying Bayes’ theorem it is easy to show that
for K independent data-sets xi,...,Xg the overall posterior probability is

P(x1]6,) - -- P(xk |0, ) P(6, \)
P ... = )
0, Alx1, - - - XK) Ty P(x1[6,)) - -- P(xx |6, \) P(, \)

(1.35)

1.2.3.2 Model Selection

Suppose we have two competing models M;(6;) and Mz (62), which may
depend upon different sets of parameters #; and 6. Given some prior
information C' and some data-set x how do we decide between the two
models? The first thing we do is assign a probability to our data-set in
light of each model, every hypothesis about the value of its parameter (or
parameters) and our prior information

P(x[M,C) = : P(x|6:M,C)P(6:]C), (1.36)

and
P(x|M2C) = / P(x|6:M5C)P(65|C). (1.37)
02

We then use Bayes’ theorem to compute the posterior probability of each
model; for example, the probability of model M; in light of the information
we have is

(x|M;C)P(M;|C) + P(x|M2C)P(M;|C)’

PM; |xC) = P (1.38)
where P(M,|C) are the prior probabilities we assign to the models. If each
model is thought to be equally plausible a priori, we might choose to set
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It is very important to understand that the probabilities P(M;|xC)
make sense only in the context of a given set of models. If someone came up
with a third model then the probabilities would, in general, change were we
to include the new model amongst the set under consideration. Therefore,
it is wrong to regard P(M;|xC) as an absolute measure of the validity of
a model. It serves merely as a way to compare the plausibility of a given
set of models, in light of what we know. A rational thinker would opt for
the model with the highest posterior probability and, of course, should we
acquire further pertinent information that information, via Bayes’ theorem,
could cause our rational thinker to change her mind.

1.3 Functional Approximation
1.4 Classification
1.5 Parameter Estimation

1.5.1 Frequentist
1.5.2 Bayesian

Given the posterior probability of the parameter of interest, having in-
tegrated out all nuisance parameters, we can derive an estimator of the
parameter from it. Furthermore, we can quantify the uncertainty of our
estimate directly from the posterior probability. In fact, as noted again
below, the variance of the posterior probability distribution is one such
measure.

Earlier we introduced the idea of a loss function as a way to measure
the quality of a decision. A typical decision is: Given a data-set x =
(z1,...,zN) decide that the estimate of 6 is § = d(x), where d(x) is a
special kind of decision function called an estimator. We shall consider the
quadratic loss, introduced earlier

L£(6,d) = (6 —d)>°. (1.39)

As in the frequentist approach, the best estimator, for a specified loss
function, is declared to be that which minimizes the risk:

DiR4(x) = Du /9 £(6,d)P(6]x),
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_ /9 DuL(6,d)P(8]x),

= 0. (1.40)

The symbol Dy is the derivative operator with respect to d(x). We have
made the usual assumption that the derivative and integral operators com-
mute. When we perform the minimization using the quadratic loss function
we obtain as the best Bayesian estimator for 8 the intuitively pleasing result

6 =d(x) = /9 9P (0|x). (1.41)
In words:

Proposition 1.4 The best Bayesian estimator of a parameter, given a
quadratic loss function, is the mean of the posterior probability.

One measure of the accuracy of the estimator is the variance
Varld(x)]- / 62P(6]x) — &2, (1.42)
6

(or its square-root, the standard deviation) of the posterior probability. An-
other possible measure is a 100x 3% Bayesian confidence interval, (l ), u(é)) )
obtained from the formulae:

/ POlx) =y (1.43)
9<1(8)
and
/ _ P(0|x) = ag. (1.44)
0>u(f)

The numbers oy, and ar as chosen so that = 1 — a;, — ag, that is, so
that

u(f)
/A P8)x) = 5. (1.45)
1(0)

These formulae may appear to be similar to those used to compute
intervals in the frequentist approach. However, the similarity is superficial
and misleading because here the intervals do not refer to an ensemble. Of
course, it is perfectly sensible, and indeed scientifically necessary, to study
the average behavior of an inference method be it frequentist or Bayesian.
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Such studies are sometimes referred to as ensemble tests in high energy
physics. But, the ensemble itself has no bearing on the interpretation of
the Bayesian results. The ensemble result merely informs us of the average
behavior of the method with respect to that ensemble.



