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Preface

High energy physicists record data from billions of collisions of sub-nuclear
particles in the hope of making major advances in our understanding of
the Universe. It is possible that discoveries will come easily. Physicists
have been lucky. It is more likely, however, that finding the signals of new
physics could be a veritable case of ”finding a needle in a hay-stack.” If
so, we believe the use of optimal methods of data analysis will be crucial
to find these needles and, if we are especially fortunate, the odd jewel.
Since high energy physics processes are generally characterized by many
variables, optimal methods are necessarily multivariate.

Our interest in multivariate methods grew from our involvement in the
discovery of the top quark in 1995, as members of the D@ collaboration.
As early as 1990, it became clear to us that multivariate methods were
potentially superior to those in widespread use in high energy physics and
therefore warranted the effort required to understand how to use them
effectively. The revolution in computational hardware and the development
of elegant algorithms such as artificial neural networks made the work richly
rewarding and fascinating. Also, the success of these methods in the hands
of pioneering researchers around the world has convinced us that they will
be the methods of choice in future analyses.

There is no shortage of monographs on the subject of multivariate anal-
ysis. Unfortunately, none is targeted specifically to topics of relevance to
contemporary scientific analyses. There is quite a bit of information about
these methods in the scientific literature. The information, however, is
rather scattered, which makes absorbing it a daunting, and often confus-
ing, proposition for a novice or a busy researcher. Our goal in writing this
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viii Preface

book is to draw together this dispersed wisdom as well as to provide a uni-
fied, coherent and practical exposition of multivariate methods as it is (and
will be) practiced in experimental high energy physics. We hope that this
book will serve as a reference, not only for seasoned particle physicists, but
also for graduate students, postdoctoral fellows and researchers in other
fields who need a clear but rapid introduction to the subject.

We have tried to make this book as self-contained as possible. The book
has an implicit division into two parts. Chapters 1, 2 and 3 constitute the
first part. These chapters contain an exposition of the main concepts of
multivariate methods that are most relevant to practicing scientists. Our
treatment of the subject is not exhaustive - to have attempted to make it
so would have defeated our purpose. But it is, we believe, quite sufficient to
cover most topics of interest in contemporary high energy physics research,
as well as research in other scientific fields.

The first chapter provides the context for the kinds of applications to
which multivariate methods have been successfully applied. Since high
energy physics is our focus, we describe these methods using as a backdrop
analysis problems of the sort that occur in that field. The probability theory
needed to understand the methods described later, is also introduced in this
chapter.

The second and third chapters are more technical. Here we provide a
systematic exposition of various multivariate methods, from grid searches
to neural networks. It is our experience that these methods are all too often
presented as having intrinsically different purposes. However, in our view,
they represent different approximations to the same ideal. In the remaining
chapters our focus shifts to applications. We use real examples drawn from
experimental high energy physics. Since our aim is to illuminate the com-
mon underlying principles behind these examples, we have, on occasions,
taken the liberty to present them differently from the way they appear in
the literature. With a unified perspective that we have tried to emphasize,
of the various methods, one can more sensibly appreciate their differences,
both their advantages and shortcomings and avoid coming to conclusions
that are unwarranted. We have tried very hard to be as precise as we can
without cluttering the text with, what most physicists would regard as,
mathematical niceties. This is a practical book that aims for conceptual
clarity; it is not a mathematical treatise. It is written to be enjoyed and to
be used.
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Chapter 1

Introduction

1.1 Experimental High Energy Physics

The twentieth century has seen monumental discoveries in science. Modern
Physics which dealt with the atom at the beginning of the century has
marched through the nuclear core of the atom and the innards of the nuclear
constituents, the protons and neutrons (together call nucleons, evolving by
the end of the century as Elementary Particle Physics, whose goal is to
discover the ultimate constituents of all matter in the universe and their
interactions. In essence, the aim is to acquire a comprehensive knowledge of
fundamental matter and forces in the universe and their workings. Higher
and higher energy experiments are needed to delve into the deeper realms
of matter and to probe ever smaller distance scales. Hence came the name
High Energy Physics, the exploration at the energy frontier, which seems to
transcend space, time and energy, to truly seek the most elementary basis
for all the complexities of the universe.

***Then a paragraph or two about the current status of particle physic-
S***

The standard model, an elegant and concise theory of elementary par-
ticles and their interactions.

1.1.1 What We Do and How We Do It

All things we know for sure about the world, whether it be about quarks or
about the cosmos, comes from experimental information. In this section,
we provide some details of various experimental aspects of High Energy

1
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2 Introduction

Physics.

1. Describe goals of HEP

2. General description of experiments

The primary goal of a particle detector in high energy physics exper-
iments, is to measure the energy and momenta of particles produced in
the collision and to identify them if possible. The mammoth and complex
particle detectors used in modern experiments are in fact an assemblage
of a variety of particle detectors that serve to achieve this complex goal.
In symmetric colliders, where the particles in the two colliding beams are
similar in mass, the detectors are normally built in three sections - one
central and two forward. In the central region, different types of detectors
are built in concentric cylindrical shells around the interaction region, with
roughly uniform segmentation in pseudorapidity (n) and azimuth (¢). To
provide maximal coverage for measurement of collision products, layers of
similar detectors are built in the forward and backward regions.

A typical collider detector consists of three major sub systems: an inner
tracking system for precision tracking of charged particles emanating from
the collision event; a sampling calorimeter that measures the total energy of
electromagnetic and hadronic particles and an outer shell comprising muon
detection system. Muons are massive cousins of electrons that only leave a
minimally ionizing trail in inner detectors. The inner tracking system nor-
mally would have a core of silicon strip detecors. Surrounding the silicon
detectors are the coarser particle tracking detectors that use either optical
fibers or drift chambers. The calorimeter is made up of an electromagnetic
part with large radiation length, and a fraction of an interaction length,
followed by a hadronic part. The outer muon system is usually a magnet-
ic spectrometer with toroidal magnetic field and layers of drift chambers
arranged as inner and outer shell.

1.1.2 High Energy Physics Analysis: A Primer

1. Give general description

At various stages of data processing and analysis, beginning with the
need to make a decision as to whether an event seen by the detector is
worth keeping or not to the classification of events and their statistical
analysis, multivariate methods can be gainfully employed. We discuss such
applications in Chapter xx. The aim of this section is to provide a quick
tutorial on how a high energy physics analysis is done.
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Fundamental Concepts of Pattern Recognition? 3

We begin with the scenario where the data is already processed or “re-
constructed.” The reconstructed data would have, for each event, all pos-
sible measurements of particles and many deduced event characteristics
and quantities, such as the four vectors of jets of particles, imbalance in
transverse energy (referred to as the missing transverse energy).

2. A real-life example (top mass, leptoquarks)

1.2 Fundamental Concepts of Pattern Recognition?

1.2.1 Elements of Probability Theory

1. definition of probability
2. product and sum rule
3. bayes theorem
4. probability densities
5. some distributions

1.2.2 Classification

1. geometrical perspective
2. dimensionality reduction
3. optimal discrimination (bayesian theory)

1.2.3 Parameter Estimation

1. likelihood methods
2. bayesian methods

main
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Chapter 2

Multivariate Methods

1. Introduce a simple 2-D model that can be used to illustrate each of the
following methods.
2.1 Grid Searches
1. simple cuts; refer back to analysis primer

2. uniform grid search

3. random grid search; mention possibility of rotation of input variables
into uncorrelated variables.
2.2 Binary Decision Trees

2.3 Gaussian Classifiers

If the covariance matrices for the 2 classes are different, the optimum dis-
criminant function would be quadratic.

Start with likelihood function:

f() = A eap(3 @ — p) M7 (& = )

Bayes discriminant for S & B classes:

5
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6 Multivariate Methods

Fisher’s discriminant:

F =
log R =
P(s), _
log P(x1s) — log P(z1b) + log(P(b)) =
1 T 1 T _ 1 |Hy P(s)
2($ H}'b) Hb(l' .'L'b) 2(1' H;'s) Hs(m Ts + 2 log |Hb| + log(P(b))
H=M"1!n
_ Lo oy 1, |Hs P(s)
F = 2(Xb X))+ 5 log A +log(P(b))
If
H, = H,

and P(s) = P(b)thenFrepresentsFisher'slineardiscriminant

2.4 Likelihood Methods
2.5 Probability Density Methods

2.6 Neural Networks
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Chapter 3

Neural Networks

3.1 History

1. Give milestones pictorially (dates, people, ideas)

For most of human history, very little was known about the detailed
structure of the brain and its workings. It was in the late nineteenth cen-
tury that the structure of the brain was beginning to be unravelled. The
nervous system was then claimed to be a network - either a continuous,
uninterrupted web of nerve fibres (reticularist hypothesis) or composed of
a very large number of discrete, interconnected cellular units called neu-
rons (neuronalist hypothesis). The neuronalist view was proven in 1888 by
a Spanish doctor Santiago Ramon y Cajal using a technique invented by
Camillo Golgi in 1880. (Ramon y Cajal showed the presence of tiny gaps
between individual neurons.) Since then, a lot has been learned about the
brain and the internal structure of its neural networks; particularly amaz-
ing revelations have come since the advent of the electron microscope in
194**_ (and interception and signal processing capability).

The human central nervous system is an incredibly complex system of
neural networks - massively parallel, highly interconnected. Each neuron
receives input signals from other neurons at its many dendrites, process-
es the information within the cell, and sends its output through a single
tubular fibre, the azon which branches at its end to provide signal to other
neurons (or muscle fibres). The transmission of information (signal) oc-
curs at these ends of the axon, the synapses. The signals are transmitted
electrically within a neuron and chemically at the synapses. The response
of each neuron is a non-linear function of its inputs. The exact response
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8 Neural Networks

Table 3.1 Neural vs. Traditional Computing.

Neural Computing Traditional Computing

Parallel Processing Serial Processing

Learns from examples and generalizes Needs pre-defined rules
Information distributed anarchic system CPU controlled, Autocratic
Fault-tolerant degrades gracefully Sensitive to memory loss

Does not break-down the problem logically Programmed with logical approach
Content addressable memory Random access memory

also depends on the processing neuron’s internal state and input connection
strengths. The networks of these non-linear processing units, therefore, can
give rise to extremely complex and useful behaviours. They are adaptive,
learn from experience and perform cognitive tasks.

Artificial neural networks, either simulated algorithms in computer pro-
grams or built in hardware, are paradigms in “the image of the brain.”
They exploit the massively parallel local processing and distributed repre-
sentation properties that exist in hte biological neural systems. They also
have many highly desirable features for information processing systems.
They are adaptive, learn from examples/experience; are fault tolerant and
can use noisy or fuzzy information. Salient features of neural computing
systems are contrasted with traditional computing systems in table

3.2 Feed-Forward Neural Networks

3.2.1 Bayesian Connection

1. Give proof for arbitrary target values (other than 0 and 1)

2. Discuss PDE using NN

3. Bayesian interpretation of learning

Consider two (2) classes with likelihoods Pi(— ), Pa(— z) such that
J Pi(—= 2)dz = [ Py(— z)dz =1

Proportions (priors) of (2) classes: x1, zowithx; + Xo =1

For 2-class problem, use NN with 1 output Error function: E=15

3.2.2 Algorithms for Training

0. Error functions (many, but only some give Bayesian interpretation)
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Feed-Forward Neural Networks 9

1. Give general statement of problem: to find the global minimum of
the true error function, using the actual error function.

Of(w) = gzjwzjg(zwjk)

p: patterns;

iz ith output

j: jth hidden node/neuron;

k: kth input

1kP : kth input variable for patttern p

Training the network involves adjusting the weights w,,, w;, such that
a given pattern p with inputs x? yields an output OP — desired value tP.

This is done by minimizing the mean square error function,

PRI

Use back-propagation of errors; adjust/update weights using gradient
descent method.

3.2.2.1 Back-Propagation

1 1
E= 521)21(}/@1) - tf)z = 52121,[9{2]&)1]9(2]‘,(4}”.Z'kkp)} - tp]
hy = 9(Zrwy k) = 9(ay)
Y, = Q(ngzj h]) = g(a.)
Awl_, = —naaw‘?]
Aw]k = —’)7 a?tf‘k

1 = learningstrength

OF _ 5 OB , 0% , Da, , Ohy 04, _
Ow,,

1 S o
9Y, * Ba, * oh, * Ba, * By, — NI (@)hy; 6, =y, — 1,
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10 Neural Networks

0E _ y OE _ 9Y, 4 Ba, , Oh; o Oa,
Owy, — gy, fa, dh, da, Owj,,

= E,é,gl (az)wzjgl (a])mk

= g'(a)) X 2wy, 6,9 (a,) = 91 (0, Xk Zowy, 009" (a2) = g (a)) X Zywy, A,

3.2.3 Network Heuristics

1. Pre-processing input variables

2. Choosing network architecture.
. Training, stopping and testing.
. Generalization
. Choosing network parameters
. Choosing input variables (PCA)

D Ut W

3.2.4 Network Committees and Trees
3.2.5 Network Software
3.2.6 Other Networks
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Chapter 4

Applications in High Energy Physics

4.1

4.2

4.3

4.4

4.5

Measurement of the Top Quark Mass
Analysis of Top to Multijets
Searches for the Higgs Boson
Searches for Leptoquarks

Decays of the Z boson to heavy quarks

11
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Chapter 5

Other Applications in High Energy
Physics

5.1 Particle Identification

5.1.1 Electron Identification

5.1.2 Tau Identification

5.1.3 b-jet tagging

5.1.4 Quark-Gluon Jet Discrimination

5.2 Pattern Recognition

5.3 Triggering

13
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14 Other Applications in High Energy Physics
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Chapter 6

Examples of Applications in Other
Fields

6.1 Astrophysics 6.2 Medical Physics 6.3 Solid State Physics 6.4 Accelerator
Controls

6.1 Astrophysics
6.2 Medical Physics
6.3 Solid State Physics

6.4 Accelerator Controls

15
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Chapter 7

7 Hardware Neural Networks

7.1 What is Available and How it can be Used

7.2 What would be Nice to Have

17
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Chapter 8

The Future

19



