Particle Physics in the LHC Era
Organizers: Cao Zexian and Sabine Lammers

CHAIR:
Reinhard Schwienhorst, Michigan State University

SPEAKERS:
Particle Physics beyond Standard Model
Wang Qing, Tsinghua University, Beijing

The Status, Challenge and Promise of the Big Bang Machine and Its Experiments
Junjie Zhu, University of Michigan
Particle Physics in the LHC Era

Introduction

Reinhard Schwienhorst
Michigan State University

Chinese-American
Kavli Frontiers of Science
2011
The LHC question
The LHC question

- What happened in the very first moments after the big bang?
The LHC questions

Dark Matter?

and Dark Energy?
The LHC questions

Dark Matter?

and Dark Energy?

Matter-Antimatter asymmetry?
The LHC questions

- Dark Matter?
- Origin of particle mass?
- and Dark Energy?
- Matter-Antimatter asymmetry?
The LHC questions

Dark Matter?

Origin of particle mass?

Matter-Antimatter asymmetry?

Why is the sun not exploding?
What makes the LHC era special

• We are now in a position to answer several of these questions

• Particle masses:
 – We will find the Higgs boson or we will find that there is no SM Higgs

• Matter-antimatter asymmetry:
 – We hope to find symmetry-breaking mechanisms

• Dark matter:
 – We expect to find the particle responsible for dark matter and measure its properties
Large Hadron Collider
Proton accelerator, quark/gluon collider

incoming proton 1

LHC

ew particle

decay products

decay products

incoming proton 2

space

time

detector

Saturday, November 5, 2011
LHC experiments
LHC experiments

CMS

ATLAS
LHC experiments

CMS

LHCb

ATLAS
Expected LHC measurements

• Everyone dreams!
• Find new particles
 – Find Higgs particle
 – Find dark matter particle
• Find answers to our puzzles
 – Higgs, dark matter, matter vs antimatter
• Find something unexpected
 – Find many other new particles
 – Find new puzzles
LHC measurements have started

• Lots of measurements already made
 – With first year dataset

• Sensitivity for many measurements now best of the world

• No new particles discovered yet

• No new mechanisms discovered yet

• Uncharted territory
 – Precision measurements are important
 – Double beam energy in 2014
 – Run for the next 20 years
Reinhard Schwienhorst

Three neutrinos and oscillations

- LHC will (likely) not be able to probe neutrino mass origins
- Several experiments ongoing to understand neutrino masses better
- See poster by Chris Walter
Particle Physics in the LHC Era
Organizers: Cao Zexian and Sabine Lammers

CHAIR:
Reinhard Schwienhorst, Michigan State University

SPEAKERS:
Particle Physics beyond Standard Model
Wang Qing, Tsinghua University, Beijing

The Status, Challenge and Promise of the Big Bang Machine and Its Experiments
Junjie Zhu, University of Michigan

Saturday, November 5, 2011
Backup slides
Global physics experiments

Distribution of All CERN Users by Nation of Institute on 6 January 2011

MEMBER STATES
AUSTRIA 79
BELGIUM 130
BULGARIA 47
CZECH REPUBLIC 187
DENMARK 73
FINLAND 84
FRANCE 854
GERMANY 1221
GREECE 109
HUNGARY 55
ITALY 1428
NETHERLANDS 171
NORWAY 82
POLAND 193
PORTUGAL 134
SLOVAKIA 61
SPAIN 329
SWEDEN 72
SWITZERLAND 351
UNITED KINGDOM 701

6361

OBSERVER STATES
INDIA 91
ISRAEL 60
JAPAN 204
RUSSIA 829
TURKEY 67
USA 1664

2935

OTHERS
ALBANIA 2
ARGENTINA 11
ARMENIA 12
AUSTRALIA 19
AZERBAIJAN 1
BELARUS 20
BRAZIL 79
CANADA 150
CHILE 3
CHINA 84
CHINA (TAIPEI) 50
COLOMBIA 9
CROATIA 16
CUBA 4
CYPRUS 8
EGYPT 5
ESTONIA 11
ESTONIA 11
ESTONIA 11
EGYPT 5

LITHUANIA 12
MALTA 1
MEXICO 32
MONTENEGRO 1
MOROCCO 5
NEW ZEALAND 8
PAKISTAN 16
PERU 2
QATAR 1
ROMANIA 62
SAUDI ARABIA 2
SLOVENIA 29
SOUTH AFRICA 11
THAILAND 1
TUNISIA 1
UKRAINE 18
UZBEKISTAN 1

828
LHC Physics Program

![Graph showing the cross-sections for various processes as a function of center-of-mass energy (E_{CM})](image)

- \(\sigma_{\text{TOT}}\) (black line)
- \(\sigma_{b}\) (gray line)
- \(\sigma_{W}\) (blue line)
- \(\sigma_{Z}\) (light blue line)
- \(\sigma_{\text{Jet} (E_T>100\text{GeV})}\) (red line)
- \(\sigma_{\text{Top}}\) (green line)
- \(\sigma_{\text{Higgs} (m_H=150\text{GeV})}\) (red line, labeled with 7 TeV)

Events/sec for L = \(10^{33}\) cm\(^{-2}\)s\(^{-1}\)
Particle production at the LHC

Production cross-section (femtobarns)

- 10^{14} particles
- 10^{12} particles
- 10^{10} particles
- 10^{8} particles
- 10^{6} particles
- 10^{4} particles
- 10^{2} particles

LHC

Quark-antiquark production

- Bottom quark pairs
- W bosons
- Z bosons
- Top quarks

Origin of dark matter & particle masses

Something unexpected?
ATLAS and the LHC - reaching beyond
ATLAS and the LHC - reaching beyond
10^{-6} \text{ seconds after the big bang}

lead-lead

10^{-12} \text{ seconds after the big bang}

incoming proton 1 \rightarrow \text{new particle} \rightarrow \text{decay particles}

incoming proton 2 \rightarrow \text{new particle} \rightarrow \text{decay particles}
The Questions have been clear for a while

• Origin of electroweak symmetry breaking
 – Why does the sun shine and not explode?
• Origin of particle masses
 – Why isn’t everything moving at the speed of light?
• Matter-antimatter asymmetry
 – Why haven’t I annihilated with my antimatter self?
• Dark matter
 – 80% of the matter in the universe is invisible
• Dark energy
 – 95% of the energy in the universe is in an unknown form
Particle Physics in the LHC era session

• Junjie Zhu, University of Michigan Experimental overview

• Wang Qing, Tsinghua University, Beijing Theoretical challenges

• Discussion