Observation of single top quark production at DØ

Reinhard Schwienhorst

CPPM Seminar, June 2009
Outline

• Introduction
• Single top quark production
• Observation of single top quark production at DØ
• New physics searches
• Other experiments (CDF, LHC)
• Conclusions
Electroweak symmetry breaking

Gauge boson coupling to Higgs field

Higgs boson \rightarrow W boson

Fermions acquire mass through Higgs coupling

Higgs boson \rightarrow fermion
Top quark

Coupling strength
~1

Higgs boson

top quark
Top quark

Higgs boson

Coupling strength

~1

King of the Fermions

top quark
Higgs mass estimate

- Higgs boson
- Top quark
- W boson

Graph showing the relationship between the Higgs mass and the top quark mass, with the W boson mass as a parameter.
Key to electroweak symmetry breaking

- Higgs boson
- W boson
- Top quark
SM single top quark production

s-channel

$q\rightarrow Wt$ $\bar{q}'\rightarrow \bar{b}t$

Tevatron:

$\sigma_{tot} = 3 \text{ pb}$

LHC:

$\sigma_{tot} = 326 \text{ pb}$
New physics

s-channel

\[q \quad W' \quad t \quad \bar{q}' \quad \bar{b} \]

New heavy boson

Flavor Changing Neutral Current

Modified Wtb coupling

Modified Wtb coupling

Associated production

\[g \quad b \quad t \quad W \]
Tevatron single top goals

• Discover single top quark production!
• Measure production cross sections
 → CKM quark mixing matrix element V_{tb}
• Look for physics beyond the standard model
 – Coupled to the heavy top quark
• Study top quark spin correlations
• Understand as background to many other searches
• Explore analysis techniques that will also be used elsewhere

Production cross sections:

(N)NLO calculation:

$\begin{align*}
\text{s-channel} & \quad 1.12 \text{ pb (±5%)} \\
\text{t-channel} & \quad 2.34 \text{ pb (±6%)}
\end{align*}$

$(m_{top} = 170 \text{ GeV})$
Experimental setup:

Fermilab Tevatron in Run II

Proton-antiproton collider
CM energy 1.96 TeV

→ Energy frontier

Instantaneous luminosity > 350E30 cm⁻² s⁻¹

→ Luminosity frontier
Fermilab single top history

Publication history

Run I

- Search: PLB 517, 282 (2001)
- Search: PLB 622, 265 (2005)
- Search: PRD 75, 092007 (2007)
- W*: PRL 100, 211802 (2007)
- Evidence: PRD 78, 012005 (2008)
- W*: PRL 102, 092002 (2009)
- H*: (PRL) arXiv:0807.0859
- Observation: (PRL) arXiv:0903.0850

Run II

- Search: PRD 71, 012005 (2005)
- FCNC: (PRL) arXiv:0812.3400
- W*: (PRL) arXiv:0902.3276
- Observation: (PRL) arXiv:0903.0885

Measurement history

<table>
<thead>
<tr>
<th>Single Top Cross Section</th>
<th>Signal Significance</th>
<th>CKM Matrix Element V_{tb}</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2006 DØ (0.9 fb$^{-1}$)</td>
<td></td>
<td>PRL 98, 181802 (2007)</td>
</tr>
<tr>
<td>4.7 ± 1.3 pb</td>
<td>2.3 σ</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{tb} > 0.68$ at 95% CL</td>
</tr>
<tr>
<td>September 2008 CDF (2.2 fb$^{-1}$)</td>
<td></td>
<td>PRL 101, 252001 (2008)</td>
</tr>
<tr>
<td>2.2 ± 0.7 pb</td>
<td>4.9 σ</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{tb} > 0.66$ at 95% CL</td>
</tr>
</tbody>
</table>

Reinhard Schwienhorst, Michigan State University
Fermilab Tevatron
Run II Integrated Luminosity

Delivered 6.11 fb$^{-1}$
Recorded 5.37 fb$^{-1}$

2.3 fb$^{-1}$
Observation Analysis

0.9 fb$^{-1}$
Evidence Analysis

Reinhard Schwienhorst, Michigan State University
Single top quark event signature

b-quark jet or light quark jet

High-momentum lepton (e or \(\mu\))

Missing transverse energy
Single top quark event signature

s-channel

$W^\pm \rightarrow q'\bar{b}$

t-channel

$W^\pm \rightarrow q\bar{t}$

ν_l
Background processes

- Total inelastic, QCD multijets: 10^{14}
- Bottom quark pairs: 10^{10}
- W bosons: 10^8
- Z bosons: 10^6
- Top quark pairs: 10^4
- Single top quarks: 10^2

Production cross-section (femtobarns)

(new physics)
Analysis outline

Trigger selection

S/B = 1/10^9

Single top event kinematics

S/B = 1/250, 115,000 events

b-quark tagging

S/B = 1/20, 4500 events in 24 channels

Statistical analysis

Combination

Multivariate techniques

BDT

BNN

ME

Reinhard Schwienhorst, Michigan State University
Analysis samples

- Divide into 24 analysis channels
 - By b-tag multiplicity (1, 2), jet multiplicity (2, 3, 4), data taking period (before/after upgrade), lepton (e, \(\mu \))

- Cross-check samples
 - Enriched in W+jet events
 - Enriched in top pair events

- Check data/background agreement for all variables and multivariate filters in all samples
Important discriminating variables

- $tb + t\bar{q}b$
- W+jets
- Other
- $t\bar{t}$
- Multijets

$D\bar{O}$ 2.3 fb$^{-1}$

- Yield [Events/10 GeV]
- Yield [Events/20 GeV]
- Cos(LightQuark Jet, Lepton)$_{b\text{taggedtop}}$
- Jet2 η Width
- $m_{\text{sig}}^{\text{top}}$ [GeV]
- Q(lepton) x η(light-quark jet)
Discriminating variables

- Object kinematics
- Event kinematics
- Angular correlations
- Jet reconstruction
- Top reconstruction

- Started from ~ 600 variables
- Considered ~200 for multivariate filters
- Chose 97 depending on method and channel
How to build a decision tree: cut-based analysis

- $H_t > 312$
 - Pass
- $M_t > 160$
 - P
 - More cuts

Student thesis sample
How to build a decision tree: orthogonal data samples

- **$H_t > 312$**
 - **Pass**
 - $M_t > 160$
 - **P**
 - **More cuts**
 - **More cuts**
 - **Fail**
 - $\eta > 1.2$
 - **P**
 - **More cuts**

- **Student thesis sample**
- **2nd student thesis sample**
Decision tree

- Cuts produce branches
- Terminal leaf: calculate purity = $N_S/(N_S+N_B)$ from MC signals and backgrounds
- Each data event is assigned the purity value of the leaf it falls into
- Typical trees: hundreds of leaves
Boosted decision tree

- Cuts produce branches
- Terminal leaf: calculate purity \(\frac{N_S}{N_S + N_B} \)
 from MC signals and backgrounds
- Each data event is assigned the purity value of the leaf it falls into
- Typical trees: hundreds of leaves
- **Boosting:**
 Average over many trees, each built by iteratively increasing weight of mis-classified events
- Typically 20-100 boosting cycles
Boosted decision tree distributions

Cross checks

Full data sample
Bayesian neural networks

- NN with three layers, 24 input nodes, 40 hidden nodes
- Bayesian Idea:
 - Determine the posterior probability for each weight at each node
 - Sample from this posterior
 - Here: Average over 100 networks
Bayesian neural network distributions

Cross checks

Reinhard Schwienhorst, Michigan State University
Matrix element analysis

Parton level matrix elements

Signal and background probability for each event is calculated from differential cross section

\[P_{\text{Signal}}(\vec{x}) = \frac{1}{\sigma_S} d\sigma_S(\vec{x}) \quad \sigma_S = \int d\sigma_S(\vec{x}) \]

Integration over final state momenta

• And over reconstructed momenta, transfer function

• Include ME for s-channel, t-channel, top pairs, diboson, W+jets (including gluons)

• Determine weights in two HT regions

\[L = \frac{P(\text{sig})}{P(\text{sig}) + P(\text{bkg})} \]
Matrix element distributions

Cross checks

Full data sample
Combination: Another BNN

- Gain because each method provides unique separation

- Simple BNN, only 3 inputs: BDT, BNN, ME
Combination distribution

- Combine 24 channels, 50 bins per channel, sort bins by s/b
Is there a signal?

S/B Ratio

[Graph showing the signal-to-background ratio with a peak at 2.0 for \(DØ \ 2.3 \text{ fb}^{-1} \)]

Cumulative Events

- Data
- Signal+Background
- Background

\(\sigma(tb + tqb) = 3.94 \text{ pb} \)

Yield

- \(DØ \ 2.3 \text{ fb}^{-1} \)
 - all channels
 - BNNcomb > 0.8

- \(DØ \ 2.3 \text{ fb}^{-1} \)
 - all channels
 - BNNcomb > 0.9

- \(DØ \ 2.3 \text{ fb}^{-1} \)
 - all channels
 - BNNcomb > 0.95

Graphs showing the yield for different cosines of light quark jet-lepton with btaggedtop.
Kinematics in the signal region

High Signal Region – $Q \times \eta$

High Signal Region – m_{top}

DØ 2.3 fb$^{-1}$

Ranked Combination Output > 0.92

DØ 2.3 fb$^{-1}$

Ranked Combination Output > 0.92

Yield [Events/0.8]

$Q(\text{lepton}) \times \eta(\text{light-quark jet})$

Yield [Events/30GeV]

Top Quark Mass [GeV]
Systematic uncertainties

Systematic Uncertainties

Ranked from Largest to Smallest Effect on Single Top Cross Section

<table>
<thead>
<tr>
<th>$DØ$</th>
<th>2.3 fb$^{-1}$</th>
</tr>
</thead>
</table>

Larger terms

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>(2.1–7.0)%</th>
<th>(1-tag) (9.0–11.4)%</th>
<th>(1.1–13.1)%</th>
<th>(signal) (0.1–2.1)%</th>
<th>(bkgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-ID tag-rate functions (includes shape variations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet energy scale (includes shape variations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W+\text{jets}$ heavy-flavor correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial- and final-state radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-jet fragmentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$ pairs theory cross section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepton identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wbb/Wcc correction ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary vertex selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Smaller terms

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>(0.5–16.0)%</th>
<th>(0.7–4.0)%</th>
<th>1.5%</th>
<th>13.7%</th>
<th>1.0%</th>
<th>1.0%</th>
<th>3.0%</th>
<th>5.8%</th>
<th>(1.8–3.9)%</th>
<th>(30–54)%</th>
<th>5.8%</th>
<th>shape only</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte Carlo statistics</td>
<td></td>
</tr>
<tr>
<td>Jet fragmentation</td>
<td></td>
</tr>
<tr>
<td>Branching fractions</td>
<td></td>
</tr>
<tr>
<td>$Z+\text{jets}$ heavy-flavor correction</td>
<td></td>
</tr>
<tr>
<td>Jet reconstruction and identification</td>
<td></td>
</tr>
<tr>
<td>Instantaneous luminosity correction</td>
<td></td>
</tr>
<tr>
<td>Parton distribution functions (signal)</td>
<td></td>
</tr>
<tr>
<td>Parton distribution functions (bkgd)</td>
<td></td>
</tr>
<tr>
<td>$W+\text{jets}$ theory cross sections</td>
<td></td>
</tr>
<tr>
<td>$W+\text{jets}$ and multijets normalization to data</td>
<td></td>
</tr>
<tr>
<td>Diboson theory cross sections</td>
<td></td>
</tr>
<tr>
<td>Alpgen $W+\text{jets}$ shape corrections</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td></td>
</tr>
</tbody>
</table>

Reinhard Schwienhorst, Michigan State University
Shape systematics

– Mainly jet energy scale and b-tag modeling
Statistical analysis

• Bayesian statistical analysis
 \[P(s|D) = P(D|s)\times P(s) \]
 – Posterior gives measured cross section and uncertainty

\[\sigma_{\text{measured}} = 3.94 \pm 0.88 \text{ pb} \]
\[\sigma_{\text{expected}} = 3.50^{+0.99}_{-0.77} \text{ pb} \]
Significance

- Significance (p-value) and linearity and many tests through extensive ensemble testing
 - Ensembles of pseudo-data at various signal cross sections

BNN Combination

- Slope = 1.017 ± 0.006
- Intercept = −0.009 ± 0.032

DØ Combination

- 67.8M pseudo-datasets (background-only)
- 17 above measured cross section
- p-value = 2.5 × 10^{-7}
- Observed significance = 5.03 σ
- $\sigma^{\text{meas}} = 3.94 \text{ pb}$
DØ 2.3 fb⁻¹ Single Top Results

<table>
<thead>
<tr>
<th>Analysis Method</th>
<th>Single Top Cross Section</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>Boosted Decision Trees</td>
<td>3.74 ±0.95^-0.79 pb</td>
<td>4.3 σ</td>
</tr>
<tr>
<td>Bayesian Neural Networks</td>
<td>4.70 ±1.18^-0.93 pb</td>
<td>4.1 σ</td>
</tr>
<tr>
<td>Matrix Elements</td>
<td>4.30 ±0.99^-1.20 pb</td>
<td>4.1 σ</td>
</tr>
<tr>
<td>Combination</td>
<td>3.94 ±0.88 pb</td>
<td>4.5 σ</td>
</tr>
</tbody>
</table>

March 2009

- Decision Trees: 3.74 ±0.95^-0.79 pb
- Bayesian NNs: 4.70 ±1.18^-0.93 pb
- Matrix Elements: 4.30 ±0.99^-1.20 pb
- BLUE Combination: 4.16 ±0.84 pb
- BNN Combination: 3.94 ±0.88 pb

N. Kidonakis, PRD 74, 114012 (2006) m_{top} = 170 GeV

ArXiv:0903.0850,
Submitted to PRL
CKM matrix element $|V_{tb}|$

- **Measurement:** $|V_{tb} \times f_L^1|$
 - Assume top decays to b ($V_{tb} \gg V_{ts}, V_{td}$)
- No constraint on # of generations
- Then assume $f_L^1 = 1$
 - lower limit on V_{tb}
 - At the 95% C.L.: $|V_{tb}| > 0.78$
- Analyses based on 3.2 fb^{-1}
- Top mass 175GeV, NLO cross sections
- Increased acceptance

- Added MET+Jets channel
- 5 multivariate methods, even more search channels
Tevatron summary

<table>
<thead>
<tr>
<th>Single Top Cross Section</th>
<th>Signal Significance</th>
<th>CKM Matrix Element V_{tb}</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2009</td>
<td>DØ (2.3 fb$^{-1}$)</td>
<td>arXiv:0903.0850 (m$_{top}$ = 170 GeV)</td>
</tr>
<tr>
<td>Expected</td>
<td>3.94 ± 0.88 pb</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>4.5 σ</td>
<td>$</td>
</tr>
<tr>
<td>Observed</td>
<td>5.0 σ</td>
<td></td>
</tr>
<tr>
<td>March 2009</td>
<td>CDF (3.2 fb$^{-1}$)</td>
<td>arXiv:0903.0885 (m$_{top}$ = 175 GeV)</td>
</tr>
<tr>
<td>Expected</td>
<td>2.3 ±0.5 pb</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>>5.9 σ</td>
<td>$</td>
</tr>
<tr>
<td>Observed</td>
<td>5.0 σ</td>
<td></td>
</tr>
</tbody>
</table>
Searches for new physics in single top

• Searches for new heavy boson W':

 \[W' \]

 - CDF prelim result, 1.9 fb\(^{-1}\):
 M > 800 GeV and M > 825 GeV

• Similar: DØ Susy H\(^+\) search

• Flavor-changing neutral currents:

 \[q \rightarrow q' \]
 \[t \rightarrow b \]
 \[u \text{ quark or } c \text{ quark} \]
Single top polarization – anomalous coupling

- Left-vector ($f^L_1, =1$ in SM), right-vector (f^R_1), left-tensor (f^L_2), right-tensor (f^R_2)

\[
\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^\mu V_{tb} (f^L_1 P_L + f^R_1 P_R) t W^-\mu \\
- \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_\nu}{M_W} (f^L_2 P_L + f^R_2 P_R) t W^-\mu + h.c.
\]

- Single top is sensitive to magnitude (PRL 101, 221801 (2008))
- ttbar to ratios of couplings (W helicity, PRL 100, 062004 (2008))
- Best sensitivity through combination (PRL 102, 092002 (2009))

f^R_1	2
f^L_2	2

| $|f^R_1|^2 < 0.72$ | $|f^L_2|^2 < 0.30$ | $|f^R_2|^2 < 0.19$ |
Single top at the LHC

- Observe three single top production modes separately
 - t-channel: easy 😊 s-channel and assoc. prod: harder 😞
- Observe new physics \((\text{if it can be seen})\)
- Measure \(V_{tb}\) to few %
- Study spin correlations
LHC: new physics in single top

- Dedicated searches for specific signatures
 - New heavy boson W'
 - FCNC interactions via gluon, photon, Z
 - Anomalous couplings

- Measure SM cross sections in detail
 - And compare their ratios

Diagram showing cross sections for different processes with various parameters.
Conclusions/Outlook

• Both Tevatron experiments have observed single top quark production at the 5 σ level

• Tevatron dataset continues to increase
 • Already over 5 fb⁻¹ recorded
 • Separate s-channel from t-channel
 • Continue to look for new physics

• LHC:
 • Precision measurements in single top
 • Look for new physics in single top
Additional Material
• Backgrounds are similar to Tevatron, yet different
 – W+jets less important
 – $t\bar{t}$ is dominant background
• t-channel observation early
 – Large cross section
 – Could be seen with simple cuts
• s-channel and Wt with ~ 30 fb
 – Separate by b-tag and jet multiplicity
 – Earlier observation requires multivariate techniques
Top quark electroweak charged current interaction

top quark decay
Discriminating Variables

- 89 variables total, 20 to 50 in each channel

Best Variables to Separate Single Top from \(W + \text{Jets} \)

<table>
<thead>
<tr>
<th></th>
<th>(\hat{E}_T)</th>
<th>(p_T(\text{jet2}))</th>
<th>(p_T^{\text{rel}}(\text{jet1}, \text{tag-\mu}))</th>
<th>(E(\text{light1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object kinematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event kinematics</td>
<td>(M(\text{jet1}, \text{jet2}))</td>
<td>(M_T(W))</td>
<td>(H_T(\text{lepton}, \hat{E}_T, \text{jet1}, \text{jet2}))</td>
<td>(H_T(\text{jet1}, \text{jet2}))</td>
</tr>
<tr>
<td>Jet reconstruction</td>
<td>(\text{Width}_\phi(\text{jet2}))</td>
<td>(\text{Width}_\eta(\text{jet2}))</td>
<td>(\Delta M_{\text{top}})</td>
<td>(M_{\text{top}}(W, \text{tag1}, S2))</td>
</tr>
<tr>
<td>Top quark reconstruction</td>
<td>(M_{\text{top}}(W, \text{tag1}))</td>
<td>(\Delta M_{\text{top}})</td>
<td>(M_{\text{top}}(W, \text{tag1}, S2))</td>
<td></td>
</tr>
<tr>
<td>Angular correlations</td>
<td>(\cos(\text{light1}, \text{lepton})_{\text{btaggedtop}})</td>
<td>(\Delta \phi(\text{lepton}, \hat{E}_T))</td>
<td>(Q(\text{lepton}) \times \eta(\text{light1}))</td>
<td></td>
</tr>
</tbody>
</table>

Best Variables to Separate Single Top from \(\text{Top Pairs} \)

<table>
<thead>
<tr>
<th></th>
<th>(p_T(\text{notbest2}))</th>
<th>(p_T(\text{jet4}))</th>
<th>(p_T(\text{light2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object kinematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event kinematics</td>
<td>(M(\text{alljets} - \text{tag1}))</td>
<td>(\text{Centrality}(\text{alljets}))</td>
<td>(M(\text{alljets} - \text{best1}))</td>
</tr>
<tr>
<td>Jet reconstruction</td>
<td>(\text{Width}_\eta(\text{jet4}))</td>
<td>(\text{Width}_\phi(\text{jet4}))</td>
<td>(\text{Width}_\phi(\text{jet2}))</td>
</tr>
<tr>
<td>Top quark reconstruction</td>
<td>(\cos(\text{lepton}{\text{btaggedtop}}, \text{btaggedtop}{\text{CMframe}}))</td>
<td>(Q(\text{lepton}) \times \eta(\text{light1}))</td>
<td>(\Delta R(\text{jet1}, \text{jet2}))</td>
</tr>
<tr>
<td>Angular correlations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discriminating Variables

<table>
<thead>
<tr>
<th>Object Kinematics</th>
<th>Event Kinematics</th>
<th>Jet Reconstruction</th>
<th>Angular Correlations</th>
<th>Top Quark Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T (lepton)</td>
<td>\not{p}_T</td>
<td>E_T</td>
<td>Width$_{\eta}$ (jet1)</td>
<td>$M(W,jet1)$ (leading jet top mass)</td>
</tr>
<tr>
<td>p_T (jet1)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (jet2)</td>
<td>$M(W,jet1,S2)$ (with second neutrino solution)</td>
</tr>
<tr>
<td>p_T (jet2)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (jet4)</td>
<td>$M(W,jet2)$</td>
</tr>
<tr>
<td>p_T (jet3)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (tag1)</td>
<td>$M(W,jet2,S2)$</td>
</tr>
<tr>
<td>p_T (jet4)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (tag2)</td>
<td>$M(W,jet3,S2)$</td>
</tr>
<tr>
<td>p_T (tag1)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (best1)</td>
<td>$M(W,tag1)$ ("b-tagged" top mass)</td>
</tr>
<tr>
<td>p_T (tag2)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (light2)</td>
<td>$M(W,tag2)$</td>
</tr>
<tr>
<td>p_T (light1)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (notbest2)</td>
<td>$M(W,light1,S2)$</td>
</tr>
<tr>
<td>p_T (light2)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (jet1)</td>
<td>$M(W,best1)$ ("best" top mass)</td>
</tr>
<tr>
<td>p_T (best1)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (jet2)</td>
<td>$M(W,best1,S2)$</td>
</tr>
<tr>
<td>p_T (notbest2)</td>
<td></td>
<td>H_T</td>
<td>Width$_{\eta}$ (jet4)</td>
<td>$M(W,notbest1,S2)$</td>
</tr>
<tr>
<td>E (jet2)</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (tag1)</td>
<td>$M(W,notbest2)$</td>
</tr>
<tr>
<td>E (light1)</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (light1)</td>
<td>$M(W,notbest2,S2)$</td>
</tr>
<tr>
<td>Q (lepton) x η (jet1)</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (notbest2)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η (jet2)</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (jet1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η (light1)</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (jet2)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η (light2)</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (jet4)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η (best1)</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (tag1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η (notbest1)</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (notbest1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>p_T (jet1, μ)</td>
<td>Width$_{\eta}$ (tag1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (notbest1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (jet1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (jet2)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (light2)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (notbest1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>p_T (jet1, μ)</td>
<td>Width$_{\eta}$ (tag1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (notbest1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>p_T (jet1, μ)</td>
<td>Width$_{\eta}$ (tag1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (notbest1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>p_T (jet1, μ)</td>
<td>Width$_{\eta}$ (tag1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>M</td>
<td>Width$_{\eta}$ (notbest1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
<tr>
<td>Q (lepton) x η</td>
<td></td>
<td>p_T (jet1, μ)</td>
<td>Width$_{\eta}$ (tag1)</td>
<td>$M_{\Delta M}^{\text{min}}$</td>
</tr>
</tbody>
</table>
Prospects for s and t separately

Points with systematics,
Lines without systematics

2005
2006
2009

Projection from 2005,
no systematics

Significance

Integrated Luminosity [fb^{-1}]

2005
2006
2009

t-channel
s-channel
Multivariate likelihood function

- Likelihood functions built from 7 variables (10 for 2-tags)
 - Kinematic variables
 - b-tag NN output
 - kinematic solver
 - Assign which jet comes from top decay
 - t-channel ME
 - No transfer functions, no integration
Multivariate likelihood function

- Likelihood functions built from 7 variables (10 for 2-tags)

Measured cross section:

\[\sigma(s+t) = 1.8^{+0.9}_{-0.8} \text{ pb} \]

Expected/observed significance:

\[3.4\sigma / 2.0\sigma \]
Neural Networks

• 4 separate s+t networks
 – By jet and b-tag multiplicity
• Built from 10-14 variables each
 – Kinematic variables
 – angular correlations
 – B-tag NN output
Neural Network Result

Expected/observed significance:

$4.4\sigma / 3.2\sigma$

Measured cross section:

$\sigma(s+t) = 2.0^{+0.9}_{-0.8}\text{ pb}$
Matrix element

- Analyze 2-jet and 3-jet events
 - Include ttbar matrix element for both 2-jet and 3-jet events
 - Include b-tag NN as weight in likelihood ratio

Measured cross section:
\(\sigma(s+t) = 2.2^{+0.8}_{-0.7} \text{ pb} \)

Expected/observed significance:
\(4.5\sigma / 3.4\sigma \)
CDF combination

- NEAT: NeuroEvolution of Augmenting Topologies
 - Optimization procedure chooses network structure and weights
 - And final binning
 - Train a few to also find optimum when including systematics

$\sigma_{\text{Single Top}} = 2.2^{+0.7}_{-0.7} \text{ pb}$

Expected/observed significance: $5.1\sigma / 3.7\sigma$
Other CDF analyses

• Boosted decision trees
 – Not in combination

• Separate s-channel search
 – $\sigma < 2.77 \text{ pb (95\% CL)}$

• $|V_{tb}|$ measurement using NEAT output

Measured cross section:

\[\sigma(s+t) = 1.9^{+0.8}_{-0.7} \text{ pb} \]
• **Update to 0.9 fb$^{-1}$ analysis** (3.4 σ, *PRL* 98, 181802 (2007))
 – Improved Bayesian Neural Network analysis
 – Improved Matrix Element analysis
Recent improvements

• Improved W+jets modeling
 – Important background for top pairs and single top
 – Alpgen+Pythia with MLM matching
 – Normalize total count and HF fraction to data

• Fully reprocessed dataset
 – New calibrations, lower thresholds, ...

• Neural network
 b-quark tagging

![Graph showing b-tag efficiency for 0.5% mistag rate](image)
Multivariate methods

Input:
discriminating variables

Method:
multivariate analysis

Output:
signal likelihood

- Event energy
- Quark jet angle
- Reconstructed top mass
- ...

Cut-Based

Boosted decision trees

Neural networks

Bayesian neural networks

Decision trees

Likelihood

Matrix Elements

\[\frac{d^2 \sigma_{pp \rightarrow \ell \ell}}{4 \pi} = \frac{2}{m_{b_2}^2} \times d \Phi_n \]
Single top event signature

- Basic event signature (e or μ)
 - Single lepton trigger or lepton+jets trigger
 - One high-\ET leptons
 - $\ET > 20$ GeV or 15 GeV
 - Missing transverse energy
 - Missing $\ET > 25$ GeV or 15 GeV
 - 2-3 high-\ET jets (2-4 jets)
 - $\ET > 15$ GeV
 - At least one b-tag

Expect ~ 50 signal events per fb$^{-1}$

- After b-tagging
 - S:B ~ 1:20
Decision Trees

- Send each event down the tree
- Each node corresponds to a cut
 - Divide sample in two: Pass↔Fail
- A leaf corresponds to a node without branches
 - Defines purity = $N_S/(N_S+N_B)$ from MC sample
- Training: optimize Gini improvement
 - Gini = $2 \frac{N_S N_B}{(N_S + N_B)}$
- Output: purity for each event

- Boosting: average over many trees (~100)
 - Iterative tree building: train each new tree focusing more and more on misclassified events
Bayesian neural networks

• **NN with three layers**
 – 24 input nodes (variables)
 – 40 hidden nodes
 – Each node and each connection has a weight

• **Bayesian Idea:**
 – Rather than finding one value for each weight, use many values
 – Determine the posterior probability for each weight
 – Sample from the posterior

• In this case, 100 individual neural networks
 – Each network gets a weight based on training performance
Matrix Elements

• Calculate signal discriminant directly for each event

\[D_s(\vec{x}) = P(S|\vec{x}) = \frac{P_{\text{Signal}}(\vec{x})}{P_{\text{Signal}}(\vec{x}) + P_{\text{Background}}(\vec{x})} \]

• Signal/Background probabilities are calculated from the differential cross section

\[P_{\text{Signal}}(\vec{x}) = \frac{1}{\sigma_s} d\sigma_s(\vec{x}) \quad \sigma_s = \int d\sigma_s(\vec{x}) \]

• Calculate differential cross section for each event based on Feynman diagram and event kinematics

• Integrate over ME and measured momenta
Ensemble Tests

- Draw ~1,000,000 “pseudo-data” sets of events from the signal+background MC
 - Bootstrap with replacement
 - Several different signal XS values
- Repeat full statistical analysis and measure σ for each

SM Ensemble

- **tbqtb**
 - Entries: 1000
 - Mean: 2.922
 - RMS: 1.513

e+\mu-channel

- Full systematics

DT analysis

- χ^2/ndof = 4.89/4
- Slope = 1.07 ± 0.03
- Intercept = -0.12 ± 0.10
Sensitivity, p-value

- P-value: fraction of 0-signal ensembles measuring σ above observed value
- Expected p-value: fraction of 0-signal ensembles measuring σ above SM value
- Expected p-values:

 Decision Trees
 - p-value 1.9%

 Matrix Elements
 - p-value 3.7%

 Bayesian NN
 - p-value 9.7%
Test model on data

- **W+jets sample**

 = 2 jets, low event energy

 \[(H_T (l,j) < 175 \text{ GeV}) \]

- **Top quark pairs**

 = 4 jets, high event energy

 \[(H_T (l,j) > 300 \text{ GeV}) \]