Statistical Analysis at D@

Reinhard Schwienhorst

MICHIGAN STATE
UNIVERSITY

UDO@ lecture, October 7 2010



Outline

Top discovery
Frequentist statistics
Moditfied Frequentist
Bayesian analysis
Systematic uncertainties
Quick hits

Conclusions

Reinhard Schwienhorst, Michigan State



Statistics Example
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Example: Top quark discovery

JUME 74. NUMBER 14 PHYSICAL REVIEW LETTERS 3 APRIL 1€

Observation of the Top Quark

(Received 24 February 1995)

The DO Collaboration reports on a search for the standard model top quark m pjp collisions at
J§ = 1.8 TeV at the Fermilab Tevatron with an integrated luminosity of approximately 50 pb~'. We
have searched for 7 production in the dilepton and single-lepton decay channels with and without
tagging of b-quark jets. We observed 17 events with an expected background of 3.8 * 0.6 events. The
probability for an upward fluctuation of the background to produce the observed signal is 2 X 107°
(equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent
with top quark decay. We conclude that we have observed the top quark and measured its mass to be
1993 (stat) +22 (syst) GeV/c* and its production cross section to be 6.4 + 2.2 pb.

* 17 observed events
* Expected background of 3.8 £ 0.6 events

* Statistical fluctuation of the background: + 1.9 events
— statistics dominated problem
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Probability density

|
* Poisson, u=3.8
I
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—Gaussian, 1=3.8, 6=V3.8

* Quote significance based on s/\b? - No!
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Probability density
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* Poisson, u=3.8
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* Basic assumption of particle physics:
Event counts follow a Poisson distribution
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How likely 1s it to observe 17 events?

* Value at 17 (10°7)? or fraction at 17 over peak (10-7/10-1)?
* Not an appropriate question to ask!

* Deep Thought, what 1s the right question to ask for the
ultimate significance and everything?
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Statistics textbook: p-value

* Proper question to ask:
How likely 1s it that an expected background (true
value) of 3.8 events fluctuates up to 17 events or
more?”

* Wikipedia:
““... probability of obtaining a test statistic at least as
extreme as the one that was actually observed,
assuming that the null hypothesis 1s true.”
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P-value calculation

Poisson, u=3.8
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. p—Value 1n Root: gSystem->Load("libMathCore");
1-ROOT::Math::poisson cdf(17,3.8)
1.19E-7

* Corresponds to 50 significance
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Truth vs Data

* Frequentist statistics:

* True value 1s fixed but unknown

* Measured value 1s one of an infinite series of statistically
independent measurements

* Probability 1s the limiting relative frequency of a certain
outcome

# of outcome A
1In ©n measurements

P(A) = lim

n—-o n

*95% Confidence level interval:
Contains the true value in 95% of many repeated experiments
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Limit setting
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Limit setting example

eek endi
OLUME 93, NUMBER 14 PHYSICAL REVIEW LETTERS III?;::“E‘.Tf.Z}IEI.ERm -

Search for Doubly Charged Higgs Boson Pair Production in the Decay topu " ™
in pp Collisions at /s = 1.96 TeV

A search for pair production of doubly-charged Higgs bosons in the process pp — HTTH™~ —
prptpp is performed with the D@ Run II detector at the Fermilab Tevatron. The analysis is
based on a sample of inclusive di-muon data collected at an energy of /2 = 1.96 TeV, corresponding
to an integrated luminosity of 113 pb™ ‘. In the absence of a signal, 95% confidence level mass limits
of M(H=) > 118.4 GeV/c* and M(H:=) > 98.2 GeV /c” are set for left-handed and right-handed
doubly-charged Higgs hosons, respectively, assuming 100% branching into muon pairs.

* Example: background 1.5, observe 3 events
* What is the limit on the doubly charged Higgs cross section?
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Limit setting example

eek endi
OLUME 93, NUMBER 14 PHYSICAL REVIEW LETTERS I{E‘T{)EERWCI{}:

Search for Doubly Charged Higgs Boson Pair Production in the Decay topu " ™
in pp Collisions at /s = 1.96 TeV

A search for pair production of doubly-charged Higgs bosons in the process pp — HTTH™~ —
ptpt " is performed with the D@ Run II detector at the Fermilab Tevatron. The analysis is
based on a sample of inclusive di-muon data collected at an energy of /2 = 1.96 TeV, corresponding
to an integmtecl luminosity of 113 pb— ', In the absence of a signal, 95% confidence level mass limits

)

of M(H ) > 1184 GeV/e? and M(H }f:) = 08.2 GeV /¢? are set for left-handed and right-handed

doubly-charged Higgs hosons, respectively, assuming 100% branching into muon pairs.

* Example: background 1.5, observe 3 events
* What is the limit on the doubly charged Higgs cross section?

Hypothesis testing

Reinhard Schwienhorst, Michigan State 13



Hypothesis testing in daily life

Q. Where have all my socks gone?

Alternate Hypothesis Null Hypothesis

— &

_ I
Extra-terrestrial beings have Aliens are not to blame. There
transported themselves into my is some other explanation for
house in order to steal my socks. the disappearing socks.
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Hypothesis testing

* Null hypothesis
* The old, default, already known
* Data are described by background-only

* Alternative hypothesis
* Something new, fresh, exciting

* Data can only be described by signal + background

* Type I error: Null hypothesis 1s true but rejected ()

* Type Il error: Alternative hypothesis 1s true but
null hypothesis is not rejected ()
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Can I reject the null hypothesis?

1. Form a test statistic

2. Define the critical region

* The range of possible values of the test statistic for which
we reject the null hypothesis

* Normally determined before conducting the experiment:
* Want to minimize the Type I error rate
* Typically a 95% confidence level (CL) interval or limit
* Type I error rate 5% or less
3. Test 1f observed data are 1n the critical region
* Reject the null hypothesis or fail to reject it

* Typically vary cross section or similar parameter and
determine for which XS we reach 95%

Reinhard Schwienhorst, Michigan State
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Limit setting example

1. Form test statistic

* Neyman-Pearson lemma:
The most powerful test statistic 1s the likelihood ratio

L (signal + background )
LR=
L (background )

Reinhard Schwienhorst, Michigan State
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Limit setting example

1. Form test statistic

* Neyman-Pearson lemma:
The most powerful test statistic 1s the likelihood ratio

IR L (signal + background)
L (background )
10° r
* Example: j0 o)
L(b): Poisson(u=1.5) : & L(s+b)

10:
L(s+b): Poisson(u=8.0)

* M(H++) = 120GeV
* Plot
LLR = -2log(LR)

1

10.4 AN RIS VSR ATRVNE. SR ETATEEN SR O
0 2 4 6 8 10 12 14

Number of events
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Limit setting example
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2. Critical region 1s the integral
starting at left covering 95%
of area

2. Observed value 1s inside
critical region

* Cannot exclude it

3. Observed confidence level
CL,,, 1s integral of LLR

distribution above observed
value
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Moditied Frequentist approach

* If we observe fewer events than predicted by the
background model, the limit gets better

* Something wrong with background model?

* Modity Frequentist approach to avoid this scenario
* Also called CLs

* Procedure:

* Generate ensembles of pseudo-datasets
* Signal+background
* Background only

* Determine LLR = -2log(LLR) value for each of them
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Example LLILR distribution

« CL,,, 1s standard statistical

- —— B-only pseudo-datasets | procedure from statistics
600- textbooks

. S+B pseudo-datasets
500~ * Integrate red above data

- to obtain CL_,, = 0.052
400

- * Integrate green above data to
300~ : obtain CL, = 0.93
200 « CL, = 0.055
100- H”

e ean ” | | NI

%0-50 -40-30-20-10 0|10 20
LLR
Observed

LLR value in data
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5. Compute CLs for several Higgs mass

w1
-

-

10
10

10

10

Limit setting example

left-handed H—

&a) ,"'--—---

T
osse!
o%e%s:

25
LS
%!
K55

%%
R
%02
&85

S5
e%e%
K5

25258

()
</

7 ]
RRKS
6%%
5
LK
SRS
%%
2R
SRR
XK
5505
SRS
&RX
o%e%
X

A
Pa s ¢

(2
(o

S0
SRS
2255
P
XA
o0
\
4

6. Define expected CLs
from ensembles
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So far, we have only dealt with

statistical uncertainties.

How do we include
systematic uncertainties?

Reinhard Schwienhorst, Michigan State
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Bayesian Analysis

Reinhard Schwienhorst, Michigan State
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Simple probability

P(A): Probability that A 1s true

Reinhard Schwienhorst, Michigan State
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Conditional probability

P(BIA): conditional probability
for B, given that A 1s true.

Reinhard Schwienhorst, Michigan State
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Bayesian statistical analysis

P(datalsignal,bkg) x P(signal)
P(data)

P(signalldata) =

“Posterior probability”™

* Probability as the subjective degree of belief
— P(A) — degree of believe in hypothesis A

— As opposed to frequentist approach that true values can
never be determined and P(A) 1s the result of many
repeated experiments

Reinhard Schwienhorst, Michigan State

30



ayesian Statistical Analysis

—

P(datalsignal,bkg) x P(signal)
P(data)

P(signalldata) =

“Posterior probability” Likelihood

Poisson distribution

“X e-X

L(x,W) =

x!

I = signal + bkg

Reinhard Schwienhorst, Michigan State
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Bayesian Statistical Analysis

P(sienalldata) P(datalsignal,bkg) x
signalldata) =

- P(data)
“Posterior probability” I ikelihood Normalization

factor
* Much discussion about the prior by statisticians

— Often choice 1s not clear
* For example different result if prior 1s flat in XS
or flat in coupling=\XS$

— One goal for statisticians 1s “uninformed prior”

— For us the choice 1s always prior flat in cross section
* Only violated once so far!
VOLUME &2, NUMBER 25 PHYSICAL REVIEW LETTERS 21 JUNE 1999

* Chose prior flat in M and tan[
Search for Charged Higgs Bosons in Decays of Top Quark Pairs

KRCLIAIA SCNWICINOVISL, IVIICIIEZAIL SldLC 3 2




Bayesian Statistical Analysis

P(datalsignal,bkg) x P(signal)

P(signalldata) =
S P(data)
“Posterior probability”™
— 05
a DG 2.3 fb"
= 0.4
a E o measured
‘w 03¢ =3.94:0.88 pb
& -
o 0.2 expected
S = 3.50 0% pp
§ 0.1 :—
@ -
o 0 2 4 6 8 10

tb+tgb Cross Section [pb]
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Simple Bayesian example
n

predicted — 65 * rathXS T nbkg
° NObS — 3, nbkg =1.5
— 1.e. rule out this Higgs mass if limit on ratioyg 1s 1

* Compute Bayesian posterior for XS using simple

spreadsheet

Nobs e—Nobs

P(Nobs,H) = Nobs! where U = 6.5%ratio, + Nyyo

o Prior 1s flat in XS, thus flat in ratioy

Reinhard Schwienhorst, Michigan State
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Bayesian example on a Spreadsheet

Nobs=3

XS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Nbkg=1.5

w
1.5

2.15
2.8
3.45
4.1
4.75
5.4
6.05

P(ratio|u)
0.13
0.19
0.22
0.22
0.19
0.15
0.12
0.09

0.16

0.14

0.12
0.1 "

0.08" O

0.06 M

0.04 -

0.02 O

u
0 ....llllllllll

0 0.5 1 1.5 2 2.5
ratio [pb]

—95% CL limit: integrate
from O to 95% of area
— In this simple example,
limit 1s 0.9
* Numerically same as LLLR
* But different interpretation!

posterior probability density
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Systematic uncertainties

Statistician says: “What do you mean you don't
know exactly what your background 1s?
You can't even formulate a null hypothesis!?!”

Reinhard Schwienhorst, Michigan State
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Systematic uncertainties

* Neither background nor signal can be predicted

precisely

— Background prediction and other parameters are
themselves probability distributions

S_|_b)Nobs e-Nobs
L(Nobs,s,b) =

Nobs!

* sand b are not fixed anymore
L(s)=7?, L(b)=?

— Parameters that go into making the predictions are
probability distributions — example: JES

* Nuisance parameters
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Systematic uncertainties

* Bayesian approach:
— Prior for each systematic uncertainty
— Gaussian shape for prior, but not always symmetric

T (b,ub,Gb) _ é(b'“b)2/6b2

— Evaluate systematic twice, once for +16 and once for -1
* Only find the £106 shifted event yield or histogram
— Then shift yields according to the Gaussian

— Bayesian posterior is then product of likelithoods

L(Nobs,u_ 0L,

o )= e (S+b)Nobs e-Nobse -(s-uS)Z/GS2 e_(b_“b)z/cbz
° Nobs!
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Including systematic uncertainties

* Bayesian posterior including systematics

, P(datalsignal,bkg,sys) x P(signal) x P(sys)
P(signalldata) = ﬂ s P(daia)

* P(sys) 1s a multivariate Gaussian prior
— One Gaussian for each systematic

— Other shapes also 1n use
* Gamma function for MC statistics
* Quadratic matching for asymmetric uncertainties

* Integrate over systematic uncertainties

Reinhard Schwienhorst, Michigan State 390



Systematic uncertainty sampling

* Integration over systematics by MC sampling
— Need sufficient # of samples from multivariate Gaussian
* Typically ~1,000 to ~50,000 samples
— Widens Bayesian posterior
* And possibly shifts it
— Widens Frequentist LLR ensemble distributions

TRF

90 i_ Entries 2000 g e 2,
802— Mean 0.03115 0_6:—
= RMS  1.015 =
70: 0.5
60% 0.4
50 =
40 0.3
30— 0.2
20 3
10;_ 0.1E
054 4 5 Y 2 a2 6 8 10 12

o(tb+tqb) [pb]
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Profile likelihood in modified frequentist analysis

* Limit setting procedure 1s unchanged, simply replace

the te

St statistic

— Generation of pseudo-experiments still samples from
multivariate Gaussian

* Instead of integrating over each systematic, perform a

Minu

1t fit to the data

Best Fit to Data Parameters \

|
— With Gaussian prior %o.s — oy
as an extra constraint F7ICENN NN Y S —————
— Do this for the data ) R T I : :
and for pseudo-datasets T 1.
— Separately for the null 0 o e S O IO T O O OO
and alternative hypothesis O s -
C I | | | I |

Reinhard Schwienhorst, Michigan State
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Quick hits

Reinhard Schwienhorst, Michigan State

42



Multiple analysis channels

* Multiple analysis channels and bins are very
straightforward:

* As long as bins are statistically independent

* Multiply likelihoods of individual bins

* Sum LLR values of individual bins

* Treat systematic uncertainty correlations bin-to-bin
* Same © shift for this systematic in all bins

* Also include correlations between signal and background
and between different background sources
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Log likelihood

* Widely used 1n statistics and HEP

— Originally based on Bayesian ideas
* Keep data fixed, vary model parameter

* Commonly used in measurements
— Minimum as measured value, min+1/2 for uncertainty
— Also available for

—~Alog(L)

6 :

o, DG Runll, 1fb’
4

- *"*u

B ot W
2EO0% Gl e

- (two-sided) o
0_||||*‘**|| R P T
10 14 18 22 26 30

Ams [ps™']
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Systematic uncertainties

* Summing systematics in quadrature
— Standard procedure for many measurements

— Propagate each uncertainty to the final measurement

* i.e. how does my measured parameter change if JES was
shifted up 16?

— Then add all uncertainties in quadrature

— Assumptions
* All systematics are independent, uncorrelated and small

* Central measurement doesn't change when including
systematics

* If any of these assumptions are not valid, need to

evaluate systematics correctly
— Integration over systematics

Reinhard Schwienhorst, Michigan State
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Pseudo-experiments

* Pseudo-experiments are very useful for a wide
variety of statistical questions

* LLR calculation, significance calculation
— Single top observation significance calculation based on

67,800,000 pseudo-datasets

* Other applications:

Test correlations between variables and/or channels
Test linearity
Test complete analysis chain

Reinhard Schwienhorst, Michigan State
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Why can't the Higgs mass be fixed and known?
— When exploring a distribution with an unknown parameter

(such as the mass), statistical fluctuations may occur anywhere

in the diStribUtion EL Hb—bbb analysis
D@ Preliminary, L=4.1 fb’

* Look-elsewhere effect

* The significance for finding
a signal at one mass 1s reduced

— Trials factor
* Correct p-value for possibility of
statistical fluctuations elsewhere 20 ] Expectod k2 10

111 | |
100 120 140 160 180 200 220 240 260 280 300 320
m, [GeV/c?]

140

120

100

my, max, u=-200 GeV 5

Excluded by LEP

e Obzerved limit
Expected limit

[ Expected limit+ 1

— Derive trials-factor in pseudo-experiments
* What fraction of pseudo-experiments, when generated over the entire
mass range, gives a signal as large as the one observed or larger?
— Or through various approximations

* Eg: Divide mass region into bins roughly the width of the mass

resolution, then correct for varying acceptance
Reinhard Schwienhorst, Michigan State 47



Feldman Cousins

* Start with known true value and determine intervals
— Then read off data interval
— Avoids flip-flopping and empty intervals

* Procedure

* For several values of the true, o 1 D@ Runlll L=0.9 iy’
known parameter, determine o]
. e first
the 95% CL interval 0.8-
i.e. along the horizontal axis 3 | cecond

* Plot all of them in a 2d plot 0.6-

* Take the data measurement ] 68% C.L.
and read the 95% CL interval 0.4- 959 L
vertically ] .

} 99% C.L.

0.2-

Decay ratiiio R 1n tt
05 1
Rmeas
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Conclusions

* Statistical analysis practices in use today have been

around for a long time
— Textbooks are from the 1930s
— Bayes lived in the 18" century
— Important to understand the fundamentals
 HEP has expanded on standard statistical procedures
and invented a few new ones

I

— To deal with low statistics and systematic errors

— Tools are easily available
* D@ is using all of the current tools

— Employs Freg

uentist and Bayesian and mixed medhods
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Disclaimers

Statistics doesn't have to be hard!

There are many ways to introduce statistical data analysis, this is just my view of it.

This 1s neither complete nor unique.

To paraphrase NPR: Sticklers for the truth should get their own UD@ talk.

This talk 1s about current practices, there are other equally valid ways to do it.

This talk is not about what you should not do. There are many ways to go wrong.

There are many other important statistics topics that didn't get discussed here.

A lot of basic statistics information is available on wikipedia and other online sources.
Almost every statistics problem can now be addressed in root.

Roostat is the tool currently in development for ATLAS and CMS that does all of this easily.
There are regular workshops and lectures on statistics with much valuable information.

Statisticians use the tool and language R. This has many statistical analysis tools including
limit setting and multivariate analysis methods. http://www.r-project.org/

Reinhard Schwienhorst, Michigan State 50


http://www.r-project.org/

(= Original Artist=——s

Feprod uctiah rlghta |:|I:|ta1|naljle from

w3 r’mEunStm:l-: COM]

“How do you wanl it—the crystal muembo-jumbo or
statistical probabilily?"

Reinhard Schwienhorst, Michigan State
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Book recommendations

* Louis Lyons — easy to read, not very theoretical

Statistics for Nuclear and Particle Physicists
http://www.amazon.com/Statistics-Nuclear-Particle-Physicists-Louis/dp/0521379342

* Glen Cowan — more details, well written
Statistical Data Analysis

http://www.amazon.com/Statistical-Analysis-Oxford-Science-Publications/dp/0198501552
* Fred James — more detailed, useful reference

Statistical Methods 1in Experimental Physics

(2nd Edition)

http://www.amazon.com/Statistical-Methods-Experimental-Physics-2nd/dp/981256795X

Reinhard Schwienhorst, Michigan State
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[_inks

Jim Linnemann's statistics web page

http://www.pa.msu.edu/people/linnemann/stat_resources.html

phystat.org

http://www.phystat.org/

Roostats 1s the ROOT statistical analysis package, it

1s 1n development
https://twiki.cern.ch/twiki/bin/view/RooStats

Wikipedia 1s excellent. Start with

http://en.wikipedia.org/wiki/Bayesian_inference
http://en.wikipedia.org/wiki/Frequentist_inference

and explore the links starting from there

Glen Cowan's lecture notes and other resources
http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

Reinhard Schwienhorst, Michigan State
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Answers to some questions

* In the Bayesian analysis, there are several different
possible priors. Why not assign a systematic

uncertainty to the prior?

— Answer: Because the prior 1s a likelihood. Saying the
prior should have a systematic uncertainty would simply
result in a different prior.

Reinhard Schwienhorst, Michigan State
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Answers to some questions

* In the Modified Frequentist approach, the limits get
better when profiling. But in the Tevatron Higgs
combination, even after profiling, the limits are
similar to those from the Bayesian analysis. Why are

they not better?

— Modified Frequentist and profiling together give roughly

the same numerical limits as the Bayesian method
* But the two numbers have different meanings of course

— Moditied Frequentist without profiling over-covers
conservatively (the coverage 1s typically around 97.5%)

Reinhard Schwienhorst, Michigan State
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Example: discovery from ensembles

* Double-charged Higgs analysis. What if we had
observed 7 events instead of 3?

— Background expectation 1.5

— 7 observed events 10°:
corresponds to :
LLR=-10 10°

— Integrate from - 2:
to -10: 10
Observed p-value: 10.
0.001 :

— 3 sigma evidence

Reinhard Schwienhorst, Michigan State
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