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Changes with respect to the pl3 analysis

The analysis that we present in this note is very similar to the analyses done in Run 1[2]
and in Run 2 for the Lepton/Photon conference in 2003[1]. There are some differences,
which are listed here.

o The efficiency to trigger top events is determined on data. We parametrize the trigger
efficiency for the different trigger levels by multiplying with the efficiency as a function
of the reconstructed jet and event energies. The trigger is discussed in section III.

e Skimming and selection is done centrally, through the D@ Common Samples Group.
See section III through V. There are slight changes in the trigger and skimming
criteria, but as these criteria are still quite loose, there is no significant influence on
the final selection cut on jet multiplicity (equation 1).

e Different reconstruction and top_analyze versions are used. The versions are specified
in section IV. One of the more major changes is the use new, noise reducing, calorime-
ter reclustering algorithms, which has an influence on the jet energy spectra. This
has a direct consequence on the shape of energy-scale dependent topological variables,
which are discussed in section VII B.

e The detector smearing of jets and muons in Monte Carlo is taken into account in our
Monte Carlo samples.

e The use of the mass likelihood variable M has changed. We now have two separate
x?2-like variables for the W-mass and t-mass information, respectively.

e The cut on nnl > 0.05, which was used to reject background in the final nn2 distri-
butions, has been removed from the analysis.

I. INTRODUCTION

This note will describe the analysis method used to do the measurement of the tt —
all-jets production cross section with a dataset taken at the start of Run II, with
V8 = 1.96 GeV/c?. First we will discuss the triggers and other dataset definitions (sec-
tion III), after which we continue by discussing the analysis method using several artificial
neural networks. Different types of b-jet identification can be used in combination with
the topological analysis described in this note. The analysis presented here is very similar
to the one conducted on data reconstructed with the p18 reconstruction in the summer of
2003[1], which itself was based on the Run I analysis[2].

II. ANALYSIS OUTLINE

As was also mentioned in previous D@ publications [2], event selection for hadronic tt
production channels mainly consists of rejection of QCD multi-jet background. The QCD
background is expected to mainly consist of hard scatter 2 — 2 parton processes with extra
jets created through soft QCD interactions. Though more than half of the hadronic top
events are expected to only have five or less reconstructed jets, the reduction in background
makes it worthwhile to require six or more jets. The presence of six jets also makes it possible
to calculate the four-momenta of all partons in the tt system, so we can reconstruct the
masses of the t quarks and the W bosons.



We do not correct muon-tagged jets for the difference in jet energy scale from the non-
measured neutrino, as we use the same (assumed light quark) jet energy scale for all jets.
The main reason for this is the fact that our background, for which we use untagged data
events, is used to predict the background content in our distributions. This comparison
becomes much more difficult when different jet energy scales are used for the tagged and
untagged samples.

The analysis consists of the following steps:

1. Event selection.
We separate our sample into two subsamples:

I. Tagged Events:
Events which contain a b-tag. These events are expected to have a much larger
probability of being a top-event. These events are further referred to as our
signal sample.

I1. Untagged Events:
Events which contain no tag. This sample is dominated by QCD background.
These events are used as our background sample.

2. First background reduction. (NNO)

A simple artificial neural network is used for the first pre-selection on event kinematics
and topology. This neural net is trained on the variables expected to have the most
discriminating power. Events which have a NNO discriminant smaller than 0.05
are discarded from the further analysis. The cut value of NNO > 0.05 has not
been optimized, as it was inherited from the Run 1 analysis. However, it does not
significantly cut into our signal and removes background-like events from our analysis.
On the sample that is left after this selection we determine the probability to tag a
jet, using a tagging probability function we call a Tag Rate Function (TRF).

3. Neural Network 1. (NN1)
After rejection of the obvious background, a first neural network is applied to provide
one discriminating variable for all the (heavily correlated) event-shape variables. This
NN1 uses the same input variables as NNO and some extra topological variables,
which are all discussed in section VIIB.

4. Neural Network 2. (NN2)
After the first neural net, the data are processed with a second neural network (NN2),
that combines the output of NN1 with extra top quark properties. Here we also have
the possibility to include b-tagging information.

Though the separate use of NN1 and NN2 causes us to lose the information that NN1
had on the correlations between the different variables, this method has the advantage that
we can re-use the neural network in analyses using other b-identification methods. Also,

in Run 1 it was shown that there were only very small correlations between the NN1 and
N N2 variables.

III. TRIGGER

We select events that fired the 43710 (trigger lists v8 through v11) or 43712 (v12 trigger
lists) triggers, which consist of the following trigger terms

e 4JT10:



L1: ciT(4,5)
- Four trigger towers with Er > 5 GeV.
L2: 3jet8_ht90

- Three jets above with Er > 8 GeV and total Hr > 90 GeV.
The Hr cut is not made in trigger list v8&.

L3: mpl60_JET(SCIET-9,4,10.)_JET(SCIET-9,2,20.)

- Four jets with Ep > 10 GeV, of which two with Er > 20 GeV.
The JET(SCIET-9,2,20.) cut was not made in trigger list v8.

e 4JT12:

L1: ciT(3,5)
- Three trigger towers with E7 > 5 GeV.
L2: 3jet8_ht50
- Three jets with Er > 8 GeV and total Hr > 50 GeV.
L3: mpl160_JET(SCIET-9,4,12.) JET(SCIET-9,3,15.)_JET(SCIET-9,2,25.)

- Four jets with Er > 12 GeV, of which 3 with Er > 15 GeV and two with
Er > 25 GeV.

A. Trigger efficiency

The trigger efficiency was measured using the top_trigger[9] package. This package uses
the jet-based trigger turn on curves to calculate the probability that the event was triggered.
We use this probability as an event weight in our analysis. The different jet turn-ons are
considered uncorrelated, and the calculations are done as described in [4].

We show the turn-on curves (Figures 1 through 4) for the different terms used in the
three trigger levels. The efficiency was measured on the top group’s jettrig skim, which is
taken with a simple single electron trigger. We require the electron to have triggered the
single electron trigger (by requiring that at least 10 GeV was already present at the second
trigger level), and then look at the remaining jets. This method is also used in the other
jet trigger studies done in the top group[3].

Note that, even though the description in the lower values of pr and Hr is sometimes
not perfect, the expected tt contribution is typically on the plateau.

The average efficiency for signal was measured to be:

€(Njets > 6,nn0 > 0.05) = 0.77 + 0.004,

which is considered a conservative estimate. We derive this number from figure 5, which
shows the efficiency of the whole trigger as a function of a neural network discriminant.
The efficiency before the neural network selection is obviously lower, but contains events
which would not be selected in the final analysis.
This trigger efficiency corresponds within reasonable limits with the efficiencies deter-
mined from trigsim (table I) and data studies in pl3 reconstruction releases (85-90%). A
luminosity weighed average for the whole dataset would lead to an average of

€(tt, trigsim) = 0.91.

We use the difference between the parametrized trigger efficiency and the efficiency from
the trigger simulator into account as a systematic uncertainty on the final analysis. In the
total signal efficiency calculation in the cross section analysis, the influence of the trigger
efficiency is taken into account on an event-by-event basis.



trigger versions and luminosity

trigger list version trigger e(trigsim) | Integrated luminosity [pb~ ]
v8[4JT10 (no L2 Hr)| 95% 20.8
v9 4JT10 91% 29.1
v10 4JT10 91% 15.8
vll 4JT10 91% 57.8
v12 4JT12 91% 38.9

TABLE I: Luminosity and efficiency from the trigger simulator for different trigger versions. The
v12 trigger list has the same efficiency as the v9-11, but the background rejection was moved from
the second to third trigger level
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FIG. 1: Trigger turn-on curves for L2 Hr for the two different values of L2Hr ;50,90 GeV/c?.
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FIG. 2: Trigger turn-on curves for jets in the Central Calorimeter (|| < 0.8).
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FIG. 3: Trigger turn-on curves for jets in the Inter-Cryostat Detector Calorimeter (0.8 < |n| < 1.5).



EC L1 CJT(1,5) EC L2 jet(1,8)

=

trigger efficiency

o
2]

trigger efficiency

o

trigger efficiency

°

- a 1
o
ks
: /’vvv'
=
(]
5}
D
2
=
— 0.5+
| | | |
50 . 100 150 50 . 100 150
reconstructed jet p (JES corrected) reconstructed jet p . (JES corrected)
EC L3 jet (1,10) EC L3 jet (1,12)
1- 5 1
c
2@
L2
=
(3]
[5)
(=24
=
=
5— 0.5
| | | | | | | |
20 40 . 60 80 100 20 40 . . 60 80 100
reconstructed jet p; (JES corrected) reconstructed jet p; (JES corrected)
EC L3 jet (1,15) EC L3 jet (1,20) EC L3jet (1,25)
[ T > F
5 g =
) S
5 5
=y =2
o Tog- Tod
| | | | | | | u | | |
20 0 60 80 100 20 0 60 80 100 20 060 80 100
reconstructed jet p (JES corrected) reconstructed jet p (JES corrected) reconstructed jet p (JES corrected)

FIG. 4: Trigger turn-on curves for jets in the Endcap Calorimeter (|n| > 1.5).



H
!

trigger efficiency
5 2
i
+
3
+

o

(o))

[
+

O.4-+ ,,,,,,,,,

] L e A il BB A i

| ] ] |
0 8

0 0.2 0.4 1

0.6 0.
Neural Network 2 discriminant

FIG. 5: Complete trigger efficiency as a function of one of the analysis discriminant neural nets,
NN2.



10
IV. DATA SAMPLES

Multi-jet data is collected and reconstructed using the common samples group’s3JET
skim[5]. This skim selects events with the following properties:

e Event passed a multijet trigger. The top triggers 4J710 (v11 trigger lists and earlier)
or 41712 (v12 trigger lists) are included in the used triggers. For definition of these
triggers see section III.

e Events contain at least 3 reconstructed calorimeter jets, where there are no further
jet quality cuts applied. We use 0.5 cone jets.

After this pre-selection, these events are processed and skimmed further with the Nefer-
titi version of top_analyze [6], using DO production release p14.05.01. We then require the
presence of at least 4 reconstructed jets. Here a set of quality requirements[5, 6] is already
applied on the jets.

A. Good Run Lists

After processing to root-tuple level, the dataset still contains data that was taken during
periods when the various sub-detectors were not performing optimally.

The good run list used in this analysis is provided through the top_dg[8] package. Top_dq
takes into account tracking, calorimeter and DAQ system performance on luminosity block
basis. It also contains the option to have an extra rejection of runs in which the quality of
the reconstructed muons is poor. The extra muon quality requirement will only be used in
tt —all-jets analyses that use soft muons. After the data quality requirements, we are left
with analysis sample of which the two signal triggers have been exposed to a total integrated
luminosity of 162 pb~!. When the additional muon quality requirements are applied, we
are left with a sample of 150 pb—!.

V. MONTE CARLO SAMPLES

In this note, we use a sample of 47,500 tt — all — jets Monte Carlo events for signal
simulation. This would be equivalent to a top sample collected with 100% efficiency at an
integrated luminosity of approximately 160 fb~!. We do not include hadronic 7 decays in
our sample if the 7 lepton originates from the leptonically decaying W bosons from the
tt decay. To study the behavior of tt — 7T+jets we have an inclusive lepton+jets sample,
which includes tt —any lepton+jets W boson decays. This sample

The used events have been generated with the PYTHIA generator in the mepl4
D@ Monte Carlo version. The exact definitions can be found on the top group’s Monte
Carlo pages[10]. A random number of underlying minimum bias events was added, using a
Poisson distribution with a mean of 0.8. We use a top mass of My,, = 175 GeV/c?, and use
smaller samples with M;,, = 165,185 GeV/c? for systematic studies. All Monte Carlo is
corrected for the smearing of u and jet energy by the D@ detector. The simulated tt events
were reconstructed with the same top_analyze version as the used dataset.
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Different pre-selection cuts

e(tt MC) |e for 6-jet data
isolated EM| 0.9993 |0.9901+0.0001

isolated p| 1.0000 |1.000£0.0000
Nprim.vie = 0|1.0-7 - 10~%10.9902+0.0001
Njets < 6| 0438

In final analysis sample
Njets <6] 0438 [292202

TABLE II: Numbers of events rejected for different event quality cuts. Note that the jet multiplicity
cut is made last in the preselection

VI. PRE-SELECTION

We require the event to have no isolated electron or muon, to provide an orthogonal
dataset to the datasets used by the analyses of the other tt decay channels. The isolated
lepton veto results in no signal efficiency reduction. The specific isolation criteria for leptons
are as used in the tt — [+ jets analyses. After the application of data quality requirements,
we are left with the vetoes on isolated muons have no effect, and we find only 65 isolated
electrons in events that also contain 6 or more calorimeter jets.

To be able to have a accurate description of the momenta of the different objects in the
event, we require the presence of at least one primary vertex (PV), where we require that
PV to be within 60 cm of the center of the detector, and have at least 3 tracks associated
with it. This cut was measured to be over 99% efficient on data events with 6 or more jets.

We then apply the following pre-selection cut:

Njets Z 6 (1)

Statistics for rejected events can be found in table II.
After preselection we are left with 292202 6-jet events, which corresponds to an integrated
luminosity of 162 events/pb.
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VII. QUANTITIES USED FOR EVENT SELECTION

A. Introduction

In this section we discuss the various kinematic variables we use in the kinematic tt —all-
jets analysis. This analysis by itself does not have enough discriminative power to distinguish
between signal and background, but one can apply b-identification afterwards to surpress
background. In this note we only discuss the kinematic part of an analysis like this.

B. Definition of kinematic variables

The variables used to distinguish hadronic top signal from QCD multi-jet background
can be distinguished into five categories:

(i)

(i)

(iii)

(iv)

Distinction between energy scale. QCD background tends to have an overall lower
transverse energy distribution, jets are less energetic and the total invariant mass of
the event is smaller than in ¢t events. Even though the average jet energy is smaller
in QCD events, the leading jets tend to be more energetic in QCD than in tt events.
The variables used here are Hr and +/s.

Soft non-leading jets. As the QCD background mainly consists of hard 2-jet pro-
cesses with extra soft gluon jets, the additional jets are expected to be softer in QCD

background than in tt signal. The variables we use are Hy?, Eq, . and N féts.

Event Shape. These quantities qualify the behavior of the angles and sizes of jets in
the event as a whole. Top events have a different shape as QCD background. The
jets are almost spherically distributed in top events, while QCD events usually have
a more back-to-back jet distribution. We use aplanarity and sphericity to quantify
this difference between signal and background.

Rapidity distribution. These quantities are used to identify where the set of jets in
the event was observed in the detector. Because of their typical hard scatter origin,
the jets in QCD background events are expected to be more back-to-back than top
signal, while QCD events are also more likely to be boosted in the direction of the
beam-line. This has as a consequence that not all the jets in the event are expected
to be central. We use centrality and < n? >.

Typical top properties. The second neural network (NN2) is trained on properties
which are very typical for top event structure, like the presence of W-bosons and b-
quarks. The variables used are the W and top mass likelzlghoods Mww and My, the

Pr of the soft muon, and the minimal di-jet masses M,>> and M2} .

These variables will be discussed in detail in the following paragraphs, and are also shown
in figures 6 through 17.

(i) Parameters Sensitive to Event Energy Scale

Parameters sensitive to the energy scale of the whole event are typically also sensitive to
the top mass. For this study, all top masses are presumed to be of value My,, = 175 GeV.
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(ii)Parameters Sensitive to Additional Radiation

These variables are mainly used because they provide good distinction between hard
2 — 2 scatter processes with some extra soft jets and real multi-jet events.

3. HY. This variable is defined as [2]:
HY = Hr — Er(jetl) — Er(jet2), (3)
where Er(jetl) and Er(jet2) are the leading and second-leading jet, respectively.

4. E7y , is defined as the geometric mean of the transverse energies of the fifth and sixth

leading jet:
Er,, = v/Br(et5) - Er(jet6) (4)
5. N]‘-‘};ts is the jet ET weighted average over the number of jets, which is defined as:
55
Eth’r'N(Ethr)dEth’r
Np, = AL L 5)

55 mthr thr
> Bthrd B

where N(EL7) is the number of jets in a given event with |n| < 2.5 and Er greater
than threshold value E4*" [GeV]. This value is discussed in more detail in the Run I
all-jets publication [2].

(iii) Aplanarity and Sphericity

Aplanarity and sphericity are defined as different combinations of the eigenvectors of the
normalized momentum tensor. For more explanation see [2]. Here we mainly discuss the
physical implications of the two variables.

7. Sphericity defines how spherical the jets in an event are. A perfectly spherical event
has sphericity = 1. Top events are expected to be more spherical than QCD back-
ground events.

8. Aplanarity defines how the jets in the event are placed in respect to a plane. If
the event system spans only one plane, the aplanarity is zero. An event is maximally
aplanar when Aplanarity = 0.5. Top events tend to be more aplanar than QCD events
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(iv) Rapidity sensitive parameters
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Top events are expected to have different pseudo-rapidity distributions than the QCD
background, as they tend to be more central because of the higher transverse energy in the
event. The following variables provide a handle on this quality:

o from event average

o (E,) for data
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FIG. 15: Distribution of o(ET) for 6-jet events (triangles). Left plot gives the behavior for data,

right plot for tt Monte Carlo.

The solid lines are the fits that are used in equation (8).
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8. Centrality is defined as

(6)

where Hg is the sum of all the jet energies in the event. The centrality provides a
handle on what fraction of the energy deposited in the proton-antiproton collision is
transverse energy.

9. < n? > is the weighted RMS of the six leading jets in the event, and is defined by:

Y et W(ET) (njer — 1)

<> = (7
Z?et:l W(ET)
where
Ut{(ET) _ Ubackground(ET)
E = -
W(En) e ®
and
1 Njets
n = H_T Z ETjetnjet (9)
jet=1

The quantities o' (Er) and obacksround(Fy.) are the widths of the n variance on jet
basis, as a function of the jet Er. o' (Er) and g®ek9mound(Ep) are the observed o of
the jet distribution with respect to the center of the detector (n = 0), as a function
of jet pr. These distributions were measured in the pl3 analysis [1], and the then
measured values are still used in this analysis.
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(v) Other variables
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S iy 6-jet data S 6-jet data.
c = . < R

= 6-jett tevents u 6-jet t tevents

E I I I I I I I I I | . . I L I I
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top Mass Likelihood top Mass Likelihood
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o °
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FIG. 16: Distribution of the mass likelihood variables M and Mww for 6-jet muon data (open
histogram) and singal Monte Carlo (filled histogram).

As was mentioned before, we also use variables which are not based on the event topology:

9, 10. The top and W mass likelihood of the event, M,;; and My w ,which are y2-like
variables defined as:

_ 2
My = (Miop, thopz) (10)
Utop

My, — Mw)? My, — Mw)?
MWW — ( Wl 3 W) + ( W2 5 W) (11)
Ow Ow

The widths o4,, and ow and W boson mass My are obtained from t¢ — hadrons
PYTHIA Monte Carlo distributions, and have values o4,, = 45 GeV ,ow = 10 GeV
and My = 80 GeV. These are similar to the values used in the run 1 analysis.

To obtain these values, cone 0.5 reconstructed jets were used, and no actual parton-
level jet matching was done. We also did not apply any b-jet identification to reduce
combinatorics.

In previous analyses these two x2s were added to have a single top-W hypothesis
check, but figure 16 shows that the difference in size between My w and Mz is
about one order of magnitude, which would mean that there was only tested on the
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presence of two W bosons. As M, has typically more discriminating power as My w,
making the distinction between the two quantities improves the analysis sensitivity.

13, 14. The smallest jet masses in the event. As all jets in top events are associated with
high-mass objects, both the smallest di-jet mass

1,2
mass M, ..

1,2
already used for M,

QCD than for top events.

smallest di-jet mass

M2

min and the second smallest di-jet

can be a useful input variable. When calculating an’;-ln, jets that were

4

. 1,2 3,
are ignored. M, - and M. are expected to be a smaller for

smallest di-jet mass

° E hel
14 £ p14 data (Nefertiti) 19 pl4 data (Nefertiti)
g ? Integrated Luminosity = 162 pb * g Integrated Luminosity = 162 pb *
S F 6-jet data S 6-jet data.
< E . < -

E 6-jet t tevents 6-jet t tevents

E | | | | | | |

0 10 20 30 40 50 60 70 80 90 100

M12
second smallest di-jet mass second smallest di-jet mass

° = hel
14 F p14 data (Nefertiti) 19 pl4 data (Nefertiti)
g § Integrated Luminosity = 162 pb * g Integrated Luminosity = 162 pb *
S r 6-jet data S 6-jet data.
< E - < -

E 6-jett tevents 6-jet t tevents
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0
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4

FIG. 17: Distribution of the two minimal di-jet mass variables M%?  and M:;fn for Monte Carlo

(filled histogram), muon tagged events(markers) and predicted background(open histogram).

VIII. CORRELATIONS BETWEEN THE TOPOLOGICAL VARIABLES

The 13 parameters used in this analysis are correlated. To qualify the dependence between
the variables we calculate the correlation, which is defined as:

_Ty—-zy _ N L TilYi — N L Tiyy Y
%0\ JE T - (X)X T - T

The results of this correlation study are listed in table IV.
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Hr /s H%j NjAets Er, o Aplan Spher Cent < 2 >| Mz Mw M3Z™ ME™
Hr 1 0.630.74 0.84 049 -004 008 023 -0.04 [0.10 0.11 034 042
NG 1 052 056 0.35 -0.40 -0.42 -0.45 0.33 [0.19 0.27 0.31 0.40
HY 1 079 077 013 010 0.12 0.02 [-0.00 0.03 0.37 0.41
Niets 1 057 003 010 0.9 -0.02 |-0.01 0.06 0.43 0.51
Eryq 1 012 0.07 0.07 0.03 [-0.02 0.03 0.42 0.43
Aplan 1 069 0.58 -0.27 |-0.12-0.15 0.03 0.01
Spher 1 0.74 -0.38 [-0.12 -0.19 0.03 0.02
Cent 1 -0.37 |-0.09 -0.16 -0.02 -0.05
<n?> 1 [0.08 0.14 0.01 0.02
M,; 1 020 -0.06 -0.07
Mw 1 0.00 0.01
MpEin 1 07
M 1

TABLE III: Average correlations among the 13 parameters for 6-jet data events

Hr /s HY Nﬁts Er, , Aplan Spher Cent <n® >| My Mw M5 ME™
Hr 1 0.80 0.74 0.65 0.44 -0.11 -0.15 0.35 -0.18 [0.28 0.11 0.34 0.39
NG 1 064 054 0.39 -0.28 -0.37 -0.12 0.36 [0.35 0.19 0.33 0.40
HY 1 088 073 0.15 0.06 0.20 -0.03 |0.23 0.05 0.40 0.41
Nitis 1 077 018 010 0.22 -0.04 |0.16 0.03 0.49 0.51
Eryq 1 016 0.07 0.11 0.07 |0.14 0.01 0.49 0.47
Aplan 1 0.69 0.31 -0.35 |-0.07 -0.09 0.07 0.06
Spher 1 0.38 -0.48 |-0.05 -0.10 0.01 -0.00
Cent 1 -0.65 |-0.04 -0.05 0.04 0.04
<n?> 1 [0.08 0.09 0.02 0.03
M,; 1 0.056 009 0.12
Mw 1 0.00 0.00
M 1 079
Mpin 1

TABLE IV: Average correlations among the 13 parameters for signal Monte Carlo

IX. CONCLUSION

In this note we have discussed the dataset, triggers, preselection and topological and
kinematic analysis needed to measure the tt — all jets cross section. We will discuss b-
tagging in other notes, as there is the possibility to conduct the analysis using different
methods of b-quark identification.
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