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We have measured the top and anti-top quark (tt) pair cross section using an event sample
corresponding to 162 pb™', which was recorded by D@ in the period 2002/2003. The analysis
concentrates on tt pairs decaying in a b-quark and a W-boson that decays hadronically. We isolate
the tt events from the background using topological variables and a secondary vertex tag (SVT).
These variables are combined in a topological analysis which uses artificial neural networks. We
observe 220 events with an expected background of 186 + 5(stat) + 12(syst) events, with a signal
efficiency of € - BR = 0.0273 £ 0.0009(stat)fg:gg§g(syst), which corresponds to a cross section of

o(tt) = 7.7 + 3.5(stat) T3 (syst) =+ 0.5(lumi)pb.
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I. INTRODUCTION

This note will describe the analysis method used to do the measurement of the tt —
all-jets production cross section with a dataset taken between July 2002 and January 2004,
with /s = 1.96 GeV/c?. We use secondary vertex tagging (SVT) for b-jet identification.
We do not veto on events with a soft muon tag, but we do reject events that have two or
more SVT tagged jets. First, we will discuss the parametrization of the QCD background
with tag rate functions (TRF), after which we will continue with the kinematic variables,
which are then used in a chain of top-discriminating neural networks. We will shortly discuss
the neural network training, after which we use the neural networks to predict the number
of observed signal and background events.

II. DATASET

We use the dataset, signal Monte Carlo and kinematic variables as described in detail
in DO note 4333[1]. Our dataset consists of almost 300k 6-jet events, and measured to
contain an integrated luminosity of 162 pb~! at an average trigger efficiency of 77% after
preselection. This number is derived by parametrization of the physics objects (=jets) in
the event, and is described in detail in [3, 4]. Correction for the trigger efficiency is done
on event basis, and is included in all distributions in this note. Our data and all our Monte
Carlo samples are processed with the Nefertiti version of top_analyze.

IIT. MODELING QCD BACKGROUND USING TAG-RATE FUNCTIONS
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FIG. 1: SVT tagged jets: n versus pr.

The presence of two b-jets in tt events leads to relatively high yield of SVT tagged jets.
The overwhelming presence of QCD events in the tagged (and untagged) sample allows
to measure the SVT tag rate function (TRF) in a straightforward manner. The TRF gives us
the probability to tag a random (background) event in our sample. We measure the TRF



on a jet by jet basis and calculate the probability, that a QCD event contains exactly one
tagged jet:

i#j

P(tags =1) szH 1—pj).

To first order, the TRF is modeled as function of the transverse energy and rapidity of the
jets. If there are no large n and pr correlations (Figure 1), the tag rate function factorizes:

Pl (pr,n) = Nf(pr)g(n). (1)

with f(pr) the probability that a jet with transverse energy has a SVT tag, g(n) the proba-
bility that a jet at n is tagged and N a normalization factor, which is needed to make sure
the integral of the total tagging probability is normalized to unity.

Similar to all other track-based b-tag analyses in the top group, we use physics 7, not
detector n for the parametrization.

We correct the jet pr with the light quark jet energy scale. As we apply our TRF to
tagged and untagged events, and the probability for a tagged event to contain a muon is
higher, we would shift our signal pr distribution more than our background pr distribution
if the jet energy scale were corrected for the missing momentum from the neutrino. We
want to be able to compare our tagged and untagged jets and events, as our tagged sample
is also expected to be mainly background. Hence, we do not apply the muon jet energy
scale for jets that contain a (soft) muon.

Figure 2 shows ratio of tagged jets over all taggable jets,

Ntagged(pT; n, HT)

TRF = )
Ntaggable (PT; n, HT)

as function of the jet pr. We use the same definition of taggability as all other lifetime
tagging tt analyses[5]: The jet needs to contain at least two tracks (pr > 0.5 GeV and
x? < 3) within a AR(track,jet) < 0.5, where each track should have at least three SMT
hits or at least two hits in the two inner layers of the silicon. When using the TRF for our
background predictions, we only apply our TRF to taggable jets. The function f(pr) (also
shown) is fitted to ratio of these distributions, using a parametrization of the form:

flpr) = ao - 0.5(1 + Erf(fracpr — a1a2+/p71)),

where Erf is the standard gaussian error function. The function g(n) is obtained in a similar
manner and is parametrized as:

g(n) = by + ban® + bsn* + ban® + bsn® (2)

As this is an even function, we implicitly make the presumption that the behavior of svT
is relatively symmetric in 7.

The rate of SVT tagged jets as function of 7 and the fitted function g(n) is displayed in
Fig 3. The normalization factor NN is fixed by the requirement:

Nt =" Nf(pr)g(n). 3)
jets

The pr and 7 distribution of the tagged jets, together with the expected number of tagged
jets are shown in figure 5.
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FIG. 2: The behavior of f(pr) for different Hr bins.

We observe that there is a Hr-dependence of the shape of the turn-on function. Figure 2
shows the behavior of f(pr) for different Hr bins.

We also observe that, even after the correction for the changes in turn-on of f(Pr), the
number of jets tagged thjgt;e 4 is linearly dependent of the transverse energy in the event,
Hr (Figure 4.

The expected number of jets now becomes:

Njets = N(Hr) Y fpr)g).-

jets

A. Background prediction using TRFs

On jet level, we can confirm the performance of our TRF as a function of jet pseudo-
rapidity and transverse momentum, as the distribution is produced directly by weighing
the untagged data with the jet weights. Figure 5 shows that the prediction is in rather
good agreement, both when the TRF is applied to each jet separately, and when applied to
the event as a whole.

B. Quality of TRF prediction on event basis

The TRF is used to predict the probability that a background event will have a SVT tag.
We do not care if this tag is real or a mis-tagged light quark jet.

We have observed that the TRF prediction is almost not dependent of the topological
part of the analysis, the variables Aplanarity, Sphericity, Centrality and < A2 >. On
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FIG. 3: The behavior of g(n) for different Hr bins.

the other hand, the background prediction is very dependent on the energy-dependent
variables like Hy. To study this effect, we train a dedicated neural network nngcp, which
has Aplanarity, Sphericity, Centrality and < #? > as input variables. This neural net
is used instead of one of the topological variables because it gives us a better control on
rejection of our potential top content in our TRF.

To parametrize the background-content of our sample, we want to make sure that our
background dominated region is absolutely normalized. For this, we apply our TRF to all
events and look at the behavior of the output of nngcp. The result of this procedure is
shown in 6. Figure 7 gives us the scatter of the normalization of nngcp. Our expected
background region is in the region nngcp < 0.6, while even in the higher regions we do
not expect a dominant excess of top events. We use all events with nngcp < 0.6 to get
an estimate on the error of our background estimation method. As figure 7 shows, we
need to apply a scale factor of 4% if we only want to use background events to predict
the background-content in our tagged sample. The error from this procedure is used as a
systematic uncertainty on the analysis, and is also shown in all following kinematic distri-
butions as an error on the background prediction. Table I shows the quality of the TRF
prediction when the error on the scale factor is already taken into account,and shows that
our used error of 7% can be considered conservative.
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Statistical errors only including systematic errors
Variable x?/Npr Probability of x*| x>/Npr Probability of x>
Hr 3.91871 / 14 0.995936 2.61665 / 14 0.999581
NG 14.4999 / 20 0.804272 9.89883 / 20 0.969969
HY 12.9779 / 16 0.674373 5.555692 / 16 0.992222
Ery 4 10.2135 / 12 0.597239 2.70008 / 12 0.997316
Nj’its 10.4086 / 11 0.494052 5.03841 / 11 0.929292
Aplanarity 25.7636 / 19 0.135911 11.3802 / 19 0.910384
Sphericity 31.5477 /24 0.138611 15.1633 / 24 0.915889
Centrality 17.8932 / 18 0.462706 8.25709 / 18 0.974559
<n’> 14.0729 / 19 0.779427 7.02727 / 19 0.994066
Mass Likelihood (tt) [26.5909 / 31 0.692556 19.6284 / 31 0.943439
Mass Likelihood (W) |31.7399 / 31 0.429419 20.7496 / 31 0.918359
Mz 17.4906 / 18 0.489652 9.0867 / 18 0.9577
Mz 23.4586 / 21 0.320021 12.8136 / 21 0.915013
NNO 41.4639 / 30 0.0794822 21.0275 / 30 0.887025
NNgcp 28.1424 / 28 0.45692 14.6379 / 28 0.982009

TABLE I x* = (Nobs — Nprea)® /(0255 + 0oreq) Per degrees of freedom for all topological variables
and the lower-level neural nets. The used errors include the statistical error on the tagged events,
and respectively only the statistical or the statistical and and systematic error (from TRF normal-
ization) added in quadrature for the background prediction. Bins containing less than 10 tagged
events are not used in the calculation. The actual distributions will be shown in section IV.



IV. KINEMATIC VARIABLES

The kinematic variables used in this analysis are identical to the ones described in
D@iiote 4333[1]. The background event distributions are created by multiplying all events
by the probability to tag an event in our sample pyy (pr,n, Hr).

All figures contain the distributions for events with one SVX tag, the background pre-
diction and its errors (from limited statistics and the error on the TRF), and the expected
distribution for top events, weighed with the per-event trigger efficiency. The tt contri-
bution is normalized to the number of tagged events, and is only added to provide extra
information on the difference between QCD 6-jet events and signal 6-jet events.

For each topological variable, we also show the quality of the background prediction,

Npredicted - Nobserved

b
Npredicted

where all statistical errors and the systematic error on the trf are propagated to the distri-
bution.
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V. NEURAL NETWORKS

We combine the quantities introduced above utilizing a chain of (artificial) neural net-
works (NNs). NNs provide the best possible discriminating power by accounting for the
correlations between their input variables. We use feed-forward NNs, trained by back prop-
agation as implemented in the JETNET([6] program. All the NNs have 1 output node and
1 middle layer with a number of nodes, twice the number of the input layer.

A. training samples

NNout NNout NNout
prob_bkg E prob_bkg| prob_bkg|
12001 Entries 2499 450} Entries 2499 450] Entries 2499
Mean 0.1321 Mean 0.2002 i Mean 0.2207
RMS 02317 400} RMS _0.2429 00| RMS 02933
1000 <

q
3508 350
00l 300f- 300

250 250]
600]- t
200

400} 1501 15017
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. eetcnletucition. & . Pl . e ) 1B
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FIG. 27: Neural network training output distributions for NNO (left), NN1 (center) and NN2
(right). The top plots give the NN output for the training sample, the bottom plots show the
distributions for an identically selected (but different) sample of the same size.

The NNs are trained on a small, randomly chosen fraction (5000 events, ~ 3%) of our
background sample and MC simulated tt events. The random selection is done as follows:

e Random selection: We draw a random event from our event sample.

e Tagged events rejection: We reject events with a soft muon or SVX tag. For Monte
Carlo we do not reject tagged events, but we also do not use the tagging information.

e Weighed random event rejection: We draw a random number from a uniform distri-
bution between 0 and 1. If our event tagging probability is higher than this random
value, we use the event. For Monte Carlo simulated events we require the event tag-
ging probability times the trigger efficiency to be higher than the random value. This
method is based on the idea that we want our NNs to be trained on events which have
a high chance of having a tag, without actually using tagged events in the training.

e We continue this process until we have 5000 training events.
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e The first 2500 training events are used for training, the second 2500 are used for cross-
checking the neural network output. Figure 27 shows the output distributions for the
training sample for the three neural networks.

Note again that data events containing a soft muon or SVX tag are never used in the training
of the NNs. The neural network discriminant output for the complete training samples can
be seen in figure 27.

B. Pre-selection with NNO

Neural Network 0 Neural Network 0
[} [2]
g 3 Integrated Luminosity = 162 pb* < Integrated Luminosity = 162 pb*
! re-normalized untagged data %’12000* re-normalized untagged data
10 = — t MC (scaled) — {t MC (scaled)
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[ 8000~
10" 6000
L 4000—
[ 2000—
2| “ e
we . . | | | | L o ees o = Lo—a--®]
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
NNO discriminant NNO discriminant

FIG. 28: NNO distribution for tagged (markers) and untagged (error band) data, and for signal
Monte Carlo. Events with NNO discriminant < 0.05 are removed from the further analysis.

The data is first pre-selected using a neural network (NNO), which has as input Hr,

Vs, H;? , Nj“éts, sphericity, aplanarity and centrality. As this pre-selection only removes
events that are very obvious background, this enhances the sensitivity for tt signal of our
analysis. The output distribution of NNO can be seen in figure 28.

To reduce the number of background events in the final distribution, we make cuts on

the discriminant of the output of the first neural network:
NNO > 0.05 4)

Events which fail this cut are rejected from the further analysis, and are also not used
for neural network training purposes. Our sample is still background-dominated after the
NNO > 0.05 requirement. The efficiencies of this cut for data and Monte Carlo simulated
events can be seen in table II.

C. Selection with NN1

After the pre-selection with NNO we use NN1 to provide a single discriminant. NN1
takes as input variables Hr, /s, Er(jetl)/Hr, H%J, Nf}zts, E;’G, sphericity, aplanarity,
centrality and < n? >. The output of NN1 is used as an input variable of NN2. The
output of NN1 for background (including error on background) and signal data can be seen
in figure 29.

The use of two neural networks instead of one is mainly based on the fact that the

analysis presented in this note is heavily based on the Run I analysis. Another reason is
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FIG. 29: NNI1 distribution for tagged (markers) and untagged (error band) data, and for signal
Monte Carlo. Events with NN1 discriminant < 0.05 are removed from the further analysis.

that in principle it is much easier to include some b-tagging information in neural network 2,
because there should be no change in the kinematic distributions when b-quark identification
is applied. The turn-on of the tagging efficiency versus the jet pr if corrected for by the tag
rate functions.
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FIG. 30: NN2 distribution for tagged events (markers), expected background only (open histogram)
and expected signal+background (filled histogram). We presume the production cross section to
be 7 pb~', BR(all-jets)=0.46 and the top mass to be 175 GeV/c.

The final NN, N N2, takes as input the output of NN1 and the the mass likelihoods Mz

and My w, and the smallest di-jet masses

1,2
M

min

and

4
M3

min”

Figure 30 shows the expected distributions presuming a tt cross section of 8 pb~!. In the
tagged sample the tt signal is still expected to be around one order of magnitude smaller
than the background.
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efficiencies
tt — all — jets tt — lepton + jets
marginal cumulative marginal cumulative

pre-selection 0.3884 + 0.0029 0.3884 + 0.0029 0.0375 % 0.0009 0.0375 + 0.0009

trigger 0.7367 + 0.0080 0.2861 + 0.0023 0.4982 + 0.0191 0.0187 + 0.0006

NNOQ > 0.05 0.9968 + 0.0113 0.2852 + 0.0023 0.9830 + 0.0418 0.0183 + 0.0006
Ngyr =1 0.457549 £ 0.0051608 | 0.130502 £ 0.00103148 |0.481087 £ 0.0203224 |0.00882647 £ 0.000260199
NN2 > 0.75|0.456203 £ 0.00666659 [0.0595354 £ 0.000731762 |0.220211 £ 0.0166007 | 0.00194369 =+ 0.000134858

TABLE II: Efficiencies and number of observed events for all analysis cuts.

VI. CROSS SECTION MEASUREMENT

In this section we present our results for the measured number of events in the tt all-jets
channel. The measurement is based on the output of neural network NN2 for the signal
sample (SVX tagged events). The number of events above a threshold on the output of
N N2 are counted. The remaining background is predicted from untagged events, weighted
with a muon tag rate function.

The expected NN2 distribution, and the prediction of the distribution when only back-
ground is expected, can be seen in figure 31.

A. Signal tagging probability

We use the certified b/c/q-tagging probabilities for data supplied to us by the D@ b-ID
group. We use the probability that an event has exactly one tag, and use this probability
as a weighing factor for our signal Monte Carlo.

Ptag tt
direct MC tagging | parameter tagging
b-jets 0.52 0.39
c-jet 0.13 0.11
light g-jet 0.003 0.006

TABLE III: The probability to tag jets of different flavor, for our Monte Carlo sample after prese-
lection, and our (data-based) SV'T tag parametrization

The probability for jet in a tt — all-jets event to have a tag depends on the flavor of the
jet, and is listed in table III.

B. Cross section using counting method

The tag rate functions are applied to full sample (only double-tags excluded) to estimate
the number of background events in our tagged sample. The excess number of events above
a certain NN2 discriminant, together with the efficiency for signal for this cut, is used to
calculate the tt cross section. The optimal value of the cut on NN2 can be determined by
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FIG. 31: Left: NN2 output distribution for expected background (histogram) and expected sig-
nal+background (triangles). Trigger efficiency and SVX tagging efficiencies from data are already
taken into account. Right: NN2 output fractional error for different NN2 discriminant cuts. The
minimal fractional error value is minimal at NN2 ~ 0.75 .

minimizing the expected signal fractional error. This property is:

+b
Ofrac(NN2 cut) = @7 o

Sexp

where s¢;p and by, respectively represent the number of expected signal and expected
background events which have NN2 values above a certain threshold.

Figure 31 shows the expected number of background events, together with the total
number of expected events, i.e. signal+background. As can be seen in figure 31, ofqc is
minimal at a NN2 cut of 0.75. When this cut of NN2 > 0.75 is applied, we observe the
following numbers of events:

Npackground(expected) = 186 + 5Sevents,

where the error comes from statistical fluctuations in our background distribution only. In
the single-tagged sample, we observe the following:

Nobserved = 220 events (6)

Figure 32 shows the observed NN2 distribution, together with the distributions that
would be expected if only background or background and tt — all-jets signal were present
in the dataset.

The efficiency for the selected cut is measured on tt — alljets Monte Carlo simulated
events, which are already corrected for the efficiency of the trigger and the probability to
have one SVX tag:

€all—jets = 0.058 + 0.0007(stat),

where the statistical errors are due to our Monte-Carlo statistics. This efficiency still has to
be corrected for events from the other tt production channels, especially the 7+jets channel
can be expected to have an event topology that is similar to the fully hadronic top decays:

€lepton+jets = 0.0018 + 00001(stat) (7)

The influence of the different selection criteria on the analysis efficiency is listed in table II.
Combining these two efficiencies according to the expected branching ratios (which are,
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FIG. 32: NN2 output distribution for muon-tagged events (triangles), expected background (open
histogram) and expected signal+background (filled histogram)

respectively, 0.460+0.014 for the all-jets and 0.437+0.007 for all three lepton+jets channels
combined) gives us an efficiency to measure the cross section for all tt production channels
which produce an event topology of at least 6 jets and no isolated leptons. This gives us a
final signal efficiency of

¢- BR == 0.0273 + 0.0009(MC, BR),

where the error includes the errors on the PDG values for the all-jets and lepton-+jets
branching fractions. The cross section is defined as

NobseTved - Nbackground (8)
L -BR - €(tt)

where L is the presumed luminosity of the dataset used. The luminosity was measured to
be £ = 162 + 6.5%pb '. Using this value, together with the observed events (VIB), (6)
and efficiency(VIB), we measure the cross section to be:

o(tt) = 7.7 £ 3.5(stat) pb 9)



22

tt - all-jets efficiency

%
i

basic efficienc

=)

o

N
\

0.06—

-10 -5 0 5 10
My, - 175 [GeV/ICH

FIG. 33: Signal efficiency dependence of the top mass. We use the values at -5 and +5 GeV/c>.

VII. SYSTEMATIC UNCERTAINTIES

We include the following systematic effects in our systematic error calculation. The
actual errors are listed in tables IV and VI for errors that influence the efficiency and
excess, respectively.

e The error on the measurement of the vertex reconstruction

e The influence of the difference in jet ID between Monte Carlo simulation and data. The
current jet identification uses a first-level trigger confirmation in its selection criteria.
We overcompensate for this effect by making a (conservative) parametrization of the
probability that a jet will not be reconstructed. We use a dedicated version of the top
ntuple maker top_analyze for this purpose.

e The influence of the error on the jet energy scale. We use the standard procedure of
varying the applied JES by adding (subtracting) the quadratic sum of the systematic
and statistical uncertainty for data and Monte Carlo jets by one sigma.

e The influence of the Monte Carlo smearing of the jet energy resolutions. We have a
dedicated version of top_analyze that over(under) smears the jet energies on our signal
Monte Carlo.

e The analysis efficiency is dependent on the top mass that was used. We calculate
the efficiency for a top mass of 175 GeV/c?, and have control samples at 165 and
185 GeV/c?. We obtain the error on a variance of +5 GeV/c? (the world average
error) through interpolation, as is shown in figure 33.

e The uncertainty on the trigger parametrizations. We assume this to be 4%, which is
the difference between the pl3 number that was measured on six-jet data (91%) and
the average value coming from our trigger parametrization (87%).

e The uncertainty from the SVT tag probabilities. These are listed in table V.
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systematic uncertainties on signal efficiency (in %)

Vertex reconstruction +1

Jet Identification —-9.8 -
Jet Energy Scale o —28.3 +28.1
Jet Resolution o —0.6 +0.2
Top Mass £5GeV/c’ —7.6 +5.9
Trigger Efficiency (trigsim) +4

TABLE IV: Systematic error calculation on signal efficiency.

e The uncertainty on the background parametrization. As was elaborately discussed in
section , there is an error on the background parametrization we use. We include this
error in the systematical uncertainty.

e The uncertanty of the background parametrization due to limited statistics. We take
the maximal error from the different Hy bins, which is 3.6% when 450 < Hp < 100
GeV.

We observe that the error is currently completely dominated by the Jet Energy Scale,
Top Mass measurement and background estimation. The total combined systematic error
on the measurement is

syst change on € = +32.3% — 32.2%.

The individual and combined systematic error can be seen in figure 34.

Systematic Errors on NN2 cut
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FIG. 34: Systematic errors on the efficiency as a function of the NN2 cut.

VIII. CONCLUSION

We have measured the top and anti-top quark (tt) pair cross section in the top to ’all-jets’
channel using an event sample corresponding approximately 162 pb~!, which was recorded
by D@ in the period 2002/2003.



systematic uncertainties on tagging probabilities (in %)

Taggability +0.6
Taggability flavor dependence +0.0
SLT efficiency (data) -3.7 2.9
SLT efficiency (MC) +0.5
inclusive b-efficiency (MC) +0.2
inclusive c-efficiency (MC) <1073
Scale Factor b/c -0.1 0.0
negative tag efficiency +0.1
MiopE5 GeV 0.2 +0.4
Limited MC statistics +1.1
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TABLE V: Systematic uncertainties from SVT modeling.

systematic uncertainties on background estimation (in %)

Statistical error TRF's +3.6
Background modeling (TRFs) +6.6
Total | +7.5

TABLE VI: Systematic error calculation on background calculation.

The analysis is restricted to events with at least six jets (and no isolated lepton); the
expected signature for tt pairs decaying in a b quark and a W boson and the subsequent
decay of each W boson into 2 quarks.

The background from QCD events is reduced using several variables related to the topol-
ogy and the underlying physical structure of the events. These variables are combined in a
chain of two artificial neural networks, after which we apply a secondary vertex tag (SVT)
to reduce background. The efficiency after a cut on the output on the second neural network
is

¢-BR = 0.0273 = 0.0009(stat) "o oove (Syst) (10)

The remaining background is predicted using all events except events with a double tag,
weighted with event weights predicted by a SVT tag rate function. We observe 220 events,
where we predict 186 £ 5(stat) + 12(syst) background events. Presuming a tt cross section
of 7 pb™!, we would expect 28 signal events. The measured cross section is

o(tt) = 7.7 £ 3.5(stat) 7 (syst) + 0.5(lumi) pb.
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